Zinc Oxide Nanoparticles Affect the Genomic and Redox Status of Chicken Embryo—Influence of Shape
Abstract
1. Introduction
2. Materials and Methods
2.1. Nanoparticle Synthesis
2.2. Experimental Methods for Nanoparticle Characterisation
2.3. Isolation of Chicken Embryo Fibroblasts (CEFs)
2.4. Cell Viability Measurement
2.5. In Ovo Experimental Model
2.6. Measurement of Zn Concentration with Flame Atomic Absorption Spectrometry (AAS)
2.7. Confocal Microscopy
2.8. Measurement of Superoxide Dismutase (SOD) Activity
2.9. Measurement of Protein Carbonyl (CP) Content
2.10. Measurement of Malondialdehyde (MDA) Level
2.11. Microarray Study
2.12. Quantitative PCR
2.13. Statistical Analysis
3. Results
3.1. Results—Physical Study
3.1.1. Structural Analysis Based on X-Ray Diffraction (XRD) Measurements
3.1.2. Morphological Characterisation via Scanning Electron Microscopy (SEM)
3.1.3. Elemental Composition Analysis by Energy-Dispersive X-Ray Spectroscopy (EDX)
3.1.4. Optical Properties—Cathodoluminescence (CL), Photoluminescence (PL) Measurements and Confocal Microscopy
3.1.5. Results of Zeta Potential Measurements
3.2. Results—Biological Study
3.2.1. Cell Viability Assay
3.2.2. Zn Concentration in Embryo and Egg White After Administration of Nanoparticles Measured by Atomic Absorption Spectrometry (AAS)
3.2.3. Fluorescence in Embryo Tissues
3.2.4. Activity of Superoxide Dismutase (SOD)
3.2.5. Lipid Peroxidation Measured as the Content of Malondialdehyde (MDA) in the Embryo
3.2.6. Content of Carbonylated Proteins (CP) in the Embryo
3.2.7. Whole Genomic Microarray and Real-Time PCR
4. Discussion
4.1. Physicochemical Properties
4.2. Biological Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
7-AAD | 7-aminoactinomycin D |
AAS | atomic absorption spectrometry |
BHT | butylated hydroxytoluene |
CD50 | cell death 50% |
CEFs | (primary) chicken embryo fibroblasts |
CL | cathodoluminescence |
CNCCs | cranial neural crest cells |
CP | carbonylated proteins |
CTRL | control |
DLE | deep level emission |
DLS | dynamic light scattering |
DMEM | Dulbecco’s modified eagle medium |
DNPH | 2,4-dinitrophenylhydrazine |
DTT | ditiotreitol |
EDTA | ethylene-diaminetetraacetic acid |
ELS | electrophoretic light scattering |
EDX | energy dispersive X-ray |
FBS | foetal bovine serum |
MCS | mean crystallite sizes |
MDA | malondialdehyde |
NBE | near band edge |
NBT | nitro blue tetrazolium chloride |
NPs | nanoparticles |
PBS | phosphate-buffered saline |
PDI | polydispersity indices |
PL | photoluminescence emission |
PLE | photoluminescence excitation |
PMSF | phenylmethanesulfonyl fluoride |
PTMs | post-translational modifications |
ROS | reactive oxygen species |
RT | room temperature |
SEM | scanning electron microscopy |
SOD | superoxide dismutase |
TBA | thiobarbituric acid |
TCA | trichloroacetic acid |
XRD | X-ray Diffraction |
References
- European Commision. Commission Recommendation of 10 June 2022 on the definition of nanomaterial (Text with EEA relevance) 2022/C 229/01. Off. J. Eur. Union 2022, 51, 2. [Google Scholar]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef]
- Kielbik, P.; Kaszewski, J.; Rosowska, J.; Wolska, E.; Witkowski, B.S.; Gralak, M.A.; Gajewski, Z.; Godlewski, M.; Godlewski, M.M. Biodegradation of the ZnO:Eu nanoparticles in the tissues of adult mouse after alimentary application. Nanomedicine 2017, 13, 843–852. [Google Scholar] [CrossRef]
- Huang, J.-P.; Hsieh, P.C.H.; Chen, C.-Y.; Wang, T.-Y.; Chen, P.-C.; Liu, C.-C.; Chen, C.-C.; Chen, C.-P. Nanoparticles can cross mouse placenta and induce trophoblast apoptosis. Placenta 2015, 36, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, M.; Das, M.; An, S.S.A.; Yi, D.K. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells. Int. J. Nanomed. 2014, 9, 3707–3718. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sharifan, H. Alarming the impacts of the organic and inorganic UV blockers on endangered coral’s species in the Persian Gulf: A scientific concern for coral protection. Sustain. Futures 2020, 2, 100017. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, G.; Huang, J.; Zhang, Y.; Cheng, X.; Chuai, M.; Brand-Saberi, B.; Chen, G.; Jiang, X.; Yang, X. Zinc oxide nanoparticles exposure-induced oxidative stress restricts cranial neural crest development during chicken embryogenesis. Ecotoxicol. Environ. Saf. 2020, 194, 110415. [Google Scholar] [CrossRef]
- Wang, D.; Lin, Z.; Wang, T.; Yao, Z.; Qin, M.; Zheng, S.; Lu, W. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? J. Hazard. Mater. 2016, 308, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, J.; Zhang, X.; Chang, Y.; Chen, Y. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 2009, 20, 195103. [Google Scholar] [CrossRef]
- Ng, C.T.; Yong, L.Q.; Hande, M.P.; Ong, C.N.; Yu, L.E.; Bay, B.H.; Baeg, G.H. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int. J. Nanomed. 2017, 12, 1621–1637. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, P.; Li, Z.; Yan, Y.; Cheng, X.; Wang, G.; Yang, X. Different cellular mechanisms from low- and high-dose zinc oxide nanoparticles-induced heart tube malformation during embryogenesis. Nanotoxicology 2022, 16, 580–596. [Google Scholar] [CrossRef] [PubMed]
- Takesono, A.; Dimitriadou, S.; Clark, N.J.; Handy, R.D.; Mourabit, S.; Winter, M.J.; Kudoh, T.; Tyler, C.R. Zinc oxide nanoparticles disrupt development and function of the olfactory sensory system impairing olfaction-mediated behaviour in zebrafish. Environ. Int. 2023, 180, 108227. [Google Scholar] [CrossRef] [PubMed]
- Kteeba, S.M.; El-Ghobashy, A.E.; El-Adawi, H.I.; El-Rayis, O.A.; Sreevidya, V.S.; Guo, L.; Svoboda, K.R. Exposure to ZnO nanoparticles alters neuronal and vascular development in zebrafish: Acute and transgenerational effects mitigated with dissolved organic matter. Environ. Pollut. 2018, 242, 433–448. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, J.; Feng, Y.; Yu, S.; Zhang, W.; Li, L.; Min, L.; Zhang, H.; Shen, W.; Zhao, Y. Molecular evidence of offspring liver dysfunction after maternal exposure to zinc oxide nanoparticles. Toxicol. Appl. Pharmacol. 2017, 329, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Commission Implementing Regulation. (EU) 2016/1095 of 6 July 2016 Concerning the Authorisation of Zinc Acetate Dihydrate, Zinc Chloride Anhydrous, Zinc Oxide, Zinc Sulphate Heptahydrate, Zinc Sulphate Monohydrate, Zinc Chelate of Amino Acids Hydrate, Zinc Chelate of Protein Hy-drolysates, Zinc Chelate of Glycine Hydrate (Solid) and Zinc Chelate of Glycine Hydrate (Liquid) as Feed Additives for all Animal Species and Amending Regulations (EC) No 1334/2003, (EC) No 479/2006, (EU) No 335/2010 and Implementing Regulations (EU) No 991/2012 and (EU) No 636/2013 (Text with EEA Relevance). 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R1095-20220925 (accessed on 11 September 2025).
- Chen, B.; Hong, W.; Yang, P.; Tang, Y.; Zhao, Y.; Aguilar, Z.P.; Xu, H. Nano Zinc Oxide Induced Fetal Mice Growth Restriction, Based on Oxide Stress and Endoplasmic Reticulum Stress. Nanomaterials 2020, 10, 259. [Google Scholar] [CrossRef]
- Corpas, F.J.; Gupta, D.K.; Palma, J.M. Production Sites of Reactive Oxygen Species (ROS) in Organelles from Plant Cells. In Reactive Oxygen Species and Oxidative Damage in Plants Under Stress; Gupta, D.K., Palma, J.M., Corpas, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–22. ISBN 978-3-319-20420-8. [Google Scholar]
- Mittler, R.; Zandalinas, S.I.; Fichman, Y.; van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef]
- Weisiger, R.A.; Fridovich, I. Superoxide Dismutase. J. Biol. Chem. 1973, 248, 3582–3592. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-hydroxy-2′-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 120–139. [Google Scholar] [CrossRef]
- Ciacka, K.; Tymiński, M.; Gniazdowska, A.; Krasuska, U. Carbonylation of proteins-an element of plant ageing. Planta 2020, 252, 12. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 2003, 329, 23–38. [Google Scholar] [CrossRef]
- Martínez-Orgado, J.; Martínez-Vega, M.; Silva, L.; Romero, A.; de Hoz-Rivera, M.; Villa, M.; Del Pozo, A. Protein Carbonylation as a Biomarker of Oxidative Stress and a Therapeutic Target in Neonatal Brain Damage. Antioxidants 2023, 12, 1839. [Google Scholar] [CrossRef] [PubMed]
- Schaur, R.J.; Siems, W.; Bresgen, N.; Eckl, P.M. 4-Hydroxy-nonenal-A Bioactive Lipid Peroxidation Product. Biomolecules 2015, 5, 2247–2337. [Google Scholar] [CrossRef] [PubMed]
- Endale, H.T.; Tesfaye, W.; Mengstie, T.A. ROS induced lipid peroxidation and their role in ferroptosis. Front. Cell Dev. Biol. 2023, 11, 1226044. [Google Scholar] [CrossRef] [PubMed]
- Rosowska, J.; Kaszewski, J.; Krajewski, M.; Małolepszy, A.; Witkowski, B.S.; Wachnicki, Ł.; Bulyk, L.-I.; Sybilski, P.; Godlewski, M.; Godlewski, M.M. Growth of ZnO Nanoparticles Using Microwave Hydrothermal Method-Search for Defect-Free Particles. Nanomaterials 2025, 15, 230. [Google Scholar] [CrossRef]
- Hernandez, R.; Brown, D.T. Growth and maintenance of chick embryo fibroblasts (CEF). Curr. Protoc. Microbiol. 2010, 17, A.4I.1–A.4I.8. [Google Scholar] [CrossRef]
- Alam, A.; Kataria, P. Assessment of Superoxide Dismutase, Catalase, and Peroxidase Activities in Aspergillus sp. and Cladosporium sp. J. Adv. Sci. Res. 2021, 12, 249–254. [Google Scholar] [CrossRef]
- Mesquita, C.S.; Oliveira, R.; Bento, F.; Geraldo, D.; Rodrigues, J.V.; Marcos, J.C. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Anal. Biochem. 2014, 458, 69–71. [Google Scholar] [CrossRef]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Stählin, W.; Oswald, H.R. The crystal structure of zinc hydroxide nitrate, Zn5(OH)8(NO3)2.2H2O. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 1970, 26, 860–863. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Daksh, D.; Agrawal, Y.K. Rare Earth-Doped Zinc Oxide Nanostructures: A Review. Rev. Nanosci. Nano. 2016, 5, 1–27. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef]
- Kielbik, P.; Kaszewski, J.; Witkowski, B.S.; Gajewski, Z.; Gralak, M.A.; Godlewski, M.; Godlewski, M.M. Microscopy and Imaging Science: Practical Approaches to Applied Research and Education; Méndez-Vilas, A., Ed. 7; Microscopy Book Series #7; Formatex Research Center: Badajoz, Spain, 2017; pp. 89–96. ISBN 978-84-942134-9-6. [Google Scholar]
- Maia, D.B.; Raimundo, R.A.; Passos, T.A.; Torquato, R.A. Analysis of structural, morphological and magnetic properties of diluted magnetic semiconductor ZnO:Eu obtained by combustion reaction. Cerâmica 2020, 66, 262–268. [Google Scholar] [CrossRef]
- Barros, T.S.; Barros, B.S.; Alves, S.; Kiminami, R.H.G.A.; Lira, H.L.; de Melo Costa, A.C.F. Morphological and Luminescent Characteristics of ZnO Nanopowders Doped with Europium. Mater. Sci. Forum 2008, 591–593, 745–749. [Google Scholar] [CrossRef]
- Ivetić, T.B.; Dimitrievska, M.R.; Gúth, I.O.; Đačanin, L.; Lukić-Petrović, S.R. Structural and optical properties of europium-doped zinc oxide nanopowders prepared by mechanochemical and combustion reaction methods. J. Res. Phys. 2012, 36, 43–51. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, G.; Chauhan, M.S. Europium (Eu3+)—Doped ZnO nanostructures: Synthesis, characterization, and photocatalytic, chemical sensing and preliminary assessment of magnetic properties. Ceram. Int. 2021, 47, 17023–17033. [Google Scholar] [CrossRef]
- Rosowska, J.; Kaszewski, J.; Witkowski, B.; Wachnicki, Ł.; Godlewski, M. Probing structure of ytterbium stabilized Pr-doped zirconia obtained by microwave hydrothermal method. Ceram. Int. 2021, 47, 26748–26757. [Google Scholar] [CrossRef]
- Rajan, K.J.; Ganesan, K.; Lanka, S.; Bishnoi, S.; Sunkara, M.V. Probing high temperature ferromagnetism and its paramagnetic phase change due to Eu3+ incorporation in ZnO nanophosphors. RSC Adv. 2016, 6, 75669–75680. [Google Scholar] [CrossRef]
- Mohan, S.; Vellakkat, M.; Aravind, A.; Reka, U. Hydrothermal synthesis and characterization of Zinc Oxide nanoparticles of various shapes under different reaction conditions. Nano Express 2020, 1, 30028. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, L.; Kim, E.J.; Hahn, S.H. Electronic structure and optical properties of Zn(OH)2: LDA+U calculations and intense yellow luminescence. RSC Adv. 2015, 5, 87496–87503. [Google Scholar] [CrossRef]
- Gomi, M.; Oohira, N.; Ozaki, K.; Koyano, M. Photoluminescent and Structural Properties of Precipitated ZnO Fine Particles. Jpn. J. Appl. Phys. 2003, 42, 481–485. [Google Scholar] [CrossRef]
- Djurišić, A.B.; Leung, Y.H.; Tam, K.H.; Hsu, Y.F.; Ding, L.; Ge, W.K.; Zhong, Y.C.; Wong, K.S.; Chan, W.K.; Tam, H.L.; et al. Defect emissions in ZnO nanostructures. Nanotechnology 2007, 18, 95702. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Y.; Zhang, Y.; Jung Kim, E.; Hong Hahn, S.; Gie Seong, S. Near-infrared photoluminescence from ZnO. Appl. Phys. Lett. 2012, 100, 101906. [Google Scholar] [CrossRef]
- Vinoditha, U.; Sarojini, B.K.; Sandeep, K.M.; Narayana, B.; Maidur, S.R.; Patil, P.S.; Balakrishna, K.M. Defects-induced nonlinear saturable absorption mechanism in europium-doped ZnO nanoparticles synthesized by facile hydrothermal method. Appl. Phys. A 2019, 125, 436. [Google Scholar] [CrossRef]
- Öztürk, K.; Kaplan, M.; Çalış, S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int. J. Pharm. 2024, 666, 124799. [Google Scholar] [CrossRef] [PubMed]
- Romanoff, A.L.; Romanoff, A.J. Biochemistry of the Avian Embryo: A Quantitative Analysis of Prenatal Development; John Wiley and Sons (Inc.): New York, NY, USA, 1967; ISBN 9780470732281. [Google Scholar]
- Bolin, G.; Burggren, W.W. Metanephric kidney development in the chicken embryo: Glomerular numbers, characteristics and perfusion. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013, 166, 343–350. [Google Scholar] [CrossRef]
- Godlewski, M.M.; Kaszewski, J.; Kielbik, P.; Olszewski, J.; Lipinski, W.; Slonska-Zielonka, A.; Rosowska, J.; Witkowski, B.S.; Gralak, M.A.; Gajewski, Z.; et al. New generation of oxide-based nanoparticles for the applications in early cancer detection and diagnostics. Nanotechnol. Rev. 2020, 9, 274–302. [Google Scholar] [CrossRef]
- Kielbik, P.; Kaszewski, J.; Dabrowski, S.; Faundez, R.; Witkowski, B.S.; Wachnicki, L.; Zhydachevskyy, Y.; Sapierzynski, R.; Gajewski, Z.; Godlewski, M.; et al. Transfer of orally administered ZnO:Eu nanoparticles through the blood-testis barrier: The effect on kinetic sperm parameters and apoptosis in mice testes. Nanotechnology 2019, 30, 455101. [Google Scholar] [CrossRef]
- Kaszewski, J.; Kiełbik, P.; Wolska, E.; Witkowski, B.; Wachnicki, Ł.; Gajewski, Z.; Godlewski, M.; Godlewski, M.M. Tuning the luminescence of ZnO:Eu nanoparticles for applications in biology and medicine. Opt. Mater. 2018, 80, 77–86. [Google Scholar] [CrossRef]
- Godlewski, M.M.; Kaszewski, J.; Szal, A.; Słońska-Zielonka, A.; Domino, M.; Mijowska, E.; Witkowski, B.; Godlewski, M. Size of nanocrystals affects their alimentary absorption in adult mice. Med. Weter. 2014, 70, 558–563. [Google Scholar]
- Raychoudhury, T.; Tufenkji, N.; Ghoshal, S. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res. 2012, 46, 1735–1744. [Google Scholar] [CrossRef]
- Singh, K.; Raghav, A.; Jha, P.K.; Satapathi, S. Effect of size and charge asymmetry on aggregation kinetics of oppositely charged nanoparticles. Sci. Rep. 2019, 9, 3762. [Google Scholar] [CrossRef] [PubMed]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef]
- Gregorio, I.; Braghetta, P.; Bonaldo, P.; Cescon, M. Collagen VI in healthy and diseased nervous system. Dis. Model. Mech. 2018, 11, dmm032946. [Google Scholar] [CrossRef] [PubMed]
- Cescon, M.; Chen, P.; Castagnaro, S.; Gregorio, I.; Bonaldo, P. Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging. Aging 2016, 8, 1083–1101. [Google Scholar] [CrossRef]
- Bardella, C.; Pollard, P.J.; Tomlinson, I. SDH mutations in cancer. Biochim. Biophys. Acta 2011, 1807, 1432–1443. [Google Scholar] [CrossRef]
- Hadrava Vanova, K.; Kraus, M.; Neuzil, J.; Rohlena, J. Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Rep. 2020, 25, 26–32. [Google Scholar] [CrossRef]
- Yao, H.; Xu, X.; Zhou, Y.; Xu, C. Impacts of isopyrazam exposure on the development of early-life zebrafish (Danio rerio). Environ. Sci. Pollut. Res. 2018, 25, 23799–23808. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Bi, H.; Liu, B.; Wu, Q.; Wang, D.; Cui, Y. Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol. Vitr. 2013, 27, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Basler, M.; Groettrup, M. On the Role of the Immunoproteasome in Protein Homeostasis. Cells 2021, 10, 3216. [Google Scholar] [CrossRef]
- Kim, R.-O.; Choi, J.S.; Kim, B.-C.; Kim, W.-K. Comparative Analysis of Transcriptional Profile Changes in Larval Zebrafish Exposed to Zinc Oxide Nanoparticles and Zinc Sulfate. Bull. Environ. Contam. Toxicol. 2017, 98, 183–189. [Google Scholar] [CrossRef] [PubMed]
Designation of Samples | Shape | Zinc Precursor | Dopant Precursor | Precipitant Agent | Pressure of Synthesis [MPa] | Solution pH |
---|---|---|---|---|---|---|
ZnO OVAL | oval | Zinc nitrate Zn(NO3)2 · 6H2O (Sigma-Aldrich, Poznań, Poland) | europium nitrate (V) | ammonia solution (25% Carl Roth, Karlsruhe, Germany) | 8 | 10 |
ZnO LONG | long | zinc acetate C4H6O4Zn (Roth) (Sigma-Aldrich, Poznań, Poland) | - | ammonia solution (25% Carl Roth, Karlsruhe, Germany) | 6 | 10 |
Sample | Z-Average Diameter (nm) ± SD | PDI |
---|---|---|
ZnO OVAL | 369 ± 7 | 0.1854 |
ZnO LONG | 2845 ± 95 | 0.2008 |
Gene Symbol | ZnO OVAL | ZnO LONG | CTRL | |||
---|---|---|---|---|---|---|
FC | Regulation | FC | Regulation | FC | Regulation | |
COL6A2 | 4.19 | down | 3.43 | down | ||
COL6A2 | 4.27 | down | ||||
COL6A2 | 4.42 | down | ||||
STEAP3 | 3.28 | up | 3.37 | up | ||
STEAP3 | 2.88 | up | ||||
PSMB7 | 2.56 | up | 3.10 | up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominiak, B.; Rosowska, J.; Wal, A.; Majewska, A.; Witkowski, B.S.; Wachnicki, Ł.; Kaszewski, J.; Słońska, A.; Cymerys, J.; Gralak, M.A.; et al. Zinc Oxide Nanoparticles Affect the Genomic and Redox Status of Chicken Embryo—Influence of Shape. Nanomaterials 2025, 15, 1412. https://doi.org/10.3390/nano15181412
Dominiak B, Rosowska J, Wal A, Majewska A, Witkowski BS, Wachnicki Ł, Kaszewski J, Słońska A, Cymerys J, Gralak MA, et al. Zinc Oxide Nanoparticles Affect the Genomic and Redox Status of Chicken Embryo—Influence of Shape. Nanomaterials. 2025; 15(18):1412. https://doi.org/10.3390/nano15181412
Chicago/Turabian StyleDominiak, Bartłomiej, Julita Rosowska, Agnieszka Wal, Alicja Majewska, Bartłomiej S. Witkowski, Łukasz Wachnicki, Jarosław Kaszewski, Anna Słońska, Joanna Cymerys, Mikołaj A. Gralak, and et al. 2025. "Zinc Oxide Nanoparticles Affect the Genomic and Redox Status of Chicken Embryo—Influence of Shape" Nanomaterials 15, no. 18: 1412. https://doi.org/10.3390/nano15181412
APA StyleDominiak, B., Rosowska, J., Wal, A., Majewska, A., Witkowski, B. S., Wachnicki, Ł., Kaszewski, J., Słońska, A., Cymerys, J., Gralak, M. A., Godlewski, M., & Godlewski, M. M. (2025). Zinc Oxide Nanoparticles Affect the Genomic and Redox Status of Chicken Embryo—Influence of Shape. Nanomaterials, 15(18), 1412. https://doi.org/10.3390/nano15181412