The Synthesis and Photophysical Performance of a Novel Z-Scheme Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst and the Photocatalytic Degradation of Ciprofloxacin Under Visible Light Irradiation
Abstract
1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. The Synthesis of Ho2FeSbO7
2.3. The Synthesis of Bi0.5Yb0.5O1.5
2.4. The Preparation of Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst
2.5. The Preparation of Nitrogen-Doped Titanium Dioxide
2.6. Characterization
2.7. Photoelectrochemical Measurements
2.8. Explanation of the Experimental Setup and Procedures
3. Results and Discussion
3.1. Analysis of Morphological and Structural Characterization
3.2. Optical Characteristics
3.3. Evaluation of Photocatalytic Activity
3.4. Photocatalytic Mechanism Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ciaran, M.; Dearbhaile, M.; Rajat, N.; Enda, C. Risk ranking of macrolide antibiotics-Release levels, resistance formation po-tential and ecological risk. Sci. Total Environ. 2022, 859, 160022. [Google Scholar]
- Chen, G.; Yu, Y.; Liang, L.; Duan, X.; Li, R.; Lu, X.; Yan, B.; Li, N.; Wang, S. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review. J. Hazard. Mater. 2021, 408, 124461. [Google Scholar] [CrossRef]
- Huang, X.-H.; Liu, R.; Chen, J.-N.; Dong, X.-P.; Zhu, B.-W.; Qin, L. Self-detoxification behaviors and tissue-specific metabolic responses of fishes growing in erythromycin-contaminated water. J. Clean. Prod. 2022, 379, 134577. [Google Scholar]
- Wang, K.M.; Zhou, L.X.; Ji, K.F.; Xu, S.N.; Wang, J.D. Evaluation of a modified internal circulation (MIC) anaerobic reactor for real antibiotic pharmaceutical wastewater treatment: Process performance, microbial community and antibiotic resistance genes evolutions. J. Water Process Eng. 2022, 48, 102914. [Google Scholar] [CrossRef]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, X.; Xu, J.; Li, Z.; Cheng, L.; Fu, J.; Sun, W.; Dang, C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. Sci. Total Environ. 2024, 929, 172455. [Google Scholar] [CrossRef]
- Hou, L.; Fu, Y.; Zhao, C.; Fan, L.; Hu, H.; Yin, S. Short-term exposure to ciprofloxacin and microplastic leads to intrahepatic cholestasis, while long-term exposure decreases energy metabolism and increases the risk of obesity. Environ. Int. 2025, 199, 109511. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, S.; Wang, W.; Zhang, H. Photoelectrocatalytic principles for meaningfully studying photocatalyst properties and photocatalysis processes: From fundamental theory to environmental applications. J. Energy Chem. 2023, 86, 84–117. [Google Scholar] [CrossRef]
- Xu, H.; Gao, J.; Yuan, Y.; Zeng, L.; Wang, Y.; Wang, H.; An, J. Insight into the responses of performance, bacterial community and three-fraction resistance genes to different quaternary ammonium compounds in nitrifying system under the stress of environmental ciprofloxacin. Chem. Eng. J. 2024, 496, 154241. [Google Scholar] [CrossRef]
- Marouani, I.; Al-Mussawi, W.; Alshammari, M.S.; Khan, M.I.; Almadani, N.; Abduvokhidov, A.; Nofal, H.A.; Karimov, M.; Mahariq, I. Simulated solar light-driven degradation of ciprofloxacin antibiotic and sustainable hydrogen solar-fuel production using Z-scheme CoFe2O4-Sb2O3 photocatalysts supported on peanut shell-derived biochar. J. Water Process Eng. 2025, 76, 108208. [Google Scholar] [CrossRef]
- Zhang, T.; Meng, D.; Sa, G.; Xu, A. Synergistic regulation of TiO2 band structure by Nd and Bi for efficient photocatalytic degradation of ciprofloxacin. Vacuum 2025, 239, 114442. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Zhao, L.; Pan, L.; Wen, Z.; Shi, M.; Li, H. Construction of Bi2O2CO3/Bi2O2SiO3 Z-scheme heterojunction and interfacial electron transfer mechanism for photocatalytic degradation of ciprofloxacin. J. Phys. Chem. Solids 2025, 207, 112976. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, S.; Wang, X.; Wang, J.; Cao, H.; Tao, Y. Variable cyanobacterial death modes caused by ciprofloxacin in the aquatic environment: Prioritizing antibiotic-photosynthetic protein interactions for risk assessment. Water Res. 2025, 271, 122885. [Google Scholar] [CrossRef]
- Ezeuko, A.S.; Ojemaye, M.O.; Okoh, O.O.; Okoh, A.I. Potentials of metallic nanoparticles for the removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater: A critical review. J. Water Process Eng. 2021, 41, 102041. [Google Scholar] [CrossRef]
- Min, N.; Wu, J.; Jin, C.; Hu, X.; Wang, Y.; Cai, M.; Yan, J. Enhancing nitrogen modification in the rhizosphere to alleviate ciprofloxacin and antibiotic-resistant bacteria accumulation in lettuce. Rhizosphere 2025, 34, 101069. [Google Scholar] [CrossRef]
- Burciaga, L.A.G.; Vázquez, F.d.J.S.; Antileo, C.; Castro, M.R.; Núñez, C.M.N.; Nájera, J.B.P. A Review on Cytotoxic Antibiotics: Occurrence in Water Matrices, Degradation by Advanced Oxidation Processes, and By-Product Formation. Water 2025, 17, 628. [Google Scholar] [CrossRef]
- Ji, J.; Li, H.; Liu, S. Current Natural Degradation and Artificial Intervention Removal Techniques for Antibiotics in the Aquatic Environment: A Review. Appl. Sci. 2025, 15, 5182. [Google Scholar] [CrossRef]
- Rana, P.; Soni, V.; Sharma, S.; Poonia, K.; Patial, S.; Singh, P.; Selvasembian, R.; Chaudhary, V.; Hussain, C.M.; Raizada, P. Harnessing nitrogen doped magnetic biochar for efficient antibiotic adsorption and degradation. J. Ind. Eng. Chem. 2025, 148, 174–195. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, B.; Liu, Y.; Yao, M.; Li, Y.; Wu, N. Enhanced effect of sonochemistry on the degradation of trace antibiotics in water by N-β-rGO/PMS adsorption-catalytic oxidation system. Appl. Catal. O Open 2024, 194, 207003. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Thomaidis, N.S.; Xu, J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard. Mater. 2017, 323, 274–298. [Google Scholar] [CrossRef]
- Gao, R.; Gao, S.-H.; Li, J.; Su, Y.; Huang, F.; Liang, B.; Fan, L.; Guo, J.; Wang, A. Emerging Technologies for the Control of Biological Contaminants in Water Treatment: A Critical Review. Engineering 2025, 48, 185–204. [Google Scholar] [CrossRef]
- He, J.; Wang, W.; Ni, F.; Tian, D.; Yang, G.; Lei, Y.; Shen, F.; Zou, J.; Huang, M. A novel hydrophobic chitosan-polyaluminum chloride composite flocculant for effectively simultaneous removal of microplastic and antibiotics composite pollution. Sep. Purif. Technol. 2024, 337, 126420. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, L.; Chen, D.; Hao, Z.; Deng, B.; Sun, Y.; Liu, X.; Jia, B.; Chen, L.; Liu, H. Photocatalytic self-Fenton degradation of ciprofloxacin over S-scheme CuFe2O4/ZnIn2S4 heterojunction: Mechanism insight, degradation pathways and DFT calculations. Chem. Eng. J. 2024, 482, 149165. [Google Scholar] [CrossRef]
- Liu, G.; Liu, M.; Shi, H.; Jia, H.; Zou, H.; Tao, N. Efficient electrochemical decomposition of sulfamethoxazole using a novel freestanding TiN anode. Sustain. Horiz. 2023, 7, 100059. [Google Scholar] [CrossRef]
- Zhu, K.; Li, X.; Chen, Y.; Huang, Y.; Yang, Z.; Guan, G.; Yan, K. Recent advances on the spherical metal oxides for sustainable degradation of antibiotics. Coord. Chem. Rev. 2024, 510, 215813. [Google Scholar] [CrossRef]
- Gupta, N.; Sarkar, A.; Pradhan, B.; Biswas, S.K. Hydrothermal Synthesis of Mesoporous FeTiO3 for Photo-Fenton Degradation of Organic Pollutants and Fluoride Adsorption†. Eng. Proc. 2023, 59, 134. [Google Scholar]
- Nannou, C.; Maroulas, K.N.; Tsamtzidou, C.; Ladomenou, K.; Kyzas, G.Z. Photocatalytic degradation of veterinary antibiotics in wastewaters: A review. Sci. Total Environ. 2025, 966, 178765. [Google Scholar] [CrossRef]
- Sagadevan, S.; Mathanmohun, M.; Le, M.V.; Hessel, V. CuWO4-based nanocomposites as efficient photocatalysts for antibiotic degradation. Mater. Sci. Eng. B 2025, 315, 118102. [Google Scholar] [CrossRef]
- Huang, J.; Chen, W.; Yu, X.; Fu, X.; Zhu, Y.; Zhang, Y. Fabrication of a ternary BiOCl/CQDs/rGO photocatalyst: The roles of CQDs and rGO in adsorption-photocatalytic removal of ciprofloxacin. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124758. [Google Scholar] [CrossRef]
- Martins, P.; Kappert, S.; Le, H.N.; Sebastian, V.; Kühn, K.; Alves, M.; Pereira, L.; Cuniberti, G.; Melle-Franco, M.; Lanceros-Méndez, S. Enhanced Photocatalytic Activity of Au/TiO2 Nanoparticles against Ciprofloxacin. Catalysts 2020, 10, 234. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, R.; Feng, Y.; Wang, J. Photocatalytic degradation of antibiotics in municipal wastewater over ZnIn2S4. Ionics 2024, 30, 1291–1306. [Google Scholar] [CrossRef]
- Acedo-Mendoza, A.G.; Infantes-Molina, A.; Vargas-Hernández, D.; Chávez-Sánchez, C.A.; Rodríguez-Castellón, E.; Tánori-Córdova, J.C. Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts: The effect of copper loading and reaction temperature. Mater. Sci. Semicond. Process. 2020, 119, 105257. [Google Scholar] [CrossRef]
- Tang, Y.; Ren, H.; Huang, J. Synthesis of porous TiO2 nanowires and their photocatalytic properties. Front. Optoelectron. 2017, 10, 395–401. [Google Scholar] [CrossRef]
- Li, C.; Xue, J.Y.; Zhang, W.; Li, F.L.; Gu, H.; Braunstein, P.; Lang, J.P. Accelerating water dissociation at carbon supported nanoscale Ni/NiO heterojunction electrocatalysts for high-efficiency alkaline hydrogen evolution. Nano Res. 2022, 16, 4742–4750. [Google Scholar]
- Saothayanun, T.K.; Wijitwongwan, R.P.; Ogawa, M. Efficient p-n Heterojunction Photocatalyst Composed of Bismuth Oxyiodide and Layered Titanate. Inorg. Chem. 2022, 61, 20268–20276. [Google Scholar]
- Wang, S.; Tuo, B.; Wang, J.; Tang, Y.; Nie, G.; Xie, F. Preparation and Photocatalytic Performance of p-n Heterojunction Photocatalyst Bi2O3/TiO2. Water Air Soil Pollut. 2023, 234, 14. [Google Scholar]
- Ramon, A.P.; Li, X.; Clark, A.H.; Safonova, O.V.; Marcos, F.C.; Assaf, E.M.; van Bokhoven, J.A.; Artiglia, L.; Assaf, J.M. In situ study of low-temperature dry reforming of methane over La2Ce2O7 and LaNiO3 mixed oxides. Appl. Catal. B Environ. 2022, 315, 121528. [Google Scholar] [CrossRef]
- Xu, J.; Xi, R.; Xu, X.; Zhang, Y.; Feng, X.; Fang, X.; Wang, X. A2B2O7 pyrochlore compounds: A category of potential materials for clean energy and environment protection catalysis. J. Rare Earths. 2020, 38, 840–849. [Google Scholar] [CrossRef]
- Devi, V.R.; Ravi, G.; Velchuri, R.; Muniratnam, N.R.; Prasad, G.; Vithal, M. Preparation, Characterization, Photocatalytic Activity and Conductivity Studies of YLnTi2O7 (Ln = Nd, Sm, Eu and Gd). Trans. Indian. Ceram. Soc. 2013, 72, 241–251. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, Z.; Zhao, Y.; Li, G.; Li, Z. Preparation, Characterization of A2Ce2O7 (A = La and Gd) and Their Photo-Catalytic Properties. Energy Environ. Focus. 2015, 4, 324–329. [Google Scholar] [CrossRef]
- Bocharov, D.; Piskunov, S.; Zhukovskii, Y.F.; Spohr, E.; D’yachkov, P. First principles modeling of 3d-metal doped three-layer fluorite-structured TiO2 (4,4) nanotube to be used for photocatalytic hydrogen production. Vacuum 2017, 146, 562–569. [Google Scholar] [CrossRef]
- Zhang, Y.; Di, J.; Qian, X.; Ji, M.; Tian, Z.; Ye, L.; Zhao, J.; Yin, S.; Li, H.; Xia, J. Oxygen vacancies in Bi2Sn2O7 quantum dots to trigger efficient photocatalytic nitrogen reduction. Appl. Catal. B Environ. 2021, 299, 120680. [Google Scholar]
- Tanatti, N.P.; Sezer, M. Removal of Bisphenol-A by Catalytic and Photocatalytic Ozonation Processes with Nano CeO2 Catalyst: Optimization Using a Central Composite Design. Water Air Soil. Pollut. 2025, 236, 521. [Google Scholar] [CrossRef]
- Jiang, M.; Sun, W.; Zhang, H.; Guo, L.; Li, D.; Qu, D.; Yang, M.; Liu, P.; Su, X. Optical diagnostic study on improving ammonia combustion in a compression ignition engine using CeO2 nano-catalysts. Int. J. Hydrogen Energy 2025, 136, 294–309. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Tao, Y.; Shen, L.; Xu, Z.; Bian, Z.; Li, H. Challenges of photocatalysis and their coping strategies. Chem Catal. 2022, 2, 1315–1345. [Google Scholar] [CrossRef]
- He, F.; Jeon, W.; Choi, W. Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nat. Commun. 2021, 12, 2528. [Google Scholar] [CrossRef]
- Zheng, Z.; Tian, S.; Feng, Y.; Zhao, S.; Li, X.; Wang, S.; He, Z. Recent advances of photocatalytic coupling technologies for wastewater treatment. Chin. J. Catal. 2023, 54, 88–136. [Google Scholar] [CrossRef]
- Singh, A.; Dhau, J.; Kumar, R.; Badru, R.; Singh, P.; Mishra, Y.K.; Kaushik, A. Tailored carbon materials (TCM) for enhancing photocatalytic degradation of polyaromatic hydrocarbons. Prog. Mater. Sci. 2024, 144, 101289. [Google Scholar] [CrossRef]
- Cai, P.; Li, H.; Zou, H.; Pan, Y.; Han, Y.; Tang, C.; Yang, Y.; Xiao, L.; Zheng, W.; Zhou, M.; et al. Comparative data on different preparation methods of Ru/CeO2 catalysts for catalytic oxidation of chlorine-containing volatile organic compounds. Data Brief 2024, 57, 111175. [Google Scholar] [CrossRef]
- Gan, M.; Liao, F.; Chen, Q.; Pang, F.; Xu, Y.; Su, Y.; Huang, L. Y2Ti2O7 pyrochlore supported nickel-based catalysts for hydrogen production by auto-thermal reforming of acetic acid. Mater. Sci. Eng. B 2024, 302, 117264. [Google Scholar] [CrossRef]
- Kim, J.G.; Noh, Y.; Kim, Y. Pyrochlore LaSrSn2O7 nanoparticles anchored on carbon nanofibers as bifunctional catalysts for an efficient Li-O2 battery. J. Energy Storage 2023, 66, 107329. [Google Scholar]
- Han, W.; Wei, Y.; Wan, J.; Nakagawa, N.; Wang, D. Hollow Multishell-Structured TiO2/MAPbI3 Composite Improves Charge Utilization for Visible-Light Photocatalytic Hydrogen Evolution. Inorg. Chem. 2022, 61, 5397–5404. [Google Scholar]
- Ahmed, M.; Xinxin, G. A Review of Metal Oxynitrides for Photocatalysis. Inorg. Chem. Front. 2016, 3, 578–590. [Google Scholar] [CrossRef]
- Wahyuniati, R.E.; Hindryawati, N.; Wirawan, T.; Subagyono, D.J.N.; Panggabean, A.S. A review on photocatalytic: Modification of material and the application to removal of dye in wastewater. J. Phys. Conf. Ser. 2019, 1277, 012006. [Google Scholar] [CrossRef]
- Gao, X.; Yao, Y.; Meng, X. Recent development on BN-based photocatalysis: A review. Mater. Sci. Semicond. Process. 2020, 120, 105256. [Google Scholar] [CrossRef]
- Yang, X.L.; Sun, S.D.; Cui, J.; Yang, M.; Luo, Y.G.; Liang, S.H. Synthesis, Functional Modifications, and Diversified Applications of Hybrid BiOCl-Based Heterogeneous Photocatalysts: A Review. Cryst. Growth Des. 2021, 21, 6576–6618. [Google Scholar] [CrossRef]
- Li, N.; Niu, Y.H.; An, W.A.; Liu, Z.H.; Ruan, F.Y.; Fan, G.D. Unraveling charge transfer dynamics in AgBr/Bi4Ti3O12/Bi2Sn2O7 ternary S-scheme heterojunction photocatalyst. J. Colloid. Interface Sci. 2024, 669, 175–189. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Zhang, J.J.; Yu, J.G.; Garcia, H. Charge-transfer dynamics in S-scheme photocatalyst. Nat. Rev. Chem. 2025, 9, 328–342. [Google Scholar] [CrossRef]
- Lerdwiriyanupap, T.; Waehayee, A.; Choklap, T.; Prachanat, J.; Nakajima, H.; Chankhanittha, T.; Butburee, T.; Siritanon, T. CeO2/BiYO3 photocatalyst for the degradation of tetracycline under visible light irradiation. Ceram. Int. 2024, 50, 52723–52732. [Google Scholar] [CrossRef]
- Fan, G.; Cai, C.; Yang, S.; Du, B.; Luo, J.; Chen, Y.; Lin, X.; Li, X.; Wang, Y. Sonophotocatalytic degradation of ciprofloxacin by Bi2MoO6/FeVO4 heterojunction: Insights into performance, mechanism and pathway. Sep. Purif. Technol. 2022, 303, 122251. [Google Scholar]
- Peng, Z.; Wang, Y.; Wang, S.; Yao, J.; Zhao, Q.; Xie, E.; Chen, G.; Wang, Z.; Liu, Z.; Wang, Y.; et al. Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review. Int. J. Miner. Metall. Mater. 2024, 31, 1147–1165. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, L.; Liu, C.; Li, Y. The irradiation resistance and mechanical properties of the high-entropy zirconate pyrochlore (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7. Nucl. Inst. Methods Phys. Res. B 2024, 549, 165285. [Google Scholar] [CrossRef]
- Teng, Z.; Tan, Y.; Zhang, H. High-Entropy Pyrochlore A2B2O7 with Both Heavy and Light Rare-Earth Elements at the A Site. Materials 2021, 15, 129. [Google Scholar]
- Khiera, Z.; Bouazza, T.; Mohamed, B.; Mayouf, S.; Vincent, C. Synthesis, structural, optical and dielectric characterization of new pyrochlore solid solution B1.5Sb1.5Zn1-xCuxO7. J. Solid. State Chem. 2023, 321, 123917. [Google Scholar]
- Du, G.; Long, Y.; Xue, J.; Zhang, S.; Dong, Y.; Li, X. 1,4-Selective Polymerization of 1,3-Cyclohexadiene and Copolymerization with Styrene by Cationic Half-Sandwich Fluorenyl Rare Earth Metal Alkyl Catalysts. Macromolecules 2015, 48, 1627–1635. [Google Scholar] [CrossRef]
- Peng, H.; Lany, S. Semiconducting transition-metal oxides based on d5 cations: Theory for MnO and Fe2O3. Phys. Rev. B. Condens. Matter Mater. Phys. 2012, 85, 201202. [Google Scholar] [CrossRef]
- Lang, M.; Zhang, F.; Zhang, J.; Wang, J.; Lian, J.; Weber, W.J.; Schuster, B.; Trautmann, C.; Neumann, R.; Ewing, R.C. Review of A2B2O7 pyrochlore response to irradiation and pressure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 2951–2959. [Google Scholar] [CrossRef]
- Subramanian, M.A.; Aravamudan, G.; Subba Rao, G.V. Oxide pyrochlores—A review. Prog. Solid. State Chem. 1983, 15, 55–143. [Google Scholar] [CrossRef]
- Shamblin, J.; Tracy, C.L.; Ewing, R.C.; Zhang, F.; Li, W.; Trautmann, C.; Lang, M. Structural response of titanate pyrochlores to swift heavy ion irradiation. Acta Mater. 2016, 117, 207–215. [Google Scholar] [CrossRef]
- Wang, J.H.; Zou, Z.G.; Ye, J.H. Synthesis, Structure and Photocatalytic Property of a New Hydrogen Evolving Photocatalyst Bi2InTaO7. Mater. Sci. Forum. 2003, 465, 485–490. [Google Scholar]
- Wei, W.; Mushtaq, N.; Lu, Y.; Shah, M.A.K.Y.; Ma, L.; Yan, S. Designing Composite BaCe0.4Zr0.4Y0.1Yb0.1O3-δ-Sm0.2Ce0.8O2-δ Heterostructure Electrolyte for Low-Temperature Ceramic Fuel Cell (LT-CFCs). Crystals 2022, 13, 41. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, L.; Ding, Z. Synthesis and Oxygen Storage Capacities of Yttrium-Doped CeO2 with a Cubic Fluorite Structure. Materials 2022, 15, 8971. [Google Scholar]
- Guo, X.; Yu, Y.; Ma, W.; Tang, H.; Qiao, Z.; Zhou, F.; Liu, W. Thermal properties of (Zr0.2Ce0.2Hf0.2Y0.2RE0.2)O1.8 (RE = La, Nd and Sm) high entropy ceramics for thermal barrier materials. Ceram. Int. 2022, 48, 36084–36090. [Google Scholar]
- Samsonowicz, M.; Kalinowska, M.; Dowbysz, A.; Koronkiewicz, K.; Kukfisz, B.; Pietryczuk, A. Zn Complex with Homovanillic Acid: Theoretical (B3LYP/6-311++G(d,p)), Structural (FT-IR, NMR), Thermal (TG, DTG, and DSC) and Biological (An-tioxidant and Antimicrobial) Characteristics. Material 2025, 18, 2374. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Wang, Y.; Liu, R.; Wen, Q.; Liu, H.; Xiong, X. Structural evolution and synthesis mechanism of ytterbium disilicate powders prepared by cocurrent chemical coprecipitation method. Ceram. Int. 2022, 48, 11545–11554. [Google Scholar] [CrossRef]
- Pascuta, P.; Culea, E. FTIR spectroscopic study of some bismuth germanate glasses containing gadolinium ions. Mater. Lett. 2008, 62, 4127–4129. [Google Scholar] [CrossRef]
- Kashyap, S.J.; Sankannavar, R.; Madhu, G.M. Iron oxide (Fe2O3) synthesized via solution-combustion technique with varying fuel-to-oxidizer ratio: FT-IR, XRD, optical and dielectric characterization. Mater. Chem. Phys. 2022, 286, 126118. [Google Scholar] [CrossRef]
- Mortazavi-Derazkola, S.; Salavati-Niasari, M.; Amiri, O.; Abbasi, A. Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Energy Chem. 2017, 26, 17–23. [Google Scholar] [CrossRef]
- Kaviyarasu, K.; Sajan, D.; Devarajan, P.A. A rapid and versatile method for solvothermal synthesis of Sb2O3 nanocrystals under mild conditions. Appl. Nanosci. 2013, 3, 529–533. [Google Scholar] [CrossRef]
- Rada, S.; Rus, L.; Rada, M.; Zagrai, M.; Culea, E.; Rusu, T. Compositional dependence of structure, optical and electrochemical properties of antimony(III) oxide doped lead glasses and vitroceramics. Ceram. Int. 2014, 40, 15711–15716. [Google Scholar] [CrossRef]
- Al-Oweini, R.; El-Rassy, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Mol. Struct. 2009, 919, 140–145. [Google Scholar] [CrossRef]
- Shao, B.; Liu, X.; Liu, Z.; Zeng, G.; Liang, Q.; Liang, C.; Cheng, Y.; Zhang, W.; Liu, Y.; Gong, S. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation. Chem. Eng. J. 2019, 368, 730–745. [Google Scholar] [CrossRef]
- Ovchinnikov, O.V.; Evtukhova, A.V.; Kondratenko, T.S.; Smirnov, M.S.; Khokhlov, V.Y.; Erina, O.V. Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib. Spectrosc. 2016, 86, 181–189. [Google Scholar] [CrossRef]
- Guo, W.; Chen, J.; Sun, S.; Zhou, Q. Investigation of water diffusion in hydrogel pore-filled membrane via 2D correlation time-dependent ATR-FTIR spectroscopy. J. Mol. Struct. 2018, 1171, 600–604. [Google Scholar] [CrossRef]
- Rao, L.S.; Prabha, K.A.; Naidu, C.D.; Hussain, S. Structural aspects of Bi2O3–B2O3–MnO2–ZrO2 glasses evaluated by Raman and photoluminescence spectroscopy for solid state lighting. Inorg. Chem. Commun. 2025, 173, 113787. [Google Scholar]
- Trindade, F.J.; Damasceno, S.; Otubo, L.; Felez, M.R.; de Florio, D.Z.; Fonseca, F.C.; Ferlauto, A.S. Tuning of Shape, Defects, and Disorder in Lanthanum-Doped Ceria Nanoparticles: Implications for High-Temperature Catalysis. ACS Appl. Nano Mater. 2022, 5, 8859–8867. [Google Scholar] [CrossRef]
- Goodman, D.W. Infra red and Raman Selection Rules for molecular and lattice vibrations: The Correlation Method. Opt. Acta Int. J. Opt. 2010, 20, 831. [Google Scholar] [CrossRef]
- Jana, Y.M.; Halder, P.; Biswas, A.A.; Jana, R.; Mukherjee, G.D. FT-IR and Raman vibrational spectroscopic studies of R2FeSbO7 (R3+ = Y, Dy, Gd, Bi) pyrochlores. Vib. Spectrosc. 2016, 84, 74–82. [Google Scholar] [CrossRef]
- Saha, S.; Ghalsasi, P.; Muthu, D.V.S.; Singh, S.; Suryanarayanan, R.; Revcolevschi, A.; Sood, A.K. Phonon anomalies and structural transition in spin ice Dy2Ti2O7: A simultaneous pressure-dependent and temperature-dependent Raman study. J. Raman Spectrosc. 2012, 43, 1157–1165. [Google Scholar] [CrossRef]
- Vandenborre, M.T.; Husson, E. Comparison of the force field in various pyrochlore families. I. The A2B2O7 oxides. J. Solid. State Chem. 1983, 50, 362–371. [Google Scholar] [CrossRef]
- Gupta, H.C.; Brown, S.; Rani, N.; Gohel, V.B. Lattice dynamic investigation of the zone center wavenumbers of the cubic A2Ti2O7 pyrochlores. J. Raman Spectrosc. 2001, 32, 41–44. [Google Scholar] [CrossRef]
- Dharmalingam, S.T.; Dar, M.A.; Gul, R.; Minakshi Sundaram, M.; Alnaser, I.A.; Sivasubramanian, R. Nano-Octahedron Cobalt Oxide Decorated Graphene Nanocomposites for the Selective/Simultaneous Detection of Dopamine. Adv. Mater. Interfaces 2025, 12, 2400981. [Google Scholar] [CrossRef]
- Jana, Y.M.; Halder, P.; Biswas, A.A.; Roychowdhury, A.; Das, D.; Dey, S.; Kumar, S. Synthesis, X-ray Rietveld analysis, infrared and Mössbauer spectroscopy of R2FeSbO7 (R3+ = Y, Dy, Gd, Bi) pyrochlore solid solution. J. Alloys Compd. 2016, 656, 226–236. [Google Scholar] [CrossRef]
- Subashini, C.; Sivasubramanian, R.; Sundaram, M.M.; Priyadharsini, N. The evolution of allotropic forms of Na2CoP2O7 electrode and its role in future hybrid energy storage. J. Energy Storage 2025, 130, 117390. [Google Scholar] [CrossRef]
- Yang, K.; Zhao, M.; Li, H.; Bai, C. Microstructure and thermal-mechanical evolution of high-entropy pyrochlore (A2B2O7) with dual crystalline phase. Open Ceram. 2025, 21, 100723. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, H.C. First principles study of zone centre phonons in rare-earth pyrochlore titanates, RE2Ti2O7 (RE = Gd, Dy, Ho, Er, Lu; Y). Vib. Spectrosc. 2012, 62, 180–187. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, J.; Xu, Z.; Wang, P.; Yang, Y.; Xu, X.; Shen, J.; Fang, X.; Wang, X. Design of non-noble metal A2B2O7 compounds to catalyze soot particulate combustion: Deciphering the inherent factors contributing to the excellent activity with the integration of experiments and DFT calculations. Chem. Eng. J. 2025, 503, 158673. [Google Scholar] [CrossRef]
- Mączka, M.; Sanjuán, M.L.; Fuentes, A.F.; Macalik, L.; Hanuza, J.; Matsuhira, K.; Hiroi, Z. Temperature-dependent studies of the geometrically frustrated pyrochlores Ho2Ti2O7 and Dy2Ti2O7. Phys. Rev. B 2009, 79, 214437. [Google Scholar] [CrossRef]
- Ma, Q.; Hu, X.; Liu, N.; Sharma, A.; Zhang, C.; Kawazoe, N.; Chen, G.; Yang, Y. Polyethylene glycol (PEG)-modified Ag/Ag2O/Ag3PO4/Bi2WO6 photocatalyst film with enhanced efficiency and stability under solar light. J. Colloid. Interface Sci. 2020, 569, 101–113. [Google Scholar] [CrossRef]
- Kabongo, G.L.; Mbule, P.S.; Mhlongo, G.H.; Mothudi, B.M.; Hillie, K.T.; Dhlamini, M.S. Photoluminescence Quenching and Enhanced Optical Conductivity of P3HT-Derived Ho3+- Doped ZnO Nanostructures. Nanoscale Res. Lett. 2016, 11, 418. [Google Scholar] [CrossRef]
- Warwick, M.E.A.; Carraro, G.; Toniato, E.; Gasparotto, A.; Maccato, C. XPS analysis of Fe2O3-TiO2-Au nanocomposites prepared by a plasma-assisted route. Surf. Sci. Spectra 2016, 23, 61–69. [Google Scholar] [CrossRef]
- Ni, Q.; Kirk, D.W.; Thorpe, S.J. XPS Investigation of Loss of Antimony in the Thermal Preparation of the Ti/SnO2-Sb2O5 Anode. Meet. Abstr. 2014, MA2014–01, 547. [Google Scholar] [CrossRef]
- Ou, G.; Xu, Y.; Wen, B.; Lin, R.; Ge, B.; Tang, Y.; Liang, Y.; Yang, C.; Huang, K.; Zu, D.; et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302. [Google Scholar] [CrossRef]
- Ye, F.; Zhang, S.; Cheng, Q.; Long, Y.; Liu, D.; Paul, R.; Fang, Y.; Su, Y.; Qu, L.; Dai, L.; et al. The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO2 conversion. Nat. Commun. 2023, 14, 2040. [Google Scholar] [CrossRef] [PubMed]
- Bharti, B.; Kumar, S.; Lee, H.-N.; Kumar, R. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 2016, 6, 32355. [Google Scholar]
- Mondal, A.; Basak, S.; Sarkar, S.; Chopra, D.; Das, R. Binuclear Mixed Valence Oxovanadium (IV/V) Complexes Containing a [OVIV(mu-Ooxo)(mu-Ophen)VvO]2+ Core: Synthesis, EPR Spectra, Molecular and Electronic Structure. Eur. J. Inorg. Chem. 2006, 2006, 1824–1829. [Google Scholar] [CrossRef]
- Davis, E.A. Optical absorption, transport and photoconductivity in amorphous selenium. J. Non Cryst. Solids 1970, 4, 107–116. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Kim, S.G.; Park, N.G. Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells. Adv. Mater. 2019, 31, e1902902. [Google Scholar] [CrossRef]
- Li, H.; Di, H.; Wang, X.; Ren, Z.; Lu, M.; Liu, A.A.; Yang, X.; Wang, N.; Zhao, Y.; Li, B. Diffusion effect on the decay of time-resolved photoluminescence under low illumination in lead halide perovskites. Sci. China Phys. Mech. Astron. 2023, 66, 287311. [Google Scholar]
- Buschmann, V.; Ermilov, E.; Koberling, F.; Loidolt-Krüger, M.; Breitlow, J.; Kooiman, H.; Los, J.W.N.; van Willigen, J.; Caldarola, M.; Fognini, A.; et al. Integration of a superconducting nanowire single-photon detector into a confocal microscope for time-resolved photoluminescence (TRPL)-mapping: Sensitivity and time resolution. Rev. Sci. Instrum. 2023, 94, 033703. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Liu, Y.; Xi, X.; Nie, Z. Anchoring Cu2O onto WO3 by adsorption-ascorbic acid reduction: A p-n junction with improved photocatalytic and photoelectrochemical properties. Opt. Mater. 2024, 155, 115859. [Google Scholar] [CrossRef]
- Ibeniaich, M.; Elansary, M.; Minaoui, K.; Mouhib, Y.; Haj, Y.A.E.; Belaiche, Y.; Oulhakem, O.; Iffer, E.; Ferdi, C.A.; Lemine, O.M.; et al. Exploring the effect of Hf (IV) doping in spinel ferrite CoHfxFe2-xO4 on magnetic properties, electrochemical impedance, and photocatalytic activity: In-depth structural study. J. Mol. Struct. 2024, 1318, 139395. [Google Scholar] [CrossRef]
- Zhuang, Y.; Luan, J. Improved photocatalytic property of peony-like InOOH for degrading norfloxacin. Chem. Eng. J. 2020, 382, 122770. [Google Scholar] [CrossRef]
- Annadi, A.; Gong, H. Success in both p-type and n-type of a novel transparent AgCuI alloy semiconductor system for homojunction devices. Appl. Mater. Today 2020, 20, 100703. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Jiang, X.; Chen, S.; Meng, S.; Fu, X. Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. J. Hazard. Mater. 2014, 280, 713–722. [Google Scholar] [CrossRef]
- Lee, S.F.; Relinque, E.J.; Martinez, I.; Castellote, M. Effects of Mott–Schottky Frequency Selection and Other Controlling Factors on Flat-Band Potential and Band-Edge Position Determination of TiO2. Catalysts 2023, 13, 1000. [Google Scholar] [CrossRef]
- Miao, J.; Yang, Y.; Cui, P.; Ru, C.Z.; Kan, Z. Improving Charge Transfer Beyond Conventional Heterojunction Photoelectrodes: Fundamentals, Strategies and Applications. Adv. Funct. Mater. 2024, 34, 2406443. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, J.; Huang, Q.; Xiong, C.; Ji, H.; Ren, Q.; Jin, Z.; Chen, S.; Guo, W.; Chen, J.; et al. Efficient degradation of ciprofloxacin in wastewater by CuFe2O4/CuS photocatalyst activated peroxynomosulfate. Environ. Res. 2024, 241, 117639. [Google Scholar] [CrossRef]
- Hou, D.; Zhu, Q.; Wang, J.; Deng, M.; Qiao, X.Q.; Sun, B.; Han, Q.; Chi, R.; Li, D.-S. Direct Z-scheme system of UiO-66 cubes wrapped with Zn0.5Cd0.5S nanoparticles for photocatalytic hydrogen generation synchronized with organic pollutant degradation. J. Colloid. Interface Sci. 2024, 665, 68–79. [Google Scholar] [CrossRef]
- Xue, J.; Xiao, W.; Shi, L.; Liu, Y.; Wang, P.; Bi, Q. Efficient degradation of ciprofloxacin by a flower-spherical Bi2MoO6/BiOCl Z-type heterojunction photocatalyst enriched with oxygen vacancies. J. Environ. Chem. Eng. 2023, 11, 111235. [Google Scholar] [CrossRef]
- Zhu, H.-J.; Yang, Y.-K.; Li, M.-H.; Zou, L.-N.; Zhao, H.-T. Photocatalytic in situ H2O2 production and activation for enhanced ciprofloxacin degradation over CeO2-Co3O4/g-C3N4: Key role of CeO2. Rare Met. 2024, 43, 2695–2707. [Google Scholar] [CrossRef]
- Wang, B.; Qian, K.; Yang, W.; An, W.; Lou, L.-L.; Liu, S.; Yu, K. ZnFe2O4/BiVO4 Z-scheme heterojunction for efficient visible-light photocatalytic degradation of ciprofloxacin. Front. Chem. Sci. Eng. 2023, 17, 1728–1740. [Google Scholar] [CrossRef]
- Bu, X.; Li, J.; Wang, J.; Li, Y.; Zhang, G. Boosting charge transfer promotes photocatalytic peroxymonosulfate activation of S-doped CuBi2O4 nanorods for ciprofloxacin degradation: Key role of Ov–Cu–S and mechanism insight. Chem. Eng. J. 2024, 494, 153075. [Google Scholar] [CrossRef]
- Masud, M.A.A.; Shin, W.S.; Kim, D.G. Fe-doped kelp biochar-assisted peroxymonosulfate activation for ciprofloxacin degradation: Multiple active site-triggered radical and non-radical mechanisms. Chem. Eng. J. 2023, 471, 144519. [Google Scholar] [CrossRef]
- Pan, Y.; Hu, X.; Shen, D.; Li, Z.; Chen, R.; Li, Y.; Lu, J.; Bao, M. Facile construction of Z-scheme Fe-MOF@BiOBr/M−CN heterojunction for efficient degradation of ciprofloxacin. Sep. Purif. Technol. 2022, 295, 121216. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, J.; Liu, A.; Hao, L.; Liu, B.; Zeng, H. The Synthesis and Photophysical Performance of a Novel Z-Scheme Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst and the Photocatalytic Degradation of Ciprofloxacin Under Visible Light Irradiation. Nanomaterials 2025, 15, 1290. https://doi.org/10.3390/nano15161290
Luan J, Liu A, Hao L, Liu B, Zeng H. The Synthesis and Photophysical Performance of a Novel Z-Scheme Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst and the Photocatalytic Degradation of Ciprofloxacin Under Visible Light Irradiation. Nanomaterials. 2025; 15(16):1290. https://doi.org/10.3390/nano15161290
Chicago/Turabian StyleLuan, Jingfei, Anan Liu, Liang Hao, Boyang Liu, and Hengchang Zeng. 2025. "The Synthesis and Photophysical Performance of a Novel Z-Scheme Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst and the Photocatalytic Degradation of Ciprofloxacin Under Visible Light Irradiation" Nanomaterials 15, no. 16: 1290. https://doi.org/10.3390/nano15161290
APA StyleLuan, J., Liu, A., Hao, L., Liu, B., & Zeng, H. (2025). The Synthesis and Photophysical Performance of a Novel Z-Scheme Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst and the Photocatalytic Degradation of Ciprofloxacin Under Visible Light Irradiation. Nanomaterials, 15(16), 1290. https://doi.org/10.3390/nano15161290