Smart Polymers and Adaptive Systems in Pilot Suit Engineering: Toward Autonomous, Responsive, and Wearable Flight Technologies
Abstract
1. Introduction
2. Desired Properties and Requirements for Modern Pilot Suits
2.1. Nanomaterials-Enhanced Textile Platforms for Pilot Suits
2.2. High-Performances Fibers for Modern Pilot Suits
2.3. Thermal-Regulative Fibers for Modern Pilot Suits
2.4. Energy-Harvesting Triboelectric Fibers for Modern Pilot Suit
3. Advanced Manufacturing Techniques for Potential Modern Pilot Suits
3.1. Three-Dimensional Manufacturing
3.2. Four-Dimensional Manufacturing
4. System Integration of Flexible Electronics in Pilot Suits
4.1. Integration Strategies for Fiber-Based Sensors and Circuits
4.2. Data Transmission and Communication Technologies
4.3. Power Management and Energy Storage Solutions
5. Limitations, Challenges, and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Full Name | Abbreviation | Full Name | Abbreviation |
Thermoplastic polyurethane | TPU | Lower critical solution temperature | LCST |
Triboelectric nanogenerator | TENG | Poly(N-isopropylacrylamide) | PNIPAM |
Carbon nanotubes | CNTs | Poly(p-phenylene-2,6-benzobisoxazole | PBO |
Limiting oxygen index | LOI | Polyacrylamide | PAAm |
Shape memory polymers | SMP | Polypyrrole | PPy |
Metal–organic frameworks | MOFs | Stereolithography | SLA |
Direct ink writing | DIW | Digital light processing | DLP |
Polyimide | PI | Polyaniline | PANI |
Polyimide (commercial grade, P84®) | P84® | Artificial Intelligence | AI |
Polyethylene Glycol | PEG | Fused Deposition Modeling | FDM |
Electromagnetic Interference Shielding | EMI | poly(methyl methacrylate | PMMA |
References
- Tepylo, N.; Straubinger, A.; Laliberte, J. Public perception of advanced aviation technologies: A review and roadmap to acceptance. Prog. Aerosp. Sci. 2023, 138, 100899. [Google Scholar] [CrossRef]
- Ranasinghe, K.; Guan, K.; Gardi, A.; Sabatini, R. Review of advanced low-emission technologies for sustainable aviation. Energy 2019, 188, 115945. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Tao, S.; Chai, H.; Xu, D.; Li, X.; Qi, H. High-performance smart cellulose nanohybrid aerogel fibers as a platform toward multifunctional textiles. Chem. Eng. J. 2023, 466, 143153. [Google Scholar] [CrossRef]
- Su, Y.; Chen, C.; Pan, H.; Yang, Y.; Chen, G.; Zhao, X.; Li, W.; Gong, Q.; Xie, G.; Zhou, Y. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv. Funct. Mater. 2021, 31, 2010962. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, B.; Ma, P. Advances in mechanical properties of flexible textile composites. Compos. Struct. 2023, 303, 116350. [Google Scholar] [CrossRef]
- Behera, S.A.; Panda, S.; Hajra, S.; Kaja, K.R.; Pandey, A.K.; Barranco, A.; Jeong, S.M.; Vivekananthan, V.; Kim, H.J.; Achary, P.G.R. Current Trends on Advancement in Smart Textile Device Engineering. Adv. Sustain. Syst. 2024, 8, 2400344. [Google Scholar] [CrossRef]
- Dong, K.; Peng, X.; Cheng, R.; Ning, C.; Jiang, Y.; Zhang, Y.; Wang, Z.L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355. [Google Scholar] [CrossRef]
- Biswas, M.C.; Chakraborty, S.; Bhattacharjee, A.; Mohammed, Z. 4D printing of shape memory materials for textiles: Mechanism, mathematical modeling, and challenges. Adv. Funct. Mater. 2021, 31, 2100257. [Google Scholar] [CrossRef]
- Franco Urquiza, E.A. Advances in additive manufacturing of polymer-fused deposition modeling on textiles: From 3D printing to innovative 4D printing—A review. Polymers 2024, 16, 700. [Google Scholar] [CrossRef]
- Sanchez, V.; Walsh, C.J.; Wood, R.J. Textile technology for soft robotic and autonomous garments. Adv. Funct. Mater. 2021, 31, 2008278. [Google Scholar] [CrossRef]
- Dulal, M.; Afroj, S.; Ahn, J.; Cho, Y.; Carr, C.; Kim, I.-D.; Karim, N. Toward sustainable wearable electronic textiles. ACS Nano 2022, 16, 19755–19788. [Google Scholar] [CrossRef]
- Heo, J.S.; Eom, J.; Kim, Y.H.; Park, S.K. Recent progress of textile-based wearable electronics: A comprehensive review of materials, devices, and applications. Small 2018, 14, 1703034. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Ma, K.; Luo, Y.; Tang, S.; Liu, T.; Liu, J.; Leung, M.; Yang, J.; Hui, R.; Xiong, Y. Textile electronics for wearable applications. Int. J. Extrem. Manuf. 2023, 5, 042007. [Google Scholar] [CrossRef]
- Kang, J.; Liu, T.; Lu, Y.; Lu, L.; Dong, K.; Wang, S.; Li, B.; Yao, Y.; Bai, Y.; Fan, W. Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Compos. Part-B Eng. 2022, 245, 110229. [Google Scholar] [CrossRef]
- Hwang, S.; Kang, M.; Lee, A.; Bae, S.; Lee, S.-K.; Lee, S.H.; Lee, T.; Wang, G.; Kim, T.-W. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat. Commun. 2022, 13, 3173. [Google Scholar] [CrossRef]
- Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W. Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 2020, 32, 1901958. [Google Scholar] [CrossRef]
- Shetty, J.; Lawson, C.P.; Shahneh, A.Z. Simulation for temperature control of a military aircraft cockpit to avoid pilot’s thermal stress. CEAS Aeronaut. J. 2015, 6, 319–333. [Google Scholar] [CrossRef]
- Tu, M.-Y.; Chu, H.; Chen, H.-H.; Chiang, K.-T.; Hu, J.-M.; Li, F.-L.; Yang, C.-S.; Cheng, C.-C.; Lai, C.-Y. Roles of physiological responses and anthropometric factors on the gravitational force tolerance for occupational hypergravity exposure. Int. J. Environ. Res. Public Health 2020, 17, 8061. [Google Scholar] [CrossRef]
- Burress, P.D., Jr.; Earl, W. Finding the Balance Between Price and Protection: Establishing a Surface-to-Air Fire Risk-Reduction Training Policy for Air-Carrier Pilots. J. Aviat. Aerosp. Educ. Res. 2017, 26, 81–109. [Google Scholar] [CrossRef]
- Zohdi, T. A digital twin framework for machine learning optimization of aerial fire fighting and pilot safety. Comput. Methods Appl. Mech. Eng. 2021, 373, 113446. [Google Scholar] [CrossRef]
- James, J. Air Safety from the Pilot’s Point of View. Aeronaut. J. 1949, 53, 949–964. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Yang, X. Recent Research on anti-G suit for Fighter Pilots. Recent Pat. Eng. 2024. [Google Scholar] [CrossRef]
- Singh, A.V.; Rahman, A.; Kumar, N.S.; Aditi, A.; Galluzzi, M.; Bovio, S.; Barozzi, S.; Montani, E.; Parazzoli, D. Bio-inspired approaches to design smart fabrics. Mater. Des. 2012, 36, 829–839. [Google Scholar] [CrossRef]
- Libanori, A.; Chen, G.; Zhao, X.; Zhou, Y.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, G.; Bick, M.; Chen, J. Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 2021, 50, 9357–9374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, X.; Ma, K.; Xia, G.; Wu, M.; Cheung, Y.H.; Yu, H.; Zou, B.; Zhang, X.; Farha, O.K. Functional textiles with smart properties: Their fabrications and sustainable applications. Adv. Funct. Mater. 2023, 33, 2301607. [Google Scholar] [CrossRef]
- Angelucci, A.; Cavicchioli, M.; Cintorrino, I.A.; Lauricella, G.; Rossi, C.; Strati, S.; Aliverti, A. Smart textiles and sensorized garments for physiological monitoring: A review of available solutions and techniques. Sensors 2021, 21, 814. [Google Scholar] [CrossRef]
- Weng, W.; Chen, P.; He, S.; Sun, X.; Peng, H. Smart electronic textiles. Angew. Chem. Int. Ed. 2016, 55, 6140–6169. [Google Scholar] [CrossRef]
- Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523–533. [Google Scholar] [CrossRef]
- Wang, P.; Hu, M.; Wang, H.; Chen, Z.; Feng, Y.; Wang, J.; Ling, W.; Huang, Y. The evolution of flexible electronics: From nature, beyond nature, and to nature. Adv. Sci. 2020, 7, 2001116. [Google Scholar] [CrossRef]
- Katiyar, A.K.; Hoang, A.T.; Xu, D.; Hong, J.; Kim, B.J.; Ji, S.; Ahn, J.-H. 2D materials in flexible electronics: Recent advances and future prospectives. Chem. Rev. 2023, 124, 318–419. [Google Scholar] [CrossRef]
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, F.; Cheng, Z.; Raad, R.; Xi, J.; Foroughi, J. Piezofibers to smart textiles: A review on recent advances and future outlook for wearable technology. J. Mater. Chem. A 2020, 8, 9496–9522. [Google Scholar] [CrossRef]
- Singha, K.; Kumar, J.; Pandit, P. Recent advancements in wearable & smart textiles: An overview. Mater. Today Proc. 2019, 16, 1518–1523. [Google Scholar]
- Di, J.; Zhang, X.; Yong, Z.; Zhang, Y.; Li, D.; Li, R.; Li, Q. Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 2016, 28, 10529–10538. [Google Scholar] [CrossRef]
- Zoha, A.; Qadir, J.; Abbasi, Q.H. AI-Powered IoT for Intelligent Systems and Smart Applications. Front. Commun. Netw. 2022, 3, 959303. [Google Scholar] [CrossRef]
- Xu, S.; Wu, Y. Modeling multi-loop intelligent pilot control behavior for aircraft-pilot couplings analysis. Aerosp. Sci. Technol. 2021, 112, 106651. [Google Scholar] [CrossRef]
- Mohanavelu, K.; Poonguzhali, S.; Janani, A.; Vinutha, S. Machine learning-based approach for identifying mental workload of pilots. Biomed. Signal Process. Control 2022, 75, 103623. [Google Scholar] [CrossRef]
- Wang, X.; Gong, G.; Li, N.; Ding, L.; Ma, Y. Decoding pilot behavior consciousness of EEG, ECG, eye movements via an SVM machine learning model. Int. J. Model. Simul. Sci. Comput. 2020, 11, 2050028. [Google Scholar] [CrossRef]
- Li, X.; Guo, Z.; Ji, Y.; Du, P.; Wang, J.; Xu, B.; Ge, F.; Zhao, Y.; Cai, Z. Bio-inspired Tough Metafiber with Hierarchical Photonic Structures for Durable Passive Radiative Thermal Management. Adv. Fiber Mater. 2025, 7, 607–619. [Google Scholar] [CrossRef]
- Wu, J.; Wang, M.; Dong, L.; Shi, J.; Ohyama, M.; Kohsaka, Y.; Zhu, C.; Morikawa, H. A trimode thermoregulatory flexible fibrous membrane designed with hierarchical core-sheath fiber structure for wearable personal thermal management. ACS Nano 2022, 16, 12801–12812. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, M.; Kim, T.; Ahn, J.; Lee, J.; Ko, S.H. Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 2023, 15, 160. [Google Scholar] [CrossRef]
- Hu, R.; Liu, Y.; Shin, S.; Huang, S.; Ren, X.; Shu, W.; Cheng, J.; Tao, G.; Xu, W.; Chen, R. Emerging materials and strategies for personal thermal management. Adv. Eng. Mater. 2020, 10, 1903921. [Google Scholar] [CrossRef]
- Zhang, B.; Lei, J.; Qi, D.; Liu, Z.; Wang, Y.; Xiao, G.; Wu, J.; Zhang, W.; Huo, F.; Chen, X. Stretchable conductive fibers based on a cracking control strategy for wearable electronics. Adv. Funct. Mater. 2018, 28, 1801683. [Google Scholar] [CrossRef]
- Chen, S.; Lou, Z.; Chen, D.; Jiang, K.; Shen, G. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv. Mater. Technol. 2016, 1, 1600136. [Google Scholar] [CrossRef]
- Song, X.; Ji, J.; Zhou, N.; Chen, M.; Qu, R.; Li, H.; Zhang, L.a.; Ma, S.; Ma, Z.; Wei, Y. Stretchable conductive fibers: Design, properties and applications. Prog. Mater. Sci. 2024, 144, 101288. [Google Scholar] [CrossRef]
- Lan, L.; Jiang, C.; Yao, Y.; Ping, J.; Ying, Y. A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy 2021, 84, 105954. [Google Scholar] [CrossRef]
- Chae, H.G.; Newcomb, B.A.; Gulgunje, P.V.; Liu, Y.; Gupta, K.K.; Kamath, M.G.; Lyons, K.M.; Ghoshal, S.; Pramanik, C.; Giannuzzi, L. High strength and high modulus carbon fibers. Carbon 2015, 93, 81–87. [Google Scholar] [CrossRef]
- Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science 2007, 318, 1892–1895. [Google Scholar] [CrossRef]
- Luo, L.; Yuan, Y.; Dai, Y.; Cheng, Z.; Wang, X.; Liu, X. The novel high performance aramid fibers containing benzimidazole moieties and chloride substitutions. Mater. Des. 2018, 158, 127–135. [Google Scholar] [CrossRef]
- He, A.; Xing, T.; Liang, Z.; Luo, Y.; Zhang, Y.; Wang, M.; Huang, Z.; Bai, J.; Wu, L.; Shi, Z. Advanced aramid fibrous materials: Fundamentals, advances, and beyond. Adv. Fiber Mater. 2024, 6, 3–35. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Zhou, H.; Dai, H.; Luo, J.; Chen, Y.; Li, Z.; Li, M.; Li, C.; Gao, E. Fabricating Aramid Fibers with Ultrahigh Tensile and Compressive Strength. Adv. Fiber Mater. 2025, 7, 774–783. [Google Scholar] [CrossRef]
- Gote, R.P.; Romano, D.; van der Eem, J.; Zhao, J.; Zhou, F.; Rastogi, S. Unprecedented mechanical properties in linear UHMWPE using a heterogeneous catalytic system. Macromolecules 2022, 56, 361–378. [Google Scholar] [CrossRef]
- Shelly, D.; Lee, S.-Y.; Park, S.-J. Compatibilization of ultra-high molecular weight polyethylene (UHMWPE) fibers and their composites for superior mechanical performance: A concise review. Compos. Part-B Eng. 2024, 275, 111294. [Google Scholar] [CrossRef]
- Wang, K.; Shen, L.; Zhu, Q.; Bo, R.; Lu, R.; Lu, X.; Fu, Z. Construction of modified MXene with organic-inorganic structure to enhance the interfacial and mechanical properties of UHMWPE fiber-reinforced epoxy composite. Chem. Eng. J. 2023, 452, 139156. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, Z.; Qiao, S.; Tong, A.; Liao, X.; Zhang, T.; Bai, J.; Xu, C.; Xiong, X.; Chen, F. Advances in nanomaterials as exceptional fillers to reinforce carbon fiber-reinforced polymers composites and their emerging applications. Polym. Compos. 2025, 46, 54–80. [Google Scholar] [CrossRef]
- Islam, M.H.; Afroj, S.; Uddin, M.A.; Andreeva, D.V.; Novoselov, K.S.; Karim, N. Graphene and CNT-based smart fiber-reinforced composites: A review. Adv. Funct. Mater. 2022, 32, 2205723. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Sun, J.; Li, Y.; Liu, K.; Wang, F.; Zhang, H.; Su, J. Bioengineered protein fibers with anti-freezing mechanical behaviors. Adv. Funct. Mater. 2022, 32, 2209006. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Z.; Gong, C.; Li, W.; Xu, S.; Wen, R.; Feng, W.; Qiu, Z.; Yan, Y. Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties. Nat. Commun. 2024, 15, 4441. [Google Scholar] [CrossRef]
- Micheli, D.; Vricella, A.; Pastore, R.; Delfini, A.; Giusti, A.; Albano, M.; Marchetti, M.; Moglie, F.; Primiani, V.M. Ballistic and electromagnetic shielding behaviour of multifunctional Kevlar fiber reinforced epoxy composites modified by carbon nanotubes. Carbon 2016, 104, 141–156. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, Y.; Li, T.; Ma, L.; Qi, Q.; Yang, T.; Meng, F. Advances in carbon fiber-based electromagnetic shielding materials: Composition, structure, and application. Carbon 2024, 226, 119203. [Google Scholar] [CrossRef]
- Sheng, Z.; Liu, Z.; Hou, Y.; Jiang, H.; Li, Y.; Li, G.; Zhang, X. The rising aerogel fibers: Status, challenges, and opportunities. Adv. Sci. 2023, 10, 2205762. [Google Scholar] [CrossRef]
- Wu, B.; Qi, Q.; Liu, L.; Liu, Y.; Wang, J. Wearable aerogels for personal thermal management and smart devices. ACS Nano 2024, 18, 9798–9822. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Chen, J.; Chen, Z.; Yu, D.; Zhu, S.; Liu, T.; Chen, L. Flexible aerogel materials: A review on revolutionary flexibility strategies and the multifunctional applications. ACS Nano 2024, 18, 11525–11559. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Li, J.; Ye, J.; Zhang, B.; Chen, J.; Xia, Y.; Lei, J.; Carlson, T.; Loureiro, R.; Korsunsky, A.M. AI-Enabled Piezoelectric Wearable for Joint Torque Monitoring. Nano-Micro Lett. 2025, 17, 247. [Google Scholar] [CrossRef]
- Viceconti, M.; Testi, D.; Taddei, F.; Martelli, S.; Clapworthy, G.J.; Jan, S.V.S. Biomechanics modeling of the musculoskeletal apparatus: Status and key issues. Proc. IEEE 2006, 94, 725–739. [Google Scholar] [CrossRef]
- Singh, S.; Arkoti, N.K.; Verma, V.; Pal, K. Nanomaterials and their distinguishing features. In Nanomaterials for Advanced Technologies; Springer: Dordrecht, The Netherlands, 2022; pp. 1–18. [Google Scholar]
- De France, K.; Zeng, Z.; Wu, T.; Nyström, G. Functional materials from nanocellulose: Utilizing structure–property relationships in bottom-up fabrication. Adv. Mater. Technol. 2021, 33, 2000657. [Google Scholar] [CrossRef]
- Althagafy, K.; Alhashmi Alamer, F. Metal-coated textiles in composite materials: Advances in manufacturing techniques, properties, and applications. Cellulose 2025, 32, 5709–5733. [Google Scholar] [CrossRef]
- Ma, C.-B.; Shang, X.; Sun, M.; Bo, X.; Bai, J.; Du, Y.; Zhou, M. Emerging Multifunctional Wearable Sensors: Integrating Multimodal Sweat Analysis and Advanced Material Technologies for Next-Generation Health Monitoring. ACS Sens. 2025, 10, 2388–2408. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Wang, L.; Zhao, D.; Song, S. Construction of 3D carbon fiber/carbon nanotube/silicone rubber nanocomposites for stretchable conductors through interface host-guest dendrimers. Compos. Sci. Technol. 2021, 205, 108692. [Google Scholar] [CrossRef]
- Zhai, H.; Liu, J.; Liu, Z.; Li, Y. Functional Graphene Fiber Materials for Advanced Wearable Applications. Adv. Fiber Mater. 2025, 7, 443–468. [Google Scholar] [CrossRef]
- Bi, L.; Gallo, E.M.; Maheshwari, A.; Gogotsi, Y.; Danielescu, A. Chronologic Analysis of MXene-Functionalized Smart Textiles. Adv. Fiber Mater. 2025, 1–13. [Google Scholar] [CrossRef]
- Liu, H.; Shi, Y.; Pan, Y.; Wang, Z.; Wang, B. Sensory interactive fibers and textiles. NPJ Flex. Electron. 2025, 9, 23. [Google Scholar] [CrossRef]
- Lim, T.; Kim, H.J.; Won, S.; Kim, C.H.; Yoo, J.; Lee, J.H.; Son, K.S.; Nam, I.-W.; Kim, K.; Yeo, S.Y. Liquid metal-based electronic textiles coated with au nanoparticles as stretchable electrode materials for healthcare monitoring. ACS Appl. Nano Mater. 2023, 6, 8482–8494. [Google Scholar] [CrossRef]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal–organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef] [PubMed]
- Wales, D.J.; Grand, J.; Ting, V.P.; Burke, R.D.; Edler, K.J.; Bowen, C.R.; Mintova, S.; Burrows, A.D. Gas sensing using porous materials for automotive applications. Chem. Soc. Rev. 2015, 44, 4290–4321. [Google Scholar] [CrossRef]
- He, N.; Seyam, A.-F.; Gao, W. Two-Dimensional Materials in Textiles. Adv. Fiber Mater. 2025, 7, 7–33. [Google Scholar] [CrossRef]
- Joshi, M.; Bhattacharyya, A. Nanotechnology—A new route to high-performance functional textiles. Text. Prog. 2011, 43, 155–233. [Google Scholar] [CrossRef]
- Shahidi, S.; Moazzenchi, B. Carbon nanotube and its applications in textile industry—A review. J. Text. Inst. 2018, 109, 1653–1666. [Google Scholar] [CrossRef]
- Fang, B.; Chang, D.; Xu, Z.; Gao, C. A review on graphene fibers: Expectations, advances, and prospects. Adv. Mater. Technol. 2020, 32, 1902664. [Google Scholar] [CrossRef]
- Levitt, A.; Zhang, J.; Dion, G.; Gogotsi, Y.; Razal, J.M. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 2020, 30, 2000739. [Google Scholar] [CrossRef]
- Ferraris, S.; Perero, S.; Miola, M.; Verne, E.; Rosiello, A.; Ferrazzo, V.; Valletta, G.; Sanchez, J.; Ohrlander, M.; Tjörnhammar, S. Chemical, mechanical and antibacterial properties of silver nanocluster/silica composite coated textiles for safety systems and aerospace applications. Appl. Surf. Sci. 2014, 317, 131–139. [Google Scholar] [CrossRef]
- Jhinjer, H.S.; Jassal, M.; Agrawal, A.K. Metal-organic frameworks functionalized cellulosic fabrics as multifunctional smart textiles. Chem. Eng. J. 2023, 478, 147253. [Google Scholar] [CrossRef]
- Priyanka, P.; Dixit, A.; Mali, H.S. High strength Kevlar fiber reinforced advanced textile composites. Iran. Polym. J. 2019, 28, 621–638. [Google Scholar] [CrossRef]
- Huang, C.; Cui, L.; Xia, H.; Qiu, Y.; Ni, Q.-Q. A numerical study on the low-velocity impact behavior of the Twaron® fabric subjected to oblique impact. Rev. Adv. Mater. Sci. 2021, 60, 980–994. [Google Scholar] [CrossRef]
- Yuan, B.; Yang, B.; Xu, P.; Zhang, M. Poly(p-Phenylene Benzobisoxazole) nanofiber: A promising nanoscale building block toward extremely harsh conditions. ACS Nano 2025, 19, 1981–2012. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yuan, B.; Xu, P.; Zhang, M. Dual-Network Assembled Nanopaper towards Extremely Harsh Conditions. Adv. Funct. Mater. 2024, 34, 2407763. [Google Scholar] [CrossRef]
- Adak, B.; Joshi, M. Coated or laminated textiles for aerostat and stratospheric airship. Adv. Text. Eng. Mater. 2018, 257–287. [Google Scholar] [CrossRef]
- Hande, Y. A concise overview of the aramid fiber spinning process. BTRA Scan 2024, 53, 9–16. [Google Scholar]
- Kong, L.; Liu, H.; Cao, W.; Xu, L. PAN fiber diameter effect on the structure of PAN-based carbon fibers. Fibers Polym. 2014, 15, 2480–2488. [Google Scholar] [CrossRef]
- Li, Z.; Xue, Y.; Sun, B.; Gu, B. Hybrid ratio optimizations on ballistic penetration of carbon Kevlar UHMWPE fiber laminates. Int. J. Mech. Sci. 2023, 258, 108585. [Google Scholar] [CrossRef]
- Lemstra, P.J. High-performance polyethylene fibers. Adv. Ind. Eng. Polym. Res. 2022, 5, 49–59. [Google Scholar] [CrossRef]
- Das, T.K.; Ghosh, P.; Das, N.C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review. Adv. Compos. Hybrid Mater. 2019, 2, 214–233. [Google Scholar] [CrossRef]
- Joshi, A.; Mishra, A.; Saxena, V.K. Impact response and energy absorption mechanisms of UHMWPE fabric and composites in ballistic applications: A comprehensive review. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108314. [Google Scholar] [CrossRef]
- Yin, H.; Shen, X.; Huang, Y.; Feng, Z.; Long, Z.; Duan, R.; Lin, C.-H.; Wei, D.; Sasanapuri, B.; Chen, Q. Modeling dynamic responses of aircraft environmental control systems by coupling with cabin thermal environment simulations. Build. Simul. 2016, 9, 459–468. [Google Scholar] [CrossRef]
- Nunneley, S.; Flick, C. Heat stress in the A-10 cockpit: Flights over desert. Aviat. Space Environ. Med. 1981, 52, 513–516. [Google Scholar]
- Schminder, J.; Hällqvist, R.; Eek, M.; Gårdhagen, R. Pilot performance and heat stress assessment support using a cockpit thermoregulatory simulation model. In Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizonte, Brazil, 9–14 September 2018. [Google Scholar]
- Stetsyshyn, Y.; Ohar, H.; Budkowski, A.; Lazzara, G. Molecular Design and Role of the Dynamic Hydrogen Bonds and Hydrophobic Interactions in Temperature-Switchable Polymers: From Understanding to Applications. Polymers 2025, 17, 1580. [Google Scholar] [CrossRef]
- Yan, Y.; Li, W.; Zhu, R.; Lin, C.; Hufenus, R. Flexible phase change material fiber: A simple route to thermal energy control textiles. Materials 2021, 14, 401. [Google Scholar] [CrossRef]
- Ju, Y.S. Thermal management and control of wearable devices. iScience 2022, 25, 104587. [Google Scholar] [CrossRef]
- Zeighampour, F.; Khoddami, A.; Dolez, P.I. Innovative flexible thermal storage textile using nanocomposite shape-stabilized phase change materials. Fash. Text. 2023, 10, 43. [Google Scholar] [CrossRef]
- Hamad, G.B.; Younsi, Z.; Naji, H.; Salaün, F. A comprehensive review of microencapsulated phase change materials synthesis for low-temperature energy storage applications. Appl. Sci. 2021, 11, 11900. [Google Scholar] [CrossRef]
- Nagar, S.; Sreenivasa, S. Polymer-based supporting materials and polymer-encapsulated phase change materials for thermal energy storage: A review on the recent advances of materials, synthesis, and characterization techniques. Polym. Eng. Sci. 2024, 64, 4341–4370. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, R.; Zeng, X.; Luo, Y.; Luo, Z. An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv. Fiber Mater. 2022, 4, 1058–1068. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, M.; Qiu, Q.; Yu, J.; Ding, B. Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 2018, 53, 726–733. [Google Scholar] [CrossRef]
- Huang, L.; Lin, S.; Xu, Z.; Zhou, H.; Duan, J.; Hu, B.; Zhou, J. Fiber-based energy conversion devices for human-body energy harvesting. Adv. Mater. 2020, 32, 1902034. [Google Scholar] [CrossRef]
- Chi, M.; Cai, C.; Liu, Y.; Zhang, S.; Liu, T.; Du, G.; Meng, X.; Luo, B.; Wang, J.; Shao, Y. Aramid Triboelectric Materials: Opportunities for Self-Powered Wearable Personal Protective Electronics. Adv. Funct. Mater. 2024, 34, 2411020. [Google Scholar] [CrossRef]
- Meng, J.; Zhao, Z.; Cao, X.; Wang, N. The Integration of Triboelectric Nanogenerators and Supercapacitors: The Key Role of Cellular Materials. Materials 2023, 16, 3751. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, J.; Zhou, L.; He, L.; Liu, D.; Yang, P.; Jin, B.; Wang, Z.L.; Wang, J. Achieving high performance triboelectric nanogenerators simultaneously with high-voltage and high-charge energy cycle. Energy Environ. Sci. 2024, 17, 8734–8744. [Google Scholar] [CrossRef]
- Niu, S.; Wang, Z.L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192. [Google Scholar] [CrossRef]
- Yang, S.; Klinkov, V.; Grozova, N.; Shalnova, S.; Larionova, T.; Tolochko, O.; Klimova-Korsmik, O. Nanostructures and Nanomaterials Integrated into Triboelectric Nanogenerators. Micromachines 2025, 16, 403. [Google Scholar] [CrossRef]
- Pu, X.; Liu, M.; Chen, X.; Sun, J.; Du, C.; Zhang, Y.; Zhai, J.; Hu, W.; Wang, Z.L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wu, C.; Li, X.; Yao, Y.; Lan, L.; Zhao, F.; Ye, Z.; Ying, Y.; Ping, J. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 2019, 59, 268–276. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Biswas, S.; Dinulescu, S.I.; Kastor, N.; Hawkes, E.W.; Visell, Y. Soft, wearable robotics and haptics: Technologies, trends, and emerging applications. Proc. IEEE 2022, 110, 246–272. [Google Scholar] [CrossRef]
- Huang, Z.; Cheng, J.; Ren, X.; Zhuang, J.; Roy, V.A.L.; Burkhartsmeyer, J.M.; Wong, K.S.; Choy, W.C.H. All-room-temperature solution-processed new nanocomposites based hole transport layer from synthesis to film formation for high-performance organic solar cells towards ultimate energy-efficient fabrication. Nano Energy 2018, 47, 26–34. [Google Scholar] [CrossRef]
- Wang, R.; Higgins, D.C.; Lee, D.U.; Prabhudev, S.; Hassan, F.M.; Chabot, V.; Lui, G.; Jiang, G.; Choi, J.-Y.; Rasenthiram, L.; et al. Biomimetic design of monolithic fuel cell electrodes with hierarchical structures. Nano Energy 2016, 20, 57–67. [Google Scholar] [CrossRef]
- Pu, X.; Song, W.; Liu, M.; Sun, C.; Du, C.; Jiang, C.; Huang, X.; Zou, D.; Hu, W.; Wang, Z.L. Wearable Power-Textiles by Integrating Fabric Triboelectric Nanogenerators and Fiber-Shaped Dye-Sensitized Solar Cells. Adv. Energy Mater. 2016, 6, 1601048. [Google Scholar] [CrossRef]
- Chen, F.; Wu, Y.; Ding, Z.; Xia, X.; Li, S.; Zheng, H.; Diao, C.; Yue, G.; Zi, Y. A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing. Nano Energy 2019, 56, 241–251. [Google Scholar] [CrossRef]
- Chen, X.; Song, Y.; Chen, H.; Zhang, J.; Zhang, H. An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing. J. Mater. Chem. A 2017, 5, 12361–12368. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Q.; Chao, S.; Liu, R.; Cui, X.; Sun, Y.; Ouyang, H.; Li, Z. Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material. ACS Appl. Mater. Interfaces 2021, 13, 42966–42976. [Google Scholar] [CrossRef]
- Dolez, P.I. Energy harvesting materials and structures for smart textile applications: Recent progress and path forward. Sensors 2021, 21, 6297. [Google Scholar] [CrossRef]
- Chen, C.; Chen, L.; Wu, Z.; Guo, H.; Yu, W.; Du, Z.; Wang, Z.L. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater. Today 2020, 32, 84–93. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, Y.; Mensah, A.; Liao, S.; Lv, P.; Wei, Q. Scalable, ultra-high stretchable and conductive fiber triboelectric nanogenerator for biomechanical sensing. Nano Energy 2023, 109, 108291. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, H.; Xie, H.; Liu, H.; Zeng, M.; Xie, K.; Wang, Y. MnO2@ MXene/carbon cloth as an anode for microbial fuel cells. ChemistrySelect 2022, 7, e202200612. [Google Scholar] [CrossRef]
- Lai, Q.T.; Zhao, X.H.; Sun, Q.J.; Tang, Z.; Tang, X.G.; Roy, V.A. Emerging MXene-based flexible tactile sensors for health monitoring and haptic perception. Small 2023, 19, 2300283. [Google Scholar] [CrossRef]
- Irfan, M.S.; Ali, M.A.; Khan, T.; Anwer, S.; Liao, K.; Umer, R. MXene and graphene coated multifunctional fiber reinforced aerospace composites with sensing and EMI shielding abilities. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107351. [Google Scholar] [CrossRef]
- Chin, J.W.; Byrd, E.; Clerici, C.; Forster, A.L.; Oudina, M.; Sung, L.P.; Rice, K.D. Chemical and physical characterization of poly (p-phenylene-2, 6-benzobisoxazole) fibers used in body armor: Temperature and humidity aging. In NIST Interagency/Internal Report (NISTIR); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Mohamed, A.L.; Ibrahim, A.M.; Omar, H.; Hassabo, A.G. Recent developments in space suits textiles using smart materials. J. Text. Color. Polym. Sci. 2024, 21, 227–238. [Google Scholar] [CrossRef]
- Abtew, M.A.; Atalie, D.; Dejene, B.K.; McBee-Black, K. Intelligent and electronic textile materials for adaptive apparel: Innovations, functional design, and future directions. J. Ind. Text. 2025, 55, 15280837251346789. [Google Scholar] [CrossRef]
- Pendashteh, A.; Mikhalchan, A.; Blanco Varela, T.; Vilatela, J.J. Opportunities for nanomaterials in more sustainable aviation. Discov. Nano 2024, 19, 208. [Google Scholar] [CrossRef]
- Sitotaw, D.B.; Ahrendt, D.; Kyosev, Y.; Kabish, A.K. Additive manufacturing and textiles—State-of-the-art. Appl. Sci. 2020, 10, 5033. [Google Scholar] [CrossRef]
- Karkun, M.S.; Dharmalingam, S. 3D printing technology in aerospace industry—A review. Int. J. Aviat. Aeronaut. Aerosp. 2022, 9, 4. [Google Scholar] [CrossRef]
- Loh, G.H.; Pei, E.; Harrison, D.; Monzón, M.D. An overview of functionally graded additive manufacturing. Addit. Manuf. 2018, 23, 34–44. [Google Scholar] [CrossRef]
- Islam, M.K.; Hazell, P.J.; Escobedo, J.P.; Wang, H. Biomimetic armour design strategies for additive manufacturing: A review. Mater. Des. 2021, 205, 109730. [Google Scholar] [CrossRef]
- Cheng, P.; Peng, Y.; Li, S.; Rao, Y.; Le Duigou, A.; Wang, K.; Ahzi, S. 3D printed continuous fiber reinforced composite lightweight structures: A review and outlook. Compos. Part B Eng. 2023, 250, 110450. [Google Scholar] [CrossRef]
- Li, M.; Wang, P.; Boussu, F.; Soulat, D. A review on the mechanical performance of three-dimensional warp interlock woven fabrics as reinforcement in composites. J. Ind. Text. 2022, 51, 1009–1058. [Google Scholar] [CrossRef]
- Luo, M.; Tian, X.; Shang, J.; Zhu, W.; Li, D.; Qin, Y. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites. Compos. Part A Appl. Sci. Manuf. 2019, 121, 130–138. [Google Scholar] [CrossRef]
- Boussu, F.; Abtew, M.; Bruniaux, P. 3D warp interlock fabric structure and their applications in soft and hard armour protections. Appl. Compos. Mater. 2022, 29, 65–82. [Google Scholar] [CrossRef]
- Ishmael, N.; Fernando, A.; Andrew, S.; Waterton Taylor, L. Textile technologies for the manufacture of three-dimensional textile preforms. Res. J. Text. Appar. 2017, 21, 342–362. [Google Scholar] [CrossRef]
- Abtew, M.A.; Boussu, F.; Bruniaux, P.; Loghin, C.; Cristian, I.; Chen, Y.; Wang, L. Influences of fabric density on mechanical and moulding behaviours of 3D warp interlock para-aramid fabrics for soft body armour application. Compos. Struct. 2018, 204, 402–418. [Google Scholar] [CrossRef]
- Leist, S.K.; Gao, D.; Chiou, R.; Zhou, J. Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles. Virtual Phys. Prototyp. 2017, 12, 290–300. [Google Scholar] [CrossRef]
- Liu, Y.; Gall, K.; Dunn, M.L.; Greenberg, A.R.; Diani, J. Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. Int. J. Plast. 2006, 22, 279–313. [Google Scholar] [CrossRef]
- Calvert, P. Hydrogels for Soft Machines. Adv. Mater. 2009, 21, 743–756. [Google Scholar] [CrossRef]
- White, T.J.; Broer, D.J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Ware, T.H.; McConney, M.E.; Wie, J.J.; Tondiglia, V.P.; White, T.J. Voxelated liquid crystal elastomers. Science 2015, 347, 982–984. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, F.; Luo, L.; Wang, L.; Liu, Y.; Leng, J. Shape memory polymer composites: 4D printing, smart structures, and applications. Research 2023, 6, 0234. [Google Scholar] [CrossRef] [PubMed]
- Lou, L.; Lopez, K.O.; Nair, A.B.; Desueza, W.; Agarwal, A. Micro-Mechanosensory insights from Nature’s Mimosa leaves to shape memory adaptive robotics. Mater. Des. 2025, 249, 113567. [Google Scholar] [CrossRef]
- Sydney Gladman, A.; Matsumoto, E.A.; Nuzzo, R.G.; Mahadevan, L.; Lewis, J.A. Biomimetic 4D printing. Nat. Mater. 2016, 15, 413–418. [Google Scholar] [CrossRef]
- Loh, H.H. 4D Printing of Shape-Changing Thermo-Responsive Textiles; Brunel University London: London, UK, 2021. [Google Scholar]
- Li, S. Review on development and application of 4D-printing technology in smart textiles. J. Eng. Fibers Fabr. 2023, 18, 15589250231177448. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Chen, S.; Chen, P.; Li, J.; Jian, H.; Guo, G.; Chen, X.; Zhu, X.; Wu, J. Fabrication of 3D printed polylactic acid/polycaprolactone nanocomposites with favorable thermo-responsive cyclic shape memory effects, and crystallization and mechanical properties. Polymers 2023, 15, 1533. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. 4D printing-encapsulated polycaprolactone-thermoplastic polyurethane with high shape memory performances. Adv. Eng. Mater. 2023, 25, 2201309. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Serna, J.A.; Debastiani, R.; Gomez, J.E.U.; Lu, L.; Yang, W.; Dong, Z.; Levkin, P.A. Enhancing Temperature Responsiveness of PNIPAM Through 3D-Printed Hierarchical Porosity. Adv. Funct. Mater. 2024, 34, 2403794. [Google Scholar] [CrossRef]
- Politakos, N. Block copolymers in 3D/4D printing: Advances and applications as biomaterials. Polymers 2023, 15, 322. [Google Scholar] [CrossRef]
- Stoychev, G.; Kirillova, A.; Ionov, L. Light-responsive shape-changing polymers. Adv. Opt. Mater. 2019, 7, 1900067. [Google Scholar] [CrossRef]
- Bao, X.; Meng, J.; Tan, Z.; Zhang, C.; Li, L.; Liu, T. Direct-ink-write 3D printing of highly-stretchable polyaniline gel with hierarchical conducting network for customized wearable strain sensors. Chem. Eng. J. 2024, 491, 151918. [Google Scholar] [CrossRef]
- Miao, Y.; He, H.; Li, Z. Strain hardening behaviors and mechanisms of polyurethane under various strain rate loading. Polym. Eng. Sci. 2020, 60, 1083–1092. [Google Scholar] [CrossRef]
- Marco, V.; Massimo, G.; Manuela, G. Additive manufacturing of flexible thermoplastic polyurethane (TPU): Enhancing the material elongation through process optimisation. Prog. Addit. Manuf. 2025, 10, 2877–2891. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, R.; Zhang, L.; Cao, X. 4D printing of robust hydrogels consisted of agarose nanofibers and polyacrylamide. ACS Macro Lett. 2018, 7, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, D.; Liu, B.; Nian, G.; Li, X.; Yin, J.; Qu, S.; Yang, W. 3D printing of multifunctional hydrogels. Adv. Funct. Mater. 2019, 29, 1900971. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, S.; You, Z. Hybrid cross-linking to construct functional elastomers. Acc. Chem. Res. 2023, 56, 2907–2920. [Google Scholar] [CrossRef] [PubMed]
- Andreu, A.; Lee, H.; Kang, J.; Yoon, Y.J. Self-Healing Materials for 3D Printing. Adv. Funct. Mater. 2024, 34, 2315046. [Google Scholar] [CrossRef]
- O’Neill, C.T.; McCann, C.M.; Hohimer, C.J.; Bertoldi, K.; Walsh, C.J. Unfolding Textile-Based Pneumatic Actuators for Wearable Applications. Soft Robot. 2022, 9, 163–172. [Google Scholar] [CrossRef]
- Paterna, M.; De Benedictis, C.; Ferraresi, C. The Research on Soft Pneumatic Actuators in Italy: Design Solutions and Applications. Actuators 2022, 11, 328. [Google Scholar] [CrossRef]
- Du, J.; Ma, Q.; Wang, B.; Sun, L.; Liu, L. Hydrogel fibers for wearable sensors and soft actuators. iScience 2023, 26, 106796. [Google Scholar] [CrossRef] [PubMed]
- El-Atab, N.; Mishra, R.B.; Al-Modaf, F.; Joharji, L.; Alsharif, A.A.; Alamoudi, H.; Diaz, M.; Qaiser, N.; Hussain, M.M. Soft Actuators for Soft Robotic Applications: A Review. Adv. Intell. Syst. 2020, 2, 2000128. [Google Scholar] [CrossRef]
- Narvaez, D.; Newell, B. A Review of Electroactive Polymers in Sensing and Actuator Applications. Actuators 2025, 14, 258. [Google Scholar] [CrossRef]
- Chai, Z.; Zhang, N.; Sun, P.; Huang, Y.; Zhao, C.; Fan, H.J.; Fan, X.; Mai, W. Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage. ACS Nano 2016, 10, 9201–9207. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, Y.; Jia, L.; Mathewson, K.E.; Jang, K.-I.; Kim, J.; Fu, H.; Huang, X.; Chava, P.; Wang, R.; et al. Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin. Science 2014, 344, 70–74. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Yang, B.D.; Su, Y.; Tran, P.L.; Joe, P.; Anderson, E.; Xia, J.; Doraiswamy, V.; Dehdashti, B.; Feng, X.; et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA 2014, 111, 1927–1932. [Google Scholar] [CrossRef]
- Yao, S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345–2352. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, X.; Zhang, N.; Zheng, J.; Chen, X.; Wen, Q.; Luo, X.; Lee, C.-Y.; Liu, X.; Zhang, X. A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun. 2021, 12, 4876. [Google Scholar] [CrossRef] [PubMed]
- Komolafe, A.; Torah, R.; Wei, Y.; Nunes-Matos, H.; Li, M.; Hardy, D.; Dias, T.; Tudor, M.; Beeby, S. Integrating flexible filament circuits for e-textile applications. Adv. Mater. Technol. 2019, 4, 1900176. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, X.; He, X.; Li, Y.; Zhou, N.; Ma, Z.; Zhu, D.; Ji, H. Stretchable conductive fabric enabled by surface functionalization of commercial knitted cloth. ACS Appl. Mater. Interfaces 2021, 13, 55656–55665. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; An, T.; Yap, L.W.; Zhu, B.; Gong, S.; Cheng, W. Disruptive, soft, wearable sensors. Adv. Mater. 2020, 32, 1904664. [Google Scholar] [CrossRef]
- Valsalan, P.; Hasan, N.; Baig, I.; Zghaibeh, M.; Farooq, U.; Suhail, S. Unleashing the potential: The joint of 5G and 6G technologies in enabling advanced IoT communication and sensing systems: A comprehensive review and future prospects. J. Commun. 2024, 19, 523–535. [Google Scholar] [CrossRef]
- Xiang, S.; Qin, L.; Wei, X.; Fan, X.; Li, C. Fabric-Type Flexible Energy-Storage Devices for Wearable Electronics. Energies 2023, 16, 4047. [Google Scholar] [CrossRef]
- Chen, M.; Liu, J.; Li, P.; Gharavi, H.; Hao, Y.; Ouyang, J.; Hu, J.; Hu, L.; Hou, C.; Humar, I. Fabric computing: Concepts, opportunities, and challenges. Innovation 2022, 3, 100340. [Google Scholar] [CrossRef]
- Rein, M.; Favrod, V.D.; Hou, C.; Khudiyev, T.; Stolyarov, A.; Cox, J.; Chung, C.-C.; Chhav, C.; Ellis, M.; Joannopoulos, J. Diode fibres for fabric-based optical communications. Nature 2018, 560, 214–218. [Google Scholar] [CrossRef]
- Loke, G.; Khudiyev, T.; Wang, B.; Fu, S.; Payra, S.; Shaoul, Y.; Fung, J.; Chatziveroglou, I.; Chou, P.-W.; Chinn, I.; et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 2021, 12, 3317. [Google Scholar] [CrossRef]
- Zhao, W.; Bai, M.; Li, S.; Tang, X.; Wu, W.; Sun, C.; Yin, X.; Zhou, J.; Yuan, S.; Ma, Y. Integrated Thin Film Battery Design for Flexible Lithium Ion Storage: Optimizing the Compatibility of the Current Collector-Free Electrodes. Adv. Funct. Mater. 2019, 29, 1903542. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Xu, Z.; Lu, B. Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy 2015, 12, 339–346. [Google Scholar] [CrossRef]
- Kim, T.; Park, C.; Samuel, E.P.; Kim, Y.-I.; An, S.; Yoon, S.S. Wearable sensors and supercapacitors using electroplated-Ni/ZnO antibacterial fabric. J. Mater. Sci. Technol. 2022, 100, 254–264. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, E.; Ren, X.; Magasinski, A.; Yushin, G. Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors. Adv. Eng. Mater. 2018, 8, 1703454. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Mei, D.; Chen, Z. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl. Energy 2018, 215, 690–698. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, X.-W.; Liu, X.; Mu, J.-J.; Gu, Q.; Liu, Z.; Luo, W.-B. Flexible wearable energy storage devices: Materials, structures, and applications. Battery Energy 2024, 3, 20230061. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Zhu, M.; Huang, Y.; Tang, Z.; Pei, Z.; Wang, Z.; Shi, Z.; Liu, J.; Huang, Y. Towards wearable electronic devices: A quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 2018, 44, 164–173. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, A.; Li, C.; Zou, G.; Li, H.; Zhi, C. Categorizing wearable batteries: Unidirectional and omnidirectional deformable batteries. Matter 2021, 4, 3146–3160. [Google Scholar] [CrossRef]
- Zhang, Q.; Soham, D.; Liang, Z.; Wan, J. Advances in wearable energy storage and harvesting systems. Med-X 2025, 3, 3. [Google Scholar] [CrossRef]
- Mahajan, A.; Heydari, K.; Powell, D. Wearable AI to enhance patient safety and clinical decision-making. npj Digit. Med. 2025, 8, 176. [Google Scholar] [CrossRef]
- Rdest, M.; Janas, D. Carbon Nanotube Wearable Sensors for Health Diagnostics. Sensors 2021, 21, 5847. [Google Scholar] [CrossRef]
- Jang, H.; Lee, J.; Beak, C.-J.; Biswas, S.; Lee, S.-H.; Kim, H. Flexible Neuromorphic Electronics for Wearable Near-Sensor and In-Sensor Computing Systems. Adv. Mater. Technol. 2025, 37, 2416073. [Google Scholar] [CrossRef]
- Shen, D. AI Based Fatigue Assessment System for Athletes Using Smart Textile Wearables; Université de Lille: Lille, France; Donghua University: Shanghai, China, 2024. [Google Scholar]
- Chen, J.; Seng, K.P.; Smith, J.; Ang, L.M. Situation awareness in ai-based technologies and multimodal systems: Architectures, challenges and applications. IEEE Access 2024, 12, 88779–88818. [Google Scholar] [CrossRef]
- Kwak, D.; Polyushkin, D.K.; Mueller, T. In-sensor computing using a MoS2 photodetector with programmable spectral responsivity. Nat. Commun. 2023, 14, 4264. [Google Scholar] [CrossRef]
Nanomaterial | Key Functional Properties | Integration Strategy | Relevant Applications | Refs. |
---|---|---|---|---|
Carbon nanotubes | High tensile strength, conductivity, piezoresistivity | Wet-spinning into fiber yarns or coatings | Impact buffering, strain sensing | [80] |
Graphene | Flexibility, EMI shielding, thermal conductivity | Layered lamination, inkjet printing | Data transmission, thermal regulation | [81] |
MXenes | High conductivity, EMI shielding, redox-active sites | Dip-coating on fabrics, fiber composite | Energy storage, EMI shielding | [82] |
Nanoclusters (e.g., Ag) | Catalytic reactivity, fluorescence, sensing | Surface grafting, sol–gel deposition | Biosignal sensing, wound detection | [83] |
MOFs | Porosity, chemical tunability, gas interaction | Electrospun blends, particle embedding | Breathability, gas sensing, heat exchange | [84] |
Fiber Type | Density (g/cm3) | Key Advantages | Limitations | Typical Application | Refs. |
---|---|---|---|---|---|
Aramid (Kevlar®/Twaron®) | ~1.44 | High strength-to-weight ratio, flexibility, flame resistance, ballistic protection | Moderate UV degradation, limited thermal resistance above 300 °C | Body armor, joint reinforcement, flame-resistant layers | [85,86] |
PBO (Zylon®) | ~1.54 | Extreme heat resistance, highest LOI among organic fibers, high tensile strength | Susceptible to photodegradation, requires UV-blocking treatments | Outer layers for high heat exposure (e.g., ejection systems) | [92,93] |
Polyimide (P84®) | ~1.41 | Broad temperature tolerance, inherent flame resistance, chemical inertness | Lower mechanical strength compared to aramids or PBO | Thermal insulation, moisture-wicking liners | [88,89] |
Carbon Fiber | 1.75–2.0 | High stiffness, impact dispersion, thermal barrier properties | Brittle under shear stress, higher cost, requires resin matrices | Structural reinforcement, heat shields | [94] |
UHMWPE | ~0.97 | Lightest commercial fiber, chemical resistance | Low melting point, flame retardant | Lightweight limb protection, anti-abrasion | [95] |
Motion Scenario | Avg. Output (μW/cm2) | Peak Output (μW/cm2) | Integration Strategy | Application Target | Refs. |
---|---|---|---|---|---|
Arm motion (control stick operation) | 4.5 | 7 | Embedded in sleeve seams using conductive embroidery; direct connection to forearm sensor clusters | Vital sign sensors (heart rate, muscle activity) | [117,118] |
Leg movement (pedals/ejection prep) | 10.8 | 14 | Knitted into elastic compression layers; routed to modules above ankle or knee | Local thermal control units; joint strain monitors | [119] |
Torso rotation (instrument scanning) | 3.5 | 6 | Laminated onto mesh fabrics around the waist; anchored at low-strain zones | Core temperature regulation; posture monitoring system | [117] |
Micro-movements under gravitational force load | 0.9 | 1.5 | Braided into inner suit lining; coupled with capacitors in spinal region | Backup energy buffering; low-power fatigue sensors | [120] |
Neck/head tilt (helmet enclosure) | 50 | 316 | Woven into collar fabric; ultrathin leads connect to helmet rear module | Oxygen saturation sensors; ambient temperature sensors | [121,122] |
Type | Examples | Stimuli Response | Advantages for Pilot Suit | Textile Integration | Printable Process Compatibility | Mechanical Properties | Refs. |
---|---|---|---|---|---|---|---|
Shape Memory Polymers (SMP) | Polyurethane SMP, epoxy SMP, crosslinked PCL | Heat (thermal triggers) | Adaptive fit, impact and thermal protection | Requires tuning transition temp; compatible with FDM, DIW | FDM, DIW, SLA (formulated resins) | Tensile strength: 10–50 MPa; elongation: 50–300% | [153,154] |
Thermoresponsive Polymers | PNIPAM, block copolymers | Temperature (LCST ~32 °C) | Breathability control, thermal comfort | Often hydrogels needing blending for durability | DIW, SLA (hydrogel resins) | Tensile strength: 1–10 MPa; elongation: 100–500% | [155,156] |
Photoresponsive Polymers | Azobenzene-based, spiropyran-modified | UV/Visible light | Remote, localized activation; stiffness control | UV exposure control needed; integrates with photopolymer resins | SLA, DLP, PolyJet | Tensile strength: 10–40 MPa; elongation: 20–200% | [157] |
Electroactive Polymers | Polypyrrole, polyaniline, dielectric elastomers | Electrical stimulus | Active shape change, ventilation, fit adjust | Needs conductive fillers/electrodes; complex integration | DIW, PolyJet | Tensile strength: 5–30 MPa; elongation: 30–200% | [158] |
Strain-Hardening Polymers | TPU with additives | Mechanical stress | Impact protection; stiffening under load | Compatible with extrusion and ink-based printing | FDM, DIW | Tensile strength: 20–60 MPa; elongation: 200–600% | [159,160] |
Hydrogels | Polyacrylamide, alginate-based | Moisture, humidity | Moisture management, swelling actuation | Needs reinforcement for textile strength | DIW, SLA | Tensile strength: 0.1–5 MPa; elongation: 200–1000% | [161,162] |
Self-Healing Polymers | Diels–Alder crosslinked, hydrogen-bond elastomers | Heat, moisture, light | Self-repair, extended lifespan | Emerging tech, challenging integration | DIW, SLA (specialized formulations) | Tensile strength: 5–30 MPa; elongation: 50–300% | [163,164] |
Actuation Type | Working Mechanism | Potential Functions in Pilot Suit | Aerospace Suit Application Scenario | Refs. |
---|---|---|---|---|
Electrothermal actuators | Thermal expansion via resistive heating | Localized heating or compression adjustment | High-altitude temperature drops | [165] |
Pneumatic actuators | Air pressure inflation/deflation | Ventilation and cooling control | Rapid cockpit pressure changes | [166] |
Hydrogel-based actuators | Swelling/deswelling to temperature or moisture change | Moisture-responsive fit modulation | Sweating/thermal stress under tight suits | [167] |
Shape memory alloys (SMA) | Phase change-induced deformation | Structural adaptation or joint support | Dynamic posture correction | [168] |
Electroactive polymers (EAP) | Reversible deformation under electric field | Muscle-assist or tactile feedback during gravitational forces | Autonomous support during gravitational force exposure | [169] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; He, Y.; Ma, Y.; Han, G.; Zhang, Z.; Tian, B. Smart Polymers and Adaptive Systems in Pilot Suit Engineering: Toward Autonomous, Responsive, and Wearable Flight Technologies. Nanomaterials 2025, 15, 1228. https://doi.org/10.3390/nano15161228
Ma H, He Y, Ma Y, Han G, Zhang Z, Tian B. Smart Polymers and Adaptive Systems in Pilot Suit Engineering: Toward Autonomous, Responsive, and Wearable Flight Technologies. Nanomaterials. 2025; 15(16):1228. https://doi.org/10.3390/nano15161228
Chicago/Turabian StyleMa, Hanjing, Yuan He, Yu Ma, Guannan Han, Zhetao Zhang, and Baohua Tian. 2025. "Smart Polymers and Adaptive Systems in Pilot Suit Engineering: Toward Autonomous, Responsive, and Wearable Flight Technologies" Nanomaterials 15, no. 16: 1228. https://doi.org/10.3390/nano15161228
APA StyleMa, H., He, Y., Ma, Y., Han, G., Zhang, Z., & Tian, B. (2025). Smart Polymers and Adaptive Systems in Pilot Suit Engineering: Toward Autonomous, Responsive, and Wearable Flight Technologies. Nanomaterials, 15(16), 1228. https://doi.org/10.3390/nano15161228