Synthesis of Tetragonal BaTiO3 Nanoparticles in Methanol
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of BT Nanoparticles
2.3. Nanoparticles Characterization
3. Results and Discussion
3.1. OA Concentration
3.2. Solvothermal Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
BT:OA | Tetragonal | Cubic | BaCO3 |
---|---|---|---|
1:0 | 15.1% | 63.1% | 21.8% |
1:0.3 | 56.0% | 39.6% | 4.4% |
1:0.6 | 36.9% | 53.9% | 9.2% |
Williamson-Hall | Scherrer Diameter (nm) | |||
---|---|---|---|---|
Diameter (nm) | Strain | (101)/(110) | Average | |
BaTiO3 tetragonal 0.0 | 5.84 | 0.00737 | 8.66 | 11.80 |
BaTiO3 cubic 0.0 | 5.31 | 0.00475 | 6.51 | 7.38 |
BaTiO3 tetragonal 0.3 | 6.64 | 0.00532 | 9.24 | 11.10 |
BaTiO3 ubic 0.3 | 4.66 | 0.00842 | 6.67 | 8.58 |
BaTiO3 tetragonal 0.6 | 6.98 | 0.00554 | 9.93 | 12.59 |
BaTiO3 cubic 0.6 | 3.75 | 0.00998 | 5.34 | 6.72 |
References
- Market Report—Global Piezoelectric Device Market, 2nd ed.; Acmite Market Intelligence: Ratingen, Germany, 2014.
- Arlt, G.; Hennings, D.; de With, G. Dielectric properties of fine grained barium titanate ceramics. J. Appl. Phys. 1985, 58, 1619. [Google Scholar] [CrossRef]
- Uchino, K.; Sadanaga, E.; Hirose, T. Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 1989, 72, 1555–1558. [Google Scholar] [CrossRef]
- Frey, M.; Payne, D. Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B Condens. Matter 1996, 54, 3158–3168. [Google Scholar] [CrossRef]
- Spanier, J.E.; Kolpak, A.M.; Urban, J.J.; Grinberg, I.; Ouyang, L.; Yun, W.S.; Rappe, A.M.; Park, H. Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett. 2006, 6, 735–739. [Google Scholar] [CrossRef]
- Hoshina, T.; Wada, S.; Kuroiwa, Y.; Tsurumi, T. Composite structure and size effect of barium titanate nanoparticles. Appl. Phys. Lett. 2008, 93, 192914. [Google Scholar] [CrossRef]
- Hoshina, T. Size effect of barium titanate: Fine particles and ceramics. J. Ceram. Soc. Jpn. 2013, 121, 156–161. [Google Scholar] [CrossRef]
- Jaccard, C.; Kaenzig, W.; Peter, M. Das Verhalten von kolloidalen Seignetteelektrika. I, Kaliumphosphat KH2PO4. Helv. Phys. Acta 1953, 26, 521. [Google Scholar]
- Zhu, J.; Han, W.; Zhang, H.; Yuan, Z.; Wang, X.; Li, L.; Jin, C. Phase coexistence evolution of nano BaTiO3 as function of particle sizes and temperatures. J. Appl. Phys. 2012, 112, 064110. [Google Scholar] [CrossRef]
- Mueller, V.; Beige, H.; Abicht, H.-P.; Eisenschmidt, C. X-ray diffraction study revealing phase coexistence in barium titanate stannate. J. Mater. Res. 2011, 19, 2834–2840. [Google Scholar] [CrossRef]
- Jacobs, A. Landau theory of structures in tetragonal-orthorhombic ferroelastics. Phys. Rev. B 2000, 61, 6587–6595. [Google Scholar] [CrossRef]
- Polking, M.J.; Alivisatos, P.; Ramesh, R. Synthesis, physics, and applications of ferroelectric nanomaterials. MRS Commun. 2015, 5, 27–44. [Google Scholar] [CrossRef]
- Yoon, D.H. Tetragonality of barium titanate powder for a ceramic capacitor application. J. Ceram. Process. Res. 2006, 7, 343. [Google Scholar]
- Bell, A.J. Grain size effects in barium titanate-revisited. In Proceedings of the 1994 IEEE International Symposium on Applications of Ferroelectrics, University Park, PA, USA, 7–10 August 1994; pp. 14–17. [Google Scholar]
- Pandey, D.; Singh, P.; Tiwari, V.S. Developments in ferroelectric ceramics for capacitor applications. Bull. Mater. Sci. 1992, 15, 391–402. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, J.; Wu, Y.; Wang, C.; Koval, V.; Shi, B.; Ye, H.; McKinnon, R.; Viola, G.; Yan, H. Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci. Rep. 2015, 5, 9953. [Google Scholar] [CrossRef] [PubMed]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Oxford University Press: Oxford, UK, 1977. [Google Scholar]
- Pithan, C.; Hennings, D.; Waser, R. Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC. Int. J. Ceram. Technol. 2005, 2, 1–14. [Google Scholar] [CrossRef]
- Simon-Seveyrat, L.; Hajjaji, A.; Emziane, Y.; Guiffard, B.; Guyomar, D. Re-investigation of synthesis of BaTiO3 by conventional solid-state reaction and oxalate coprecipitation route for piezoelectric applications. Ceram. Int. 2007, 33, 35–40. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, J.; Zhou, S.; Liu, Z.; Ming, N.; Hesse, D. BaTiO3 nanocrystals: Hydrothermal synthesis and structural characterization. J. Cryst. Growth 2005, 284, 486–494. [Google Scholar] [CrossRef]
- Makino, T.; Arimura, M.; Fujiyoshi, K.; Yamashita, Y.; Kuwabara, M. Crystallinity of Barium Titanate Nanoparticles Synthesized by Sol-Gel Method. Key Eng. Mater. 2007, 350, 31–34. [Google Scholar] [CrossRef]
- Gomes, M.A.; Lima, Á.S.; Eguiluz, K.I.B.; Salazar-Banda, G.R. Wet chemical synthesis of rare earth-doped barium titanate nanoparticles. J. Mater. Sci. 2016, 51, 4709–4727. [Google Scholar] [CrossRef]
- Sasirekha, N.; Rajesh, B. Hydrothermal Synthesis of Barium Titanate: Effect of Titania Precursor and Calcination Temperature on Phase Transition. Ind. Eng. Chem. Res. 2008, 47, 1868–1875. [Google Scholar] [CrossRef]
- Hennings, D.; Schreinemacher, S. Characterization of hydrothermal barium titanate. J. Eur. Ceram. Soc. 1992, 9, 41–46. [Google Scholar] [CrossRef]
- Vivekanandan, R.; Kutty, T.R.N. Characterization of barium titanate fine powders formed from hydrothermal crystallization. Powder Technol. 1989, 57, 181–192. [Google Scholar] [CrossRef]
- Busca, G.; Buscaglia, V.; Leoni, M.; Nanni, P. Solid-State and Surface Spectroscopic Characterization of BaTiO3 Fine Powders. Chem. Mater. 1994, 6, 955–961. [Google Scholar] [CrossRef]
- Hennings, D.F.K.; Metzmacher, C.; Schreinemacher, B.S. Defect Chemistry and Microstructure of Hydrothermal Barium Titanate. J. Am. Ceram. Soc. 2001, 84, 179–182. [Google Scholar] [CrossRef]
- Clark, I.; Sinclair, D. Hydrothermal synthesis and characterisation of BaTiO3 fine powders: Precursors, polymorphism and properties. J. Mater. Chem. 1999, 9, 83–91. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Ghose, S.; Ravel, B.; Idehenre, I.U.; Barnakov, Y.A.; Basun, S.A.; Evans, D.R.; Tyson, T.A. Structural origin of recovered ferroelectricity in BaTiO3 nanoparticles. Phys. Rev. B 2023, 108, 064106. [Google Scholar] [CrossRef]
- Philippot, G.; Elissalde, C.; Maglione, M.; Aymonier, C. Supercritical fluid technology: A reliable process for high quality BaTiO3 based nanomaterials. Adv. Powder Technol. 2014, 25, 1415–1429. [Google Scholar] [CrossRef]
- Niederberger, M.; Pinna, N. Metal Oxide Nanoparticles in Organic Solvents; Springer: London, UK, 2009. [Google Scholar]
- Vioux, A. Nonhydrolytic Sol−Gel Routes to Oxides. Chem. Mater. 1997, 9, 2292–2299. [Google Scholar] [CrossRef]
- Niederberger, M. Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc. Chem. Res. 2007, 40, 793–800. [Google Scholar] [CrossRef]
- Garnweitner, G.; Hentschel, J.; Antonietti, M.; Niederberger, M. Nonaqueous Synthesis of Amorphous Powder Precursors for Nanocrystalline PbTiO3, Pb(Zr,Ti)O3, and PbZrO3. Chem. Mater. 2005, 17, 4594–4599. [Google Scholar] [CrossRef]
- Dosch, R. Preparation of barium titanate films using sol-gel techniques. MRS Proc. 1984, 32, 157. [Google Scholar] [CrossRef]
- Takashi, H.; Kimihiko, S.; Katsuaki, S. Chemical processing and dielectric properties of BaTiO3 ceramics. Ceram. Trans. 1995, 51, 733–738. [Google Scholar]
- Niederberger, M.; Pinna, N.; Polleux, J.; Antonietti, M. A general soft-chemistry route to perovskites and related materials: Synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles. Angew. Chem. Int. Ed. Engl. 2004, 43, 2270–2273. [Google Scholar] [CrossRef] [PubMed]
- Djerdj, I.; Arčon, D.; Jagličić, Z.; Niederberger, M. Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles. J. Solid. State Chem. 2008, 181, 1571–1581. [Google Scholar] [CrossRef]
- Santos, G.O.S.; Silva, R.S.; Costa, L.P.; Cellet, T.S.P.; Rubira, A.F.; Eguiluz, K.I.B.; Salazar-Banda, G.R. Influence of synthesis conditions on the properties of electrochemically synthesized BaTiO3 nanoparticles. Ceram. Int. 2014, 40, 3603–3609. [Google Scholar] [CrossRef]
- Zhang, M.; Caldwell, T.; Hector, A.L.; Garcia-Araez, N.; Falvey, J. Solvothermal synthesis of nanoscale BaTiO3 in benzyl alcohol–water mixtures and effects of manganese oxide coating to enhance the PTCR effect. Dalton Trans. 2023, 52, 297–307. [Google Scholar] [CrossRef]
- Taleb, S.; Badillo, M.; Flores-Ruiz, F.J.; Acuautla, M. From synthesis to application: High-quality flexible piezoelectric sensors fabricated from tetragonal BaTiO3/P(VDF-TrFE) composites. Sens. Actuators A Phys. 2023, 361, 114585. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Wang, G.L.; Li, K.W.; Zhang, M.; Hu, X.Y.; Wang, H. Facile synthesis of submicron BaTiO3 crystallites by a liquid–solid reaction method. J. Cryst. Growth 2006, 290, 513–517. [Google Scholar] [CrossRef]
- Ji, X.; Zhu, Y.; Lian, X.; Fan, B.; Liu, X.; Xiao, P.; Zhang, Y. Hydroxylation mechanism of phase regulation of nanocrystal BaTiO3 synthesized by a hydrothermal method. Ceram. Int. 2022, 48, 2281–2288. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, Y.; Wu, W.; Pei, C.; Zhu, G.; Wu, Z.; Zhang, L.; Fan, W.; Wu, Z. Review on strategies toward efficient piezocatalysis of BaTiO3 nanomaterials for wastewater treatment through harvesting vibration energy. Nano Energy 2023, 113, 108507. [Google Scholar] [CrossRef]
- Mao, Y.; Mao, S.; Ye, G.; Xie, Z.; Zheng, L. Solvothermal synthesis and Curie temperature of monodispersed barium titanate nanoparticles. Mater. Chem. Phys. 2010, 124, 1232–1238. [Google Scholar] [CrossRef]
- Cho, C.-R.; Lee, S.-J.; Jang, M.-S.; Kim, H.-J.; Jeong, S.; Ro, D.-T.; Kim, S.-C. Ferroelectric BaTiO3 thin films and ceramics fabrication by sol-gel synthesis. Korean Phys. Soc. 1992, 32, 575–581. [Google Scholar]
- Hayashi, T.; Shinozaki, H.; Sasaki, K. Preparation and properties of (Ba0·7Sr0·3)TiO3 powders and thin films using precursor solutions formed from alkoxide-hydroxide. J. Eur. Ceram. Soc. 1999, 19, 1011–1016. [Google Scholar] [CrossRef]
- Upadhyah, R.H.; Argekar, A.P.; Deshmukh, R.R. Characterization, dielectric and electrical behaviour of BaTiO3 nanoparticles prepared via Titanium (IV) triethanolaminato isopropoxide and hydrated Barium. Bull. Mater. Sci. 2014, 37, 481–489. [Google Scholar] [CrossRef]
- Chen, D.; Jiao, X. Solvothermal Synthesis and Characterization of Barium Titanate Powders. J. Am. Ceram. Soc. 2004, 83, 2637–2639. [Google Scholar] [CrossRef]
- O’Brien, S.; Brus, L.; Murray, C.B. Synthesis of Monodisperse Nanoparticles of Barium Titanate: Toward a Generalized Strategy of Oxide Nanoparticle Synthesis. J. Am. Chem. Soc. 2001, 123, 12085–12086. [Google Scholar] [CrossRef]
- Niederberger, M.; Garnweitner, G. Nonaqueous synthesis of barium titanate nanocrystals in acetophenone as oxygen supplying agent. MRS Proc. 2005, 879, 98. [Google Scholar] [CrossRef]
- Smith, M.B.; Page, K.; Siegrist, T.; Redmond, P.L.; Walter, E.C.; Seshadri, R.; Brus, L.E.; Steigerwald, M.L. Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 2008, 130, 6955–6963. [Google Scholar] [CrossRef]
- Kwon, S.-G.; Choi, K.; Kim, B.-I. Solvothermal synthesis of nano-sized tetragonal barium titanate powders. Mater. Lett. 2006, 60, 979–982. [Google Scholar] [CrossRef]
- Kwon, S.; Park, B.; Choi, K.; Choi, E.; Nam, S.; Kim, J. Solvothermally synthesized tetragonal barium titanate powders using H2O/EtOH solvent. J. Eur. Ceram. Soc. 2006, 26, 1401–1404. [Google Scholar] [CrossRef]
- Wei, X.; Xu, G.; Ren, Z.; Wang, Y.; Shen, G.; Han, G. Synthesis of Highly Dispersed Barium Titanate Nanoparticles by a Novel Solvothermal Method. J. Am. Ceram. Soc. 2007, 91, 315–318. [Google Scholar] [CrossRef]
- Ohno, T.; Suzuki, D.; Suzuki, H.; Ida, T. Size effect for barium titanate nano-particles. Kona 2004, 22, 195–201. [Google Scholar] [CrossRef]
- Robins, L.; Kaiser, D.; Rotter, L.; Schenck, P. Investigation of the structure of barium titanate thin films by Raman spectroscopy. J. Appl. 1994, 76, 7487–7498. [Google Scholar] [CrossRef]
- DiDomenico, M.; Wemple, S.H.; Porto, S.P.S.; Bauman, R.P. Raman Spectrum of Single-Domain BaTiO3. Phys. Rev. 1968, 174, 522–530. [Google Scholar] [CrossRef]
- El Marssi, M.; Le Marrec, F.; Lukyanchuk, I.A.; Karkut, M.G. Ferroelectric transition in an epitaxial barium titanate thin film: Raman spectroscopy and X-ray diffraction study. J. Appl. Phys. 2003, 94, 3307. [Google Scholar] [CrossRef]
- Fang, C.; Zhou, D.; Gong, S. Core-shell structure and size effect in barium titanate nanoparticle. Phys. B Condens. Matter 2011, 406, 1317–1322. [Google Scholar] [CrossRef]
- Rabuffetti, F.A.; Brutchey, R.L. Structural evolution of BaTiO3 nanocrystals synthesized at room temperature. J. Am. Chem. Soc. 2012, 134, 9475–9487. [Google Scholar] [CrossRef]
- Bakhtbidar, M.; Merlen, A.; Ruediger, A. Ferroelectric-to-paraelectric phase transition probing via high-resolution tip-enhanced Raman spectroscopy. Opt. Commun. 2025, 591, 132058. [Google Scholar] [CrossRef]
- Surmenev, R.A.; Chernozem, R.V.; Skirtach, A.G.; Bekareva, A.S.; Leonova, L.A.; Mathur, S.; Ivanov, Y.F.; Surmeneva, M.A. Hydrothermal synthesis of barium titanate nano/microrods and particle agglomerates using a sodium titanate precursor. Ceram. Int. 2021, 47, 8904–8914. [Google Scholar] [CrossRef]
- Duong, N.X.; Bae, J.S.; Jeon, J.; Lim, S.Y.; Oh, S.H.; Ullah, A.; Sheeraz, M.; Choi, J.S.; Ko, J.H.; Yang, S.M.; et al. Polymorphic phase transition in BaTiO3 by Ni doping. Ceram. Int. 2019, 45, 16305–16310. [Google Scholar] [CrossRef]
- Lin, S.; Lü, T.; Jin, C.; Wang, X. Size effect on the dielectric properties of BaTiO3 nanoceramics in a modified Ginsburg-Landau-Devonshire thermodynamic theory. Phys. Rev. B 2006, 74, 134115. [Google Scholar] [CrossRef]
- Arlt, G. The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics 1990, 104, 217–227. [Google Scholar] [CrossRef]
- Murugesan, C.; Chandrasekaran, G. Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 2015, 5, 73714–73725. [Google Scholar] [CrossRef]
- Ahlawat, A.; Sathe, V.G.; Reddy, V.R.; Gupta, A. Mossbauer, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater. 2011, 323, 2049–2054. [Google Scholar] [CrossRef]
- Nara, M.; Torii, H.; Tasumi, M. Correlation between the vibrational frequencies of the carboxylate group and the types of its coordination to a metal ion: An ab initio molecular orbital study. J. Phys. Chem. 1996, 3654, 19812–19817. [Google Scholar] [CrossRef]
- Cai, Q.J.; Gan, Y.; Chan-Park, M.B.; Yang, H.B.; Lu, Z.S.; Li, C.M.; Guo, J.; Dong, Z.L. Solution-Processable Barium Titanate and Strontium Titanate Nanoparticle Dielectrics for Low-Voltage Organic Thin-Film Transistors. Chem. Mater. 2009, 21, 3153–3161. [Google Scholar] [CrossRef]
- Morozovska, A.N.; Glinchuk, M.D.; Eliseev, E.A. Phase transitions induced by confinement of ferroic nanoparticles. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 014102. [Google Scholar] [CrossRef]
- Gomi, K.; Tanaka, K.; Kamiya, H. Effect of Mixing Condition on Sol-Gel Synthesis of Barium Titanate Ultrafine Particles [Translated]†. KONA Powder Part. J. 2004, 22, 177–185. [Google Scholar] [CrossRef]
- Wada, S.; Suzuki, T.; Noma, T. Role of Lattice Defects in the Size Effect of Barium Titanate Fine Particles. J. Ceram. Soc. Jpn. 1996, 104, 383–392. [Google Scholar] [CrossRef]
- Yoon, S.; Baik, S.; Kim, M.G.; Shin, N. Formation Mechanisms of Tetragonal Barium Titanate Nanoparticles in Alkoxide-Hydroxide Sol-Precipitation Synthesis. J. Am. Ceram. Soc. 2006, 89, 1816–1821. [Google Scholar] [CrossRef]
- Stawski, T.M.; Veldhuis, S.A.; Göbel, O.F.; Podstawka-Proniewicz, E.; Elshof, J.E.T. Electron microscopy study of intragranular nanoporosity and the occurrence of local structural disorder in cubic BaTiO3 nanopowders from alkoxide–hydroxide precipitation process. Ceram. Int. 2012, 38, 6911–6917. [Google Scholar] [CrossRef]
- Wakaki, M.; Shibuya, T.; Kudo, K. Physical Properties and Data of Optical Materials; CRC Press (Taylor & Francis Group): Boca Raton, FL, USA, 2007. [Google Scholar]
- Ma, Q.; Mimura, K.; Kato, K. Diversity in size of barium titanate nanocubes synthesized by a hydrothermal method using an aqueous Ti compound. CrystEngComm 2014, 16, 8398. [Google Scholar] [CrossRef]
- Szwarcman, D.; Vestler, D.; Markovich, G. The size-dependent ferroelectric phase transition in BaTiO3 nanocrystals probed by surface plasmons. ACS Nano 2011, 5, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Kholodkova, A.A.; Danchevskaya, M.N.; Ivakin, Y.D.; Muravieva, G.P. Synthesis of fine-crystalline tetragonal barium titanate in low-density water fluid. J. Supercrit. Fluids 2015, 105, 201–208. [Google Scholar] [CrossRef]
- Xia, Y.; Larock, R.C. Vegetable oil-based polymeric materials: Synthesis, properties, and applications. Green Chem. 2010, 12, 1893. [Google Scholar] [CrossRef]
- Shahidi, F. Bailey’s Industrial Oil and Fat Products, 6th ed.; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Renz, M. Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope. Eur. J. Org. Chem. 2005, 2005, 979–988. [Google Scholar] [CrossRef]
- Hennings, D.; Rosenstein, G.; Schreinemacher, H. Hydrothermal preparation of barium titanate from barium-titanium acetate gel precursors. J. Eur. Ceram. Soc. 1991, 8, 107–115. [Google Scholar] [CrossRef]
- Kageyama, H.; Oaki, Y.; Takezawa, Y. Low-temperature syntheses of cubic BaTiO3 nanoparticles in highly basic aqueous solution. J. Ceram. Soc. Jpn. 2013, 121, 388–392. [Google Scholar] [CrossRef]
- Simonsen, M.E.; Søgaard, E.G. Sol–gel reactions of titanium alkoxides and water: Influence of pH and alkoxy group on cluster formation and properties of the resulting products. J. Solgel Sci. Technol. 2009, 53, 485–497. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed-Noriega, N.; Grothe, J.; Kaskel, S. Synthesis of Tetragonal BaTiO3 Nanoparticles in Methanol. Nanomaterials 2025, 15, 1226. https://doi.org/10.3390/nano15161226
Mohamed-Noriega N, Grothe J, Kaskel S. Synthesis of Tetragonal BaTiO3 Nanoparticles in Methanol. Nanomaterials. 2025; 15(16):1226. https://doi.org/10.3390/nano15161226
Chicago/Turabian StyleMohamed-Noriega, Nasser, Julia Grothe, and Stefan Kaskel. 2025. "Synthesis of Tetragonal BaTiO3 Nanoparticles in Methanol" Nanomaterials 15, no. 16: 1226. https://doi.org/10.3390/nano15161226
APA StyleMohamed-Noriega, N., Grothe, J., & Kaskel, S. (2025). Synthesis of Tetragonal BaTiO3 Nanoparticles in Methanol. Nanomaterials, 15(16), 1226. https://doi.org/10.3390/nano15161226