Thickness Influences on Structural and Optical Properties of Thermally Annealed (GaIn)2O3 Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wenckstern, H.V.; Splith, D.; Purfürst, M.; Zhang, Z.; Kranert, C.; Müller, S.; Lorenz, M.; Grundmann, M. Structural and Optical Properties of (In,Ga)2O3 Thin Films and Characteristics of Schottky Contacts Thereon. Semicond. Sci. Technol. 2015, 30, 024005. [Google Scholar] [CrossRef]
- Baldini, M.; Albrecht, M.; Gogova, D.; Schewski, R.; Wagner, G. Effect of Indium as a Surfactant in (Ga1−xInx)2O3 Epitaxial Growth on β-Ga2O3 by Metal Organic Vapour Phase Epitaxy. Semicond. Sci. Technol. 2015, 30, 024013. [Google Scholar] [CrossRef]
- Chang, T.-H.; Chang, S.-J.; Chiu, C.J.; Wei, C.-Y.; Juan, Y.-M.; Weng, W.-Y. Bandgap-Engineered in Indium–Gallium–Oxide Ultraviolet Phototransistors. IEEE Photon. Technol. Lett. 2015, 27, 915–918. [Google Scholar] [CrossRef]
- Prajapat, P.; Singh, D.K.; Gupta, G. Growth of III-Nitrides by Molecular Beam Epitaxy: Unconventional Substrates for Conventional Semiconductors. Mater. Sci. Eng. B 2023, 295, 116574. [Google Scholar] [CrossRef]
- Yang, F.; Ma, J.; Luan, C.; Kong, L. Structural and Optical Properties of Ga2(1−x)In2xO3 Films Prepared on α-Al2O3 (0001) by MOCVD. Appl. Surf. Sci. 2009, 255, 4401–4404. [Google Scholar] [CrossRef]
- Huang, W.-L.; Lin, Y.-Z.; Chang, S.-P.; Lai, W.-C.; Chang, S.-J. Stability-Enhanced Resistive Random-Access Memory via Stacked InxGa1−xO by the RF Sputtering Method. ACS Omega 2021, 6, 10691–10697. [Google Scholar] [CrossRef]
- Ebata, K.; Tomai, S.; Tsuruma, Y.; Iitsuka, T.; Matsuzaki, S.; Yano, K. High-Mobility Thin-Film Transistors with Polycrystalline In–Ga–O Channel Fabricated by DC Magnetron Sputtering. Appl. Phys. Express 2012, 5, 011102. [Google Scholar] [CrossRef]
- Hikake, K.; Li, Z.; Hao, J.; Pandy, C.; Saraya, T.; Hiramoto, T.; Takahashi, T.; Uenuma, M.; Uraoka, Y.; Kobayashi, M. A Nanosheet Oxide Semiconductor FET Using ALD InGaOx Channel for 3-D Integrated Devices. IEEE Trans. Electron Devices 2024, 71, 2373–2379. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Yang, C.-C.; Huang, C.-Y.; Su, Y.-K. ALD Al2O3 Gate Dielectric on the Reduction of Interface Trap Density and the Enhanced Photo-Electric Performance of IGO TFT. RSC Adv. 2020, 10, 9902–9906. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, R.; Liu, X.; Bi, Z.; Ruan, S.; Ma, Y.; Li, X.; Liu, C.; Chen, Y.; Zhou, J. Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity. Sensors 2024, 24, 787. [Google Scholar] [CrossRef]
- Zhang, F.; Saito, K.; Tanaka, T.; Nishio, M.; Guo, Q. Wide Bandgap Engineering of (GaIn)2O3 Films. Solid State Commun. 2014, 186, 28–31. [Google Scholar] [CrossRef]
- Aziz, M.J. Film Growth Mechanisms in Pulsed Laser Deposition. Appl. Phys. A 2008, 93, 579–587. [Google Scholar] [CrossRef]
- Kim, H.; Horwitz, J.S.; Kushto, G.; Piqué, A.; Kafafi, Z.H.; Gilmore, C.M.; Chrisey, D.B. Effect of Film Thickness on the Properties of Indium Tin Oxide Thin Films. J. Appl. Phys. 2000, 88, 6021–6025. [Google Scholar] [CrossRef]
- Yeon Cha, S.; Choi, S.; Kim, D.; Seo, O.; Simon Mun, B.; Young Noh, D.; Chol Kang, H. Short-Range Positional Order in Phase Separated Indium Gallium Oxide Islands Deposited in a Reducing Atmosphere. Appl. Surf. Sci. 2023, 637, 157943. [Google Scholar] [CrossRef]
- Zhang, F.; Saito, K.; Tanaka, T.; Nishio, M.; Guo, Q. Thermal Annealing Impact on Crystal Quality of (GaIn)2O3 Alloys. J. Alloys Compd. 2014, 614, 173–176. [Google Scholar] [CrossRef]
- Zhang, F.; Jan, H.; Saito, K.; Tanaka, T.; Nishio, M.; Nagaoka, T.; Arita, M.; Guo, Q. Toward the Understanding of Annealing Effects on (GaIn)2O3 Films. Thin Solid Films 2015, 578, 1–6. [Google Scholar] [CrossRef]
- Dong, B.-Z.; Fang, G.-J.; Wang, J.-F.; Guan, W.-J.; Zhao, X.-Z. Effect of Thickness on Structural, Electrical, and Optical Properties of ZnO: Al Films Deposited by Pulsed Laser Deposition. J. Appl. Phys. 2007, 101, 033713. [Google Scholar] [CrossRef]
- Pérez De La Cruz, J.; Joanni, E.; Vilarinho, P.M.; Kholkin, A.L. Thickness Effect on the Dielectric, Ferroelectric, and Piezoelectric Properties of Ferroelectric Lead Zirconate Titanate Thin Films. J. Appl. Phys. 2010, 108, 114106. [Google Scholar] [CrossRef]
- An, Y.H.; Zhi, Y.S.; Cui, W.; Zhao, X.L.; Wu, Z.P.; Guo, D.Y.; Li, P.G.; Tang, W.H. Thickness Tuning Photoelectric Properties of β-Ga2O3 Thin Film Based Photodetectors. J. Nanosci. Nanotechnol. 2017, 17, 9091–9094. [Google Scholar] [CrossRef]
- Sakai, J.; Roque, J.M.C.; Vales-Castro, P.; Padilla-Pantoja, J.; Sauthier, G.; Catalan, G.; Santiso, J. Control of Lateral Composition Distribution in Graded Films of Soluble Solid Systems A1−xBx by Partitioned Dual-Beam Pulsed Laser Deposition. Coatings 2020, 10, 540. [Google Scholar] [CrossRef]
- Shepelin, N.A.; Tehrani, Z.P.; Ohannessian, N.; Schneider, C.W.; Pergolesi, D.; Lippert, T. A Practical Guide to Pulsed Laser Deposition. Chem. Soc. Rev. 2023, 52, 2294–2321. [Google Scholar] [CrossRef]
- Pinedo-Cuba, M.G.; Caicedo-Roque, J.M.; Padilla-Pantoja, J.; Quispe-Marcatoma, J.; Landauro, C.V.; Peña-Rodríguez, V.A.; Santiso, J. Epitaxial Growth of Ni-Mn-Ga on Al2O3(110) Single-Crystal Substrates by Pulsed Laser Deposition. Surfaces 2025, 8, 35. [Google Scholar] [CrossRef]
- Schou, J. Physical Aspects of the Pulsed Laser Deposition Technique: The Stoichiometric Transfer of Material from Target to Film. Appl. Surf. Sci. 2009, 255, 5191–5198. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Subgap States, Doping and Defect Formation Energies in Amorphous Oxide Semiconductor a-InGaZnO4 Studied by Density Functional Theory. Phys. Status Solidi (A) 2010, 207, 1698–1703. [Google Scholar] [CrossRef]
- Yildiz, A.; Cansizoglu, H.; Abdulrahman, R.; Karabacak, T. Effect of Grain Size and Strain on the Bandgap of Glancing Angle Deposited AZO Nanostructures. J. Mater. Sci. Mater. Electron. 2015, 26, 5952–5957. [Google Scholar] [CrossRef]
- Baldini, M.; Gogova, D.; Irmscher, K.; Schmidbauer, M.; Wagner, G.; Fornari, R. Heteroepitaxy of Ga2(1−x)In2xO3 Layers by MOVPE with Two Different Oxygen Sources. Cryst. Res. Technol. 2014, 49, 552–557. [Google Scholar] [CrossRef]
- Nishinaka, H.; Kajita, Y.; Hosaka, S.; Miyake, H. Composition Analysis of β-(InxGa1−x)2O3 Thin Films Coherently Grown on (010) β-Ga2O3 via Mist CVD. Sci. Technol. Adv. Mater. 2024, 25, 2414733. [Google Scholar] [CrossRef]
- Chang, S.-P.; Chang, L.-Y.; Li, J.-Y. The Influence of Different Partial Pressure on the Fabrication of InGaO Ultraviolet Photodetectors. Sensors 2016, 16, 2145. [Google Scholar] [CrossRef]
- Bin Anooz, S.; Popp, A.; Grüneberg, R.; Wouters, C.; Schewski, R.; Schmidbauer, M.; Albrecht, M.; Fiedler, A.; Ramsteiner, M.; Klimm, D.; et al. Indium Incorporation in Homoepitaxial β-Ga2O3 Thin Films Grown by Metal Organic Vapor Phase Epitaxy. J. Appl. Phys. 2019, 125, 195702. [Google Scholar] [CrossRef]
- Suzuki, N.; Kaneko, K.; Fujita, S. Growth of Corundum-Structured (InxGa1−x)2O3 Alloy Thin Films on Sapphire Substrates with Buffer Layers. J. Cryst. Growth 2014, 401, 670–672. [Google Scholar] [CrossRef]
- Liu, X.; Tan, C.-K. Electronic Properties of Monoclinic (InxGa1−x)2O3 Alloys by First-Principle. AIP Adv. 2019, 9, 035318. [Google Scholar] [CrossRef]
- Wang, T.; Gao, B.; Li, J.; Wang, Z.; Li, P. Achieving Luminescence of Sr3Ga1.98In0.02Ge4O14:0.03Cr3+ via [In3+] Substitution [Ga3+] and Its Application to NIR Pc-LED in Non-Destructive Testing. Molecules 2023, 28, 8059. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, N.; Mehra, R.M.; Kapoor, A.; Purohit, L.P.; Swart, H.C. Role of Film Thickness on the Properties of ZnO Thin Films Grown by Sol-Gel Method. Thin Solid Films 2013, 539, 161–165. [Google Scholar] [CrossRef]
- Yergaliuly, G.; Soltabayev, B.; Kalybekkyzy, S.; Bakenov, Z.; Mentbayeva, A. Effect of Thickness and Reaction Media on Properties of ZnO Thin Films by SILAR. Sci. Rep. 2022, 12, 851. [Google Scholar] [CrossRef]
- Shallcross, R.C.; Armstrong, N.R. Near-Surface Composition, Structure, and Energetics of TiO2 Thin Films: Characterization of Stress-Induced Defect States in Oxides Prepared via Chemical Vapor Deposition versus Solution Deposition from Sol–Gel Precursors. J. Phys. Chem. C 2021, 125, 24011–24024. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Dutta, S.; Chattapadhyay, S.; Sarkar, A.; Sanyal, D.; Chakrabarti, A. Grain Size Dependence of Optical Properties and Positron Annihilation Parameters in Bi2O3 Powder. Nanotechnology 2004, 15, 017. [Google Scholar] [CrossRef] [PubMed]
- Viter, R.; Katoch, A.; Kim, S.S. Grain Size Dependent Bandgap Shift of SnO2 Nanofibers. Met. Mater. Int. 2014, 20, 163–167. [Google Scholar] [CrossRef]
- Zhang, F.B.; Saito, K.; Tanaka, T.; Nishio, M.; Guo, Q.X. Structural and Optical Properties of Ga2O3 Films on Sapphire Substrates by Pulsed Laser Deposition. J. Cryst. Growth 2014, 387, 96–100. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, F.; Saito, K.; Tanaka, T.; Guo, Q. Low Temperature Growth of Ga2O3 Films on Sapphire Substrates by Plasma Assisted Pulsed Laser Deposition. AIP Adv. 2019, 9, 085022. [Google Scholar] [CrossRef]
- England, W.A.; Jenny, S.N.; Greenhalgh, D.A. Chromium Oxide Film Thickness Measurements Using Spontaneous Raman Scattering. J. Raman Spectrosc. 1984, 15, 156–159. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhang, F.; Sun, T.; Chen, Z.; Liu, X.; Li, H.; Xie, S.; Yang, W.; Li, Y. Thickness Influences on Structural and Optical Properties of Thermally Annealed (GaIn)2O3 Films. Nanomaterials 2025, 15, 1385. https://doi.org/10.3390/nano15181385
Zhang S, Zhang F, Sun T, Chen Z, Liu X, Li H, Xie S, Yang W, Li Y. Thickness Influences on Structural and Optical Properties of Thermally Annealed (GaIn)2O3 Films. Nanomaterials. 2025; 15(18):1385. https://doi.org/10.3390/nano15181385
Chicago/Turabian StyleZhang, Shiyang, Fabi Zhang, Tangyou Sun, Zanhui Chen, Xingpeng Liu, Haiou Li, Shifeng Xie, Wanli Yang, and Yue Li. 2025. "Thickness Influences on Structural and Optical Properties of Thermally Annealed (GaIn)2O3 Films" Nanomaterials 15, no. 18: 1385. https://doi.org/10.3390/nano15181385
APA StyleZhang, S., Zhang, F., Sun, T., Chen, Z., Liu, X., Li, H., Xie, S., Yang, W., & Li, Y. (2025). Thickness Influences on Structural and Optical Properties of Thermally Annealed (GaIn)2O3 Films. Nanomaterials, 15(18), 1385. https://doi.org/10.3390/nano15181385