Plasmon–Exciton Strong Coupling in Low-Dimensional Materials: From Fundamentals to Hybrid Nanophotonic Platforms
Abstract
1. Introduction
2. Basic Principles and Characterization Methods
2.1. Basic Principles
2.2. Characterization Methods
3. Plasmonic Structure Quantum Dot Strong Coupling
3.1. Introduction to Quantum Dots
3.2. Plasmonic Structure Quantum Dot Hybrid Systems
3.2.1. Plasmonic Nanoparticles–Quantum Dot Strong Coupling Systems
3.2.2. Plasmonic Dimers/Gap Structures Quantum Dot Strong Coupling Systems
3.2.3. Other Plasmon QDs Strong Coupling Systems
4. Strong Coupling Between Plasmons and 2D Materials
4.1. Introduction to 2D Materials
4.1.1. Plasmonic Nanoparticles TMDs Strong Coupling Systems
4.1.2. Plasmonic Dimer/Nanogap TMD Strong Coupling Systems
4.1.3. Other Plasmon TMDs Strong Coupling Systems
5. Multimode Strong Coupling in Plasmonic Structure 2D Material Systems
5.1. Introduction to Multimode Strong Coupling
5.2. Basic Principle of Multimode Strong Coupling
5.3. Advance in Multimode Strong Coupling with TMDs
5.3.1. Strong Coupling Between Plasmons and Different Excitons in TMDs
5.3.2. Plasmonic Nanoparticles TMDs J-Aggregates Strong Coupling Systems
5.3.3. Plasmonic Nanoparticle Microcavity TMDs Strong Coupling System
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bose, R.; Cai, T.; Choudhury, K.R.; Solomon, G.S.; Waks, E. All-optical coherent control of vacuum Rabi oscillations. Nat. Photonics 2014, 8, 858–864. [Google Scholar] [CrossRef]
- Nomura, M.; Kumagai, N.; Iwamoto, S.; Ota, Y.; Arakawa, Y. Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system. Nat. Phys. 2010, 6, 279–283. [Google Scholar] [CrossRef]
- Dousse, A.; Suffczyński, J.; Beveratos, A.; Krebs, O.; Lemaître, A.; Sagnes, I.; Bloch, J.; Voisin, P.; Senellart, P. Ultrabright source of entangled photon pairs. Nature 2010, 466, 217–220. [Google Scholar] [CrossRef]
- Chiorescu, I.; Bertet, P.; Semba, K.; Nakamura, Y.; Harmans, C.J.; Mooij, J.E. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 2004, 431, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Babinec, T.M.; Hausmann, B.J.; Khan, M.; Zhang, Y.; Maze, J.R.; Hemmer, P.R.; Loncar, M. A diamond nanowire single-photon source. Nat. Nanotechnol. 2010, 5, 195–199. [Google Scholar] [CrossRef]
- Holmes, M.J.; Choi, K.; Kako, S.; Arita, M.; Arakawa, Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 2014, 14, 982–986. [Google Scholar] [CrossRef]
- Wang, H.; Ralph, T.C.; Renema, J.J.; Lu, C.-Y.; Pan, J.-W. Scalable photonic quantum technologies. Nat. Mater. 2025, 23, 1–15. [Google Scholar] [CrossRef]
- Tiecke, T.G.; Thompson, J.D.; de Leon, N.P.; Liu, L.R.; Vuletic, V.; Lukin, M.D. Nanophotonic quantum phase switch with a single atom. Nature 2014, 508, 241–244. [Google Scholar] [CrossRef]
- Kim, H.; Bose, R.; Shen, T.C.; Solomon, G.S.; Waks, E. A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photonics 2013, 7, 373–377. [Google Scholar] [CrossRef]
- McKeever, J.; Boca, A.; Boozer, A.D.; Buck, J.R.; Kimble, H.J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature 2003, 425, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Vollmer, F. Active optomechanics. Commun. Phys. 2022, 5, 61. [Google Scholar] [CrossRef]
- Chen, W.; Beck, K.M.; Bucker, R.; Gullans, M.; Lukin, M.D.; Tanji-Suzuki, H.; Vuletic, V. All-optical switch and transistor gated by one stored photon. Science 2013, 341, 768–770. [Google Scholar] [CrossRef]
- Volz, T.; Reinhard, A.; Winger, M.; Badolato, A.; Hennessy, K.J.; Hu, E.L.; Imamoğlu, A. Ultrafast all-optical switching by single photons. Nat. Photonics 2012, 6, 605–609. [Google Scholar] [CrossRef]
- Zengin, G.; Wersäll, M.; Nilsson, S.; Antosiewicz, T.J.; Käll, M.; Shegai, T. Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. Phys. Rev. Lett. 2015, 114, 157401. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Li, W.; Liu, J.; Zhong, J.; Liu, R.; Chen, H.; Wang, X.H. Room-Temperature Strong Coupling Between a Single Quantum Dot and a Single Plasmonic Nanoparticle. Nano Lett. 2022, 22, 4686–4693. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, Z.-K.; Yu, Y.-C.; Zhang, T.; Wang, H.; Liu, G.; Wei, Y.; Chen, H.; Wang, X.-H. Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit. Phys. Rev. Lett. 2017, 118, 237401. [Google Scholar] [CrossRef] [PubMed]
- Vasa, P.; Wang, W.; Pomraenke, R.; Lammers, M.; Maiuri, M.; Manzoni, C.; Cerullo, G.; Lienau, C. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photonics 2013, 7, 128–132. [Google Scholar] [CrossRef]
- Timmer, D.; Gittinger, M.; Quenzel, T.; Stephan, S.; Zhang, Y.; Schumacher, M.F.; Lützen, A.; Silies, M.; Tretiak, S.; Zhong, J.-H.; et al. Plasmon mediated coherent population oscillations in molecular aggregates. Nat. Commun. 2023, 14, 8035. [Google Scholar] [CrossRef] [PubMed]
- Vasa, P.; Pomraenke, R.; Cirmi, G.; De Re, E.; Wang, W.; Schwieger, S.; Leipold, D.; Runge, E.; Cerullo, G.; Lienau, C. Ultrafast Manipulation of Strong Coupling in Metal−Molecular Aggregate Hybrid Nanostructures. ACS Nano 2010, 4, 7559–7565. [Google Scholar] [CrossRef]
- Faraon, A.; Fushman, I.; Englund, D.; Stoltz, N.; Petroff, P.; Vučković, J. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 2008, 4, 859–863. [Google Scholar] [CrossRef]
- Thompson, R.J.; Rempe, G.; Kimble, H.J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 1992, 68, 1132–1135. [Google Scholar] [CrossRef]
- Aoki, T.; Dayan, B.; Wilcut, E.; Bowen, W.P.; Parkins, A.S.; Kippenberg, T.J.; Vahala, K.J.; Kimble, H.J. Observation of strong coupling between one atom and a monolithic microresonator. Nature 2006, 443, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Tame, M.S.; McEnery, K.R.; Özdemir, Ş.K.; Lee, J.; Maier, S.A.; Kim, M.S. Quantum plasmonics. Nat. Phys. 2013, 9, 329–340. [Google Scholar] [CrossRef]
- Berini, P.; De Leon, I. Surface plasmon–polariton amplifiers and lasers. Nat. Photonics 2011, 6, 16–24. [Google Scholar] [CrossRef]
- Temnov, V.V. Ultrafast acousto-magneto-plasmonics. Nat. Photonics 2012, 6, 728–736. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Y.; Liu, M.; Zhu, H.; Chen, O.; Zou, S.; Zhao, J. Colloidal Assembly of Au–Quantum Dot–Au Sandwiched Nanostructures with Strong Plasmon–Exciton Coupling. J. Phys. Chem. Lett. 2020, 11, 2449–2456. [Google Scholar] [CrossRef] [PubMed]
- Shahbazyan, T.V. Exciton–Plasmon Energy Exchange Drives the Transition to a Strong Coupling Regime. Nano Lett. 2019, 19, 3273–3279. [Google Scholar] [CrossRef]
- Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S.J.; Scherman, O.A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J.J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130. [Google Scholar] [CrossRef]
- Yang, Q.-F.; Yi, X.; Yang, K.Y.; Vahala, K. Stokes solitons in optical microcavities. Nat. Phys. 2016, 13, 53–57. [Google Scholar] [CrossRef]
- Kena-Cohen, S.; Davanco, M.; Forrest, S.R. Strong exciton-photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 2008, 101, 116401. [Google Scholar] [CrossRef]
- Liu, W.; Lee, B.; Naylor, C.H.; Ee, H.-S.; Park, J.; Johnson, A.T.C.; Agarwal, R. Strong Exciton–Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice. Nano Lett. 2016, 16, 1262–1269. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Chen, H.; Shao, L.; Li, Q.; Wang, J. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724. [Google Scholar] [CrossRef]
- Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901. [Google Scholar] [CrossRef]
- Fofang, N.T.; Park, T.-H.; Neumann, O.; Mirin, N.A.; Nordlander, P.; Halas, N.J. Plexcitonic Nanoparticles: Plasmon−Exciton Coupling in Nanoshell−J-Aggregate Complexes. Nano Lett. 2008, 8, 3481–3487. [Google Scholar] [CrossRef]
- Melnikau, D.; Esteban, R.; Savateeva, D.; Sánchez-Iglesias, A.; Grzelczak, M.; Schmidt, M.K.; Liz-Marzán, L.M.; Aizpurua, J.; Rakovich, Y.P. Rabi Splitting in Photoluminescence Spectra of Hybrid Systems of Gold Nanorods and J-Aggregates. J. Phys. Chem. Lett. 2016, 7, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Balci, S. Ultrastrong plasmon–exciton coupling in metal nanoprisms with J-aggregates. Opt. Lett. 2013, 38, 4498–4501. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, J. Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures. Nano Res. 2019, 12, 2164–2171. [Google Scholar] [CrossRef]
- Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, ncomms11823. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Song, D.; Lin, C.; Zhang, H.; Zhang, S.; Xu, H. Plexciton Photoluminescence in Strongly Coupled 2D Semiconductor–Plasmonic Nanocavity Hybrid. ACS Nano 2025, 19, 5637–5648. [Google Scholar] [CrossRef] [PubMed]
- Berhe, A.M.; As’ham, K.; Al-Ani, I.; Hattori, H.T.; Miroshnichenko, A.E. Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers. Opto-Electron. Adv. 2024, 7, 230181. [Google Scholar] [CrossRef]
- Al-Ani, I.A.M.; As’ham, K.; Klochan, O.; Hattori, H.T.; Huang, L.; Miroshnichenko, A.E. Recent advances on strong light-matter coupling in atomically thin TMDC semiconductor materials. J. Opt. 2022, 24, 053001. [Google Scholar] [CrossRef]
- Qin, J.; Chen, Y.H.; Zhang, Z.; Zhang, Y.; Blaikie, R.J.; Ding, B.; Qiu, M. Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions. Phys. Rev. Lett. 2020, 124, 063902. [Google Scholar] [CrossRef]
- Okada, D.; Araoka, F. Manipulation of Chiral Nonlinear Optical Effect by Light–Matter Strong Coupling. Nano Lett. 2024, 24, 7443–7450. [Google Scholar] [CrossRef]
- Krause, B.; Mishra, D.; Chen, J.; Argyropoulos, C.; Hoang, T. Nonlinear Strong Coupling by Second-Harmonic Generation Enhancement in Plasmonic Nanopatch Antennas. Adv. Opt. Mater. 2022, 10, 2200510. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Deng, X.; Li, J.; Zhou, P.; Jin, L.; Liang, K.; Yu, L. Chiroptical interactions between an achiral T-shaped gold nanoparticle and chiral media in the strong coupling regime. Opt. Commun. 2023, 545, 129726. [Google Scholar] [CrossRef]
- Xie, S.; Chen, J.; Sun, M.; Sun, S.; Zeng, Z.; Guan, X.; Yang, S. Strong coupling between excitons and chiral quasibound states in the continuum of the bulk WS2 metasurface. Opt. Express 2024, 32, 32523–32537. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Li, N.; Ding, B.; Zhang, W. Plasmon–Exciton Strong Coupling Effects of the Chiral Hybrid Nanostructures Based on the Plexcitonic Born–Kuhn Model. ACS Photonics 2023, 10, 1356–1366. [Google Scholar] [CrossRef]
- Berghuis, A.M.; Halpin, A.; Le-Van, Q.; Ramezani, M.; Wang, S.; Murai, S.; Gómez Rivas, J. Enhanced Delayed Fluorescence in Tetracene Crystals by Strong Light-Matter Coupling. Adv. Funct. Mater. 2019, 29, 1901317. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Chervy, T.; Shalabney, A.; Azzini, S.; Orgiu, E.; Hutchison, J.A.; Genet, C.; Samori, P.; Ebbesen, T.W. Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature. Nano Lett. 2016, 16, 4368–4374. [Google Scholar] [CrossRef]
- Liu, R.; Geng, M.; Ai, J.; Fan, X.; Liu, Z.; Lu, Y.-W.; Kuang, Y.; Liu, J.-F.; Guo, L.; Wu, L. Deterministic positioning and alignment of a single-molecule exciton in plasmonic nanodimer for strong coupling. Nat. Commun. 2024, 15, 4103. [Google Scholar] [CrossRef]
- Li, R.Q.; Hernangomez-Perez, D.; Garcia-Vidal, F.J.; Fernandez-Dominguez, A.I. Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities. Phys. Rev. Lett. 2016, 117, 107401. [Google Scholar] [CrossRef]
- Li, W.; Liu, R.; Li, J.; Zhong, J.; Lu, Y.-W.; Chen, H.; Wang, X.-H. Highly Efficient Single-Exciton Strong Coupling with Plasmons by Lowering Critical Interaction Strength at an Exceptional Point. Phys. Rev. Lett. 2023, 130, 143601. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Li, W.; Li, J.; Fu, Z.; Hu, N.; Yu, Z.; Chang, W.; Li, P.; Huang, X.; Liu, B.; et al. Room-Temperature Exciton Polaritons in Monolayer WS2 Enabled by Plasmonic Bound States in the Continuum. Nano Lett. 2025, 25, 4361–4368. [Google Scholar] [CrossRef] [PubMed]
- Leng, H.; Szychowski, B.; Daniel, M.C.; Pelton, M. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun. 2018, 9, 4012. [Google Scholar] [CrossRef]
- Hellmann, R.; Vakevainen, A.I.; Martikainen, J.P.; Torma, P. Strong coupling between organic dye molecules and lattice modes of a dielectric nanoparticle array. Nanophotonics 2020, 9, 267–276. [Google Scholar] [CrossRef]
- Jiang, P.; Song, G.; Wang, Y.; Li, C.; Wang, L.; Yu, L. Tunable strong exciton-plasmon-exciton coupling in WS(2)-J-aggregates-plasmonic nanocavity. Opt. Express 2019, 27, 16613–16623. [Google Scholar] [CrossRef]
- Wu, F.; Guo, J.; Huang, Y.; Liang, K.; Jin, L.; Li, J.; Deng, X.; Jiao, R.; Liu, Y.; Zhang, J.; et al. Plexcitonic Optical Chirality: Strong Exciton–Plasmon Coupling in Chiral J-Aggregate-Metal Nanoparticle Complexes. ACS Nano 2020, 15, 2292–2300. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Bitton, O.; Neuman, T.; Esteban, R.; Chuntonov, L.; Aizpurua, J.; Haran, G. Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity. Nat. Commun. 2021, 12, 9. [Google Scholar] [CrossRef]
- Won, Y.; Cho, O.; Kim, T.; Chung, D.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638. [Google Scholar] [CrossRef]
- Zhong, J.; Li, J.; Liu, J.; Xiang, Y.; Feng, H.; Liu, R.; Li, W.; Wang, X. Room-Temperature Strong Coupling of Few-Exciton in a Monolayer WS2 with Plasmon and Dispersion Deviation. Nano Lett. 2024, 24, 1579–1586. [Google Scholar] [CrossRef]
- Geisler, M.; Cui, X.; Wang, J.; Rindzevicius, T.; Gammelgaard, L.; Jessen, B.; Gonçalves, P.; Todisco, F.; Boggild, P.; Boisen, A.; et al. Single-Crystalline Gold Nanodisks on WS2 Mono- and Multilayers for Strong Coupling at Room Temperature. ACS Photonics 2019, 6, 994–1001. [Google Scholar] [CrossRef]
- Gazzano, O.; Michaelis de Vasconcellos, S.; Gauthron, K.; Symonds, C.; Bloch, J.; Voisin, P.; Bellessa, J.; Lemaitre, A.; Senellart, P. Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. Phys. Rev. Lett. 2011, 107, 247402. [Google Scholar] [CrossRef]
- de Arquer, F.P.G.; Talapin, D.V.; Klimov, V.I.; Arakawa, Y.; Bayer, M.; Sargent, E.H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541. [Google Scholar] [CrossRef]
- Cao, Z.; Shu, Y.; Qin, H.; Su, B.; Peng, X. Quantum Dots with Highly Efficient, Stable, and Multicolor Electrochemiluminescence. ACS Cent. Sci. 2020, 6, 1129–1137. [Google Scholar] [CrossRef]
- Park, Y.-S.; Lim, J.; Klimov, V.I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 2019, 18, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zeng, S.; Zhang, B.; Swihart, M.T.; Yong, K.T.; Prasad, P.N. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chem. Rev. 2016, 116, 12234–12327. [Google Scholar] [CrossRef] [PubMed]
- Salehzadeh, O.; Djavid, M.; Tran, N.H.; Shih, I.; Mi, Z. Optically Pumped Two-Dimensional MoS2 Lasers Operating at Room-Temperature. Nano Lett. 2015, 15, 5302–5306. [Google Scholar] [CrossRef]
- Yang, Z.-R.; Zhou, H.-L.; Su, D.; Liu, Z.-G.; Hu, Z.-Z.; Chen, Z.-X.; Bi, K.-Y.; Song, Y.-J.; Li, X.-M.; Wu, W.-P.; et al. Enhanced room-temperature stimulated emission in a WS2-based plasmonic heterostructure. Opt. Lett. 2025, 50, 3429–3432. [Google Scholar] [CrossRef]
- Ross, J.S.; Klement, P.; Jones, A.M.; Ghimire, N.J.; Yan, J.; Mandrus, D.G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W.; et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 2014, 9, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yi, J.; Yang, S.; Lin, E.; Zhang, Y.; Zhang, P.; Li, J.; Wang, Y.; Lee, Y.; Tian, Z.; et al. Nonlinear valley phonon scattering under the strong coupling regime. Nat. Mater. 2021, 20, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, H.; Wang, H.; Zhou, Q.; Zhang, X.; Cui, T.; Wang, L.; Liu, T.; Han, Y.; Luo, Y.; et al. Ultrafast modulation of valley dynamics in multiple WS2—Ag gratings strong coupling system. PhotoniX 2022, 3, 20. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Chi, C.; Shan, H.; Zheng, L.; Fang, Z. Plasmonics of 2D Nanomaterials: Properties and Applications. Adv. Sci. 2017, 4, 1600430. [Google Scholar] [CrossRef]
- Morshed, O.; Amin, M.; Cogan, N.M.B.; Koessler, E.R.; Collison, R.; Tumiel, T.M.; Girten, W.; Awan, F.; Mathis, L.; Huo, P.; et al. Room-temperature strong coupling between CdSe nanoplatelets and a metal–DBR Fabry–Pérot cavity. J. Chem. Phys. 2024, 161, 014710. [Google Scholar] [CrossRef]
- Gong, M.; Xie, D.; Tian, Y.; Hua, Z.; Zhang, C.; Li, M.; Cao, D.; Zhou, J.; Chen, X.; Shu, H. Unraveling the Role of Interfacial Interactions in Electrical Contacts of Atomically Thin Transition-Metal Dichalcogenides. ACS Nano 2025, 19, 4718–4730. [Google Scholar] [CrossRef]
- Törmä, P.; Barnes, W.L. Strong coupling between surface plasmon polaritons and emitters: A review. Rep. Prog. Phys. 2015, 78, 013901. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Kim, S.-E.; Park, J.-E. Strong coupling in plasmonic metal nanoparticles. Nano Converg. 2023, 10, 34. [Google Scholar] [CrossRef]
- Wei, H.; Yan, X.; Niu, Y.; Li, Q.; Jia, Z.; Xu, H. Plasmon–Exciton Interactions: Spontaneous Emission and Strong Coupling. Adv. Funct. Mater. 2021, 31, 2100889. [Google Scholar] [CrossRef]
- Yankovich, A.B.; Munkhbat, B.; Baranov, D.G.; Cuadra, J.; Olsén, E.; Lourenço-Martins, H.; Tizei, L.H.G.; Kociak, M.; Olsson, E.; Shegai, T. Visualizing Spatial Variations of Plasmon–Exciton Polaritons at the Nanoscale Using Electron Microscopy. Nano Lett. 2019, 19, 8171–8181. [Google Scholar] [CrossRef] [PubMed]
- Schlather, A.E.; Large, N.; Urban, A.S.; Nordlander, P.; Halas, N.J. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett. 2013, 13, 3281–3286. [Google Scholar] [CrossRef]
- Fofang, N.T.; Grady, N.K.; Fan, Z.; Govorov, A.O.; Halas, N.J. Plexciton dynamics: Exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. Nano Lett. 2011, 11, 1556–1560. [Google Scholar] [CrossRef] [PubMed]
- Manjavacas, A.; Garcia de Abajo, F.J.; Nordlander, P. Quantum plexcitonics: Strongly interacting plasmons and excitons. Nano Lett. 2011, 11, 2318–2323. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, S.; Deng, Q.; Kang, M.; Nordlander, P.; Xu, H. Manipulating Coherent Plasmon–Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2. Nano Lett. 2017, 17, 3809–3814. [Google Scholar] [CrossRef]
- Li, H.; Chen, B.; Qin, M.; Wang, L. Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS2 monolayer. Opt. Express 2020, 28, 205–215. [Google Scholar] [CrossRef]
- Wu, F.; Jiao, R.; Yu, L. A Semiclassical Model for Plasmon-Exciton Interaction From Weak to Strong Coupling Regime. IEEE Photonics J. 2021, 13, 4800110. [Google Scholar] [CrossRef]
- Gómez, D.E.; Giessen, H.; Davis, T.J. Semiclassical Plexcitonics: Simple Approach for Designing Plexcitonic Nanostructures. J. Phys. Chem. C 2014, 118, 23963–23969. [Google Scholar] [CrossRef]
- Agarwal, G.S. Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity. Phys. Rev. Lett. 1984, 53, 1732–1734. [Google Scholar] [CrossRef]
- Dovzhenko, D.S.; Ryabchuk, S.V.; Rakovich, Y.P.; Nabiev, I.R. Light–matter interaction in the strong coupling regime: Configurations, conditions, and applications. Nanoscale 2018, 10, 3589–3605. [Google Scholar] [CrossRef]
- García-García, A.; Sá, L.; Verbaarschot, J.; Zheng, J. Keldysh wormholes and anomalous relaxation in the dissipative Sachdev-Ye-Kitaev model. Phys. Rev. D 2023, 107, 27. [Google Scholar] [CrossRef]
- Yu, H.; Gwak, S.; Kim, H.; Ryu, J.; Kim, C.; Yi, C. Salient role of the non-Hermitian coupling for optimizing conditions in multiple maximizations of inter-cavity light transfer. Opt. Express 2021, 29, 19998–20009. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wu, F.; Han, Z.; Shang, Y.; Liu, F.; Yu, H.; Yu, L.; Li, N.; Ding, B. Strong Light–Matter Interactions in Chiral Plasmonic–Excitonic Systems Assembled on DNA Origami. Nano Lett. 2021, 21, 3573–3580. [Google Scholar] [CrossRef]
- Reithmaier, J.P.; Sęk, G.; Löffler, A.; Hofmann, C.; Kuhn, S.; Reitzenstein, S.; Keldysh, L.V.; Kulakovskii, V.D.; Reinecke, T.L.; Forchel, A. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 2004, 432, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Wurtz, G.A.; Evans, P.R.; Hendren, W.; Atkinson, R.; Dickson, W.; Pollard, R.J.; Zayats, A.V.; Harrison, W.; Bower, C. Molecular Plasmonics with Tunable Exciton−Plasmon Coupling Strength in J-Aggregate Hybridized Au Nanorod Assemblies. Nano Lett. 2007, 7, 1297–1303. [Google Scholar] [CrossRef]
- Wersäll, M.; Cuadra, J.; Antosiewicz, T.J.; Balci, S.; Shegai, T. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons. Nano Lett. 2016, 17, 551–558. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Z.; Liu, W.; Zhou, Y.; Han, B.; Gao, Y.; Tang, Z. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 2012, 134, 3322–3325. [Google Scholar] [CrossRef]
- Kadhane, U.; Holm, A.; Hoffmann, S.; Nielsen, S. Strong coupling between adenine nucleobases in DNA single strands revealed by circular dichroism using synchrotron radiation. Phys. Rev. E 2008, 77, 4. [Google Scholar] [CrossRef]
- Yao, R.; Zhao, S.; Zhang, Y.; Zheng, C.; Wang, L. Plexcitons in Bowtie Nanocavities–Quantum Dots Systems Studied by Electron Energy Loss Spectroscopy. J. Phys. Chem. C 2024, 129, 428–435. [Google Scholar] [CrossRef]
- Niu, Y.; Xu, H.; Wei, H. Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling. Phys. Rev. Lett. 2022, 128, 167402. [Google Scholar] [CrossRef] [PubMed]
- Bitton, O.; Gupta, S.N.; Houben, L.; Kvapil, M.; Křápek, V.; Šikola, T.; Haran, G. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons. Nat. Commun. 2020, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, N.; Franke, D.; Sammak, A.; Kouwenhoven, M.; Sabbagh, D.; Yeoh, L.; Li, R.; Tagliaferri, M.; Virgilio, M.; Capellini, G.; et al. Gate-controlled quantum dots and superconductivity in planar germanium. Nat. Commun. 2018, 9, 7. [Google Scholar] [CrossRef]
- Schneider, L.; Ton, K.; Ioannidis, I.; Neuhaus-Steinmetz, J.; Posske, T.; Wiesendanger, R.; Wiebe, J. Proximity superconductivity in atom-by-atom crafted quantum dots. Nature 2023, 621, 60–65. [Google Scholar] [CrossRef]
- Liu, J.; Liu, P.; Shi, T.; Ke, M.; Xiong, K.; Liu, Y.; Chen, L.; Zhang, L.; Liang, X.; Li, H.; et al. Flexible and broadband colloidal quantum dots photodiode array for pixel-level X-ray to near-infrared image fusion. Nat. Commun. 2023, 14, 9. [Google Scholar] [CrossRef]
- Hu, L.; Zhao, Q.; Huang, S.; Zheng, J.; Guan, X.; Patterson, R.; Kim, J.; Shi, L.; Lin, C.; Lei, Q.; et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 2021, 12, 9. [Google Scholar] [CrossRef]
- Efros, A.L.; Nesbitt, D.J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671. [Google Scholar] [CrossRef]
- Keuleyan, S.; Lhuillier, E.; Brajuskovic, V.; Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 2011, 5, 489–493. [Google Scholar] [CrossRef]
- Bitton, O.; Gupta, S.N.; Haran, G. Quantum dot plasmonics: From weak to strong coupling. Nanophotonics 2019, 8, 559–575. [Google Scholar] [CrossRef]
- Agarwal, K.; Rai, H.; Mondal, S. Quantum dots: An overview of synthesis, properties, and applications. Mater. Res. Express 2023, 10, 062001. [Google Scholar] [CrossRef]
- Bourzac, K. Quantum dots go on display. Nature 2013, 493, 283. [Google Scholar] [CrossRef]
- Zhen, Z.; Jin, S.-Y.; Jie, R.; Liang, H.-Y.; Xu, X.-S. Strong coupling between colloidal quantum dots and a microcavity with hybrid structure at room temperature. Photonics Res. 2022, 10, 913–921. [Google Scholar] [CrossRef]
- Dhawan, A.R.; Belacel, C.; Esparza-Villa, J.U.; Nasilowski, M.; Wang, Z.; Schwob, C.; Hugonin, J.P.; Coolen, L.; Dubertret, B.; Senellart, P.; et al. Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas. Light Sci. Appl. 2020, 9, 33. [Google Scholar] [CrossRef]
- Gómez, D.E.; Vernon, K.C.; Mulvaney, P.; Davis, T.J. Surface Plasmon Mediated Strong Exciton−Photon Coupling in Semiconductor Nanocrystals. Nano Lett. 2009, 10, 274–278. [Google Scholar] [CrossRef]
- Hahm, D.; Pinchetti, V.; Livache, C.; Ahn, N.; Noh, J.; Li, X.; Du, J.; Wu, K.; Klimov, V.I. Colloidal quantum dots enable tunable liquid-state lasers. Nat. Mater. 2025, 24, 48–55. [Google Scholar] [CrossRef]
- Jung, H.; Han, C.; Kim, H.; Cho, K.S.; Roh, Y.G.; Park, Y.; Jeon, H. Tunable colloidal quantum dot distributed feedback lasers integrated on a continuously chirped surface grating. Nanoscale 2018, 10, 22745–22749. [Google Scholar] [CrossRef]
- Guan, X.; Li, Z.; Geng, X.; Lei, Z.; Karakoti, A.; Wu, T.; Kumar, P.; Yi, J.; Vinu, A. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications. Small 2023, 19, 2207181. [Google Scholar] [CrossRef]
- Cao, E.; Lin, W.; Sun, M.; Liang, W.; Song, Y. Exciton-plasmon coupling interactions: From principle to applications. Nanophotonics 2018, 7, 145–167. [Google Scholar] [CrossRef]
- Yadav, R.K.; Bourgeois, M.R.; Cherqui, C.; Juarez, X.G.; Wang, W.; Odom, T.W.; Schatz, G.C.; Basu, J.K. Room Temperature Weak-to-Strong Coupling and the Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays. ACS Nano 2020, 14, 7347–7357. [Google Scholar] [CrossRef] [PubMed]
- Breeze, J.; Tan, K.-J.; Richards, B.; Sathian, J.; Oxborrow, M.; Alford, N.M. Enhanced magnetic Purcell effect in room-temperature masers. Nat. Commun. 2015, 6, 6215. [Google Scholar] [CrossRef]
- Rapp, C.S.; Franz, J.C.; Buhmann, S.Y.; Franca, O.J. Purcell effect in chiral environments: A macroscopic QED perspective. Phys. Rev. A 2025, 112, 013109. [Google Scholar] [CrossRef]
- Zhou, W.; Dridi, M.; Suh, J.Y.; Kim, C.H.; Co, D.T.; Wasielewski, M.R.; Schatz, G.C.; Odom, T.W. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 2013, 8, 506–511. [Google Scholar] [CrossRef]
- Crookes, A.; Yuen, B.; Demetriadou, A. Collective multimode strong coupling in plasmonic nanocavities. Nanophotonics 2025, 14, 2065–2073. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, W. Plexcitonic dynamics in plasmonic nanorod dimer strongly coupled to a single quantum dot via modulation of dark modes. Opt. Express 2025, 33, 10150–10164. [Google Scholar] [CrossRef]
- Cotta, M.A. Quantum Dots and Their Applications: What Lies Ahead? ACS Appl. Nano Mater. 2020, 3, 4920–4924. [Google Scholar] [CrossRef]
- Ahn, N.; Livache, C.; Pinchetti, V.; Jung, H.; Jin, H.; Hahm, D.; Park, Y.-S.; Klimov, V.I. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 2023, 617, 79–85. [Google Scholar] [CrossRef]
- Zhou, N.; Yuan, M.; Gao, Y.; Li, D.; Yang, D. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime. ACS Nano 2016, 10, 4154–4163. [Google Scholar] [CrossRef]
- Zulkifli, B.; Ahmad Khushaini, M.A.; Azeman, N.H.; Md Jamil, M.S.; Tg Abdul Aziz, T.H.; Md Zain, A.R. Strong coupling between plasmonic nanocavity gold nanorods and quantum dots emitter. Opt. Express 2024, 32, 19676–19683. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Yang, L.; Yuan, Y.; Yang, J.; Li, H.; Fan, Z.; Yan, S.; Lu, G.; Zhang, D.; Gong, Q.; et al. Robust strong coupling of single quantum emitters with plasmonic nanocavity on one-dimensional photonic crystal substrate. Fundam. Res. 2025; in press. [Google Scholar] [CrossRef]
- Park, K.D.; May, M.A.; Leng, H.; Wang, J.; Kropp, J.A.; Gougousi, T.; Pelton, M.; Raschke, M.B. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Sci. Adv. 2019, 5, eaav5931. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Toma, A.; Yano, T.; Chen, Q.; Xu, H.; Sun, H.; Zaccaria, R. Dynamics of Strong Coupling between CdSe Quantum Dots and Surface Plasmon Polaritons in Subwavelength Hole Array. J. Phys. Chem. Lett. 2016, 7, 4648–4654. [Google Scholar] [CrossRef] [PubMed]
- Gross, H.; Hamm, J.M.; Tufarelli, T.; Hess, O.; Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 2018, 4, eaar4906. [Google Scholar] [CrossRef]
- Würthner, F.; Kaiser, T.E.; Saha-Möller, C.R. J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angew. Chem. Int. Ed. 2011, 50, 3376–3410. [Google Scholar] [CrossRef]
- Lebedev, V.S.; Medvedev, A.S. Plasmon—Exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles. Quantum Electron. 2012, 42, 701–713. [Google Scholar] [CrossRef]
- Lodahl, P.; Mahmoodian, S.; Stobbe, S.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Pichler, H.; Zoller, P. Chiral quantum optics. Nature 2017, 541, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Huang, J.; Arul, R.; Sanchez-Iglesias, A.; Xiong, Y.; Liz-Marzan, L.M.; Baumberg, J.J. Robust consistent single quantum dot strong coupling in plasmonic nanocavities. Nat. Commun. 2024, 15, 6835. [Google Scholar] [CrossRef] [PubMed]
- Savasta, S.; Saija, R.; Ridolfo, A.; Di Stefano, O.; Denti, P.; Borghese, F. Nanopolaritons: Vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. ACS Nano 2010, 4, 6369–6376. [Google Scholar] [CrossRef]
- Novotny, L.L.; van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Grayli, S.; Kamal, S.; Leach, G. High performance, single crystal gold bowtie nanoantennas fabricated via epitaxial electroless deposition. Sci. Rep. 2023, 13, 9. [Google Scholar] [CrossRef]
- Fedotov, V.; Rose, M.; Prosvirnin, S.; Papasimakis, N.; Zheludev, N. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 2007, 99, 4. [Google Scholar] [CrossRef]
- Liu, M.; Lee, T.; Gray, S.; Guyot-Sionnest, P.; Pelton, M. Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter. Phys. Rev. Lett. 2009, 102, 4. [Google Scholar] [CrossRef]
- Ahmed, A.; Banjac, K.; Verlekar, S.; Cometto, F.; Lingenfelder, M.; Galland, C. Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities. Acs Photonics 2021, 8, 1863–1872. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Qin, J.; Zhao, D.; Ding, B.; Blaikie, R.; Qu, M. Mode Modification of Plasmonic Gap Resonances Induced by Strong Coupling with Molecular Excitons. Nano Lett. 2017, 17, 3246–3251. [Google Scholar] [CrossRef]
- Ding, T.; Mertens, J.; Sigle, D.; Baumberg, J. Capillary-Force-Assisted Optical Tuning of Coupled Plasmons. Adv. Mater. 2015, 27, 6457. [Google Scholar] [CrossRef]
- Mahinroosta, T.; Mehri Hamidi, S. Strong Exciton–Plasmon Coupling in Waveguide-Based Plexcitonic Nanostructures. Phys. Status Solidi (b) 2020, 257, 2000266. [Google Scholar] [CrossRef]
- Wei, X.; Liang, Y.; Zheng, Y.; Kuang, K.; Wang, Q.; Han, Y.; Yang, C.; Fang, Y.; Peng, W. Plasmonic hybridized modes empowered by strong plasmon interaction in the nanograting-dielectric-metal stacked structure. J. Phys. D Appl. Phys. 2024, 57, 215105. [Google Scholar] [CrossRef]
- Kress, S.J.; Antolinez, F.V.; Richner, P.; Jayanti, S.V.; Kim, D.K.; Prins, F.; Riedinger, A.; Fischer, M.P.; Meyer, S.; McPeak, K.M.; et al. Wedge Waveguides and Resonators for Quantum Plasmonics. Nano Lett. 2015, 15, 6267–6275. [Google Scholar] [CrossRef]
- Gómez, D.E.; Vernon, K.C.; Mulvaney, P.; Davis, T.J. Coherent superposition of exciton states in quantum dots induced by surface plasmons. Appl. Phys. Lett. 2010, 96, 073108. [Google Scholar] [CrossRef]
- Yang, Y.; Dev, A.; Sychugov, I.; Hägglund, C.; Zhang, S. Plasmon-Enhanced Fluorescence of Single Quantum Dots Immobilized in Optically Coupled Aluminum Nanoholes. J. Phys. Chem. Lett. 2023, 14, 2339–2346. [Google Scholar] [CrossRef] [PubMed]
- Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I.; Cepellotti, A.; Pizzi, G.; et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef]
- Liu, F.; Wu, W.; Bai, Y.; Chae, S.; Li, Q.; Wang, J.; Hone, J.; Zhu, X. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 2020, 367, 903–906. [Google Scholar] [CrossRef]
- Fei, Z.; Rodin, A.S.; Andreev, G.O.; Bao, W.; McLeod, A.S.; Wagner, M.; Zhang, L.M.; Zhao, Z.; Thiemens, M.; Dominguez, G.; et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012, 487, 82–85. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Yu, K.; Shen, P.; Zhang, W.; Liu, Y. Coherent coupling between surface plasmons and localized surface plasmons in black phosphorus metamaterials. Phys. Lett. A 2023, 464, 128708. [Google Scholar] [CrossRef]
- Ahmed, T.; Kuriakose, S.; Mayes, E.L.H.; Ramanathan, R.; Bansal, V.; Bhaskaran, M.; Sriram, S.; Walia, S. Optically Stimulated Artificial Synapse Based on Layered Black Phosphorus. Small 2019, 15, 1900966. [Google Scholar] [CrossRef]
- Li, S.; He, J.; Grajciar, L.; Nachtigall, P. Intrinsic valley polarization in 2D magnetic MXenes: Surface engineering induced spin-valley coupling. J. Mater. Chem. C 2021, 9, 11132–11141. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, S.; Shang, X.; Guo, B.; Li, X.; Chen, X.; Jiang, S.; Zhang, H.; Agren, H.; Zhang, W.; et al. Ultrafast photonics applications of emerging 2D-Xenes beyond graphene. Nanophotonics 2022, 11, 1261–1284. [Google Scholar] [CrossRef]
- Goel, N.; Kumar, R. Physics of 2D Materials for Developing Smart Devices. Nano-Micro Lett. 2025, 17, 197. [Google Scholar] [CrossRef]
- Prajapat, P.; Vashishtha, P.; Gupta, G. High-Temperature Resilient Neuromorphic Device Based on Optically Configured Monolayer MoS2 for Cognitive Computing. Small 2025, 21, 2411596. [Google Scholar] [CrossRef]
- Verma, A.K.; Rahman, M.A.; Vashishtha, P.; Guo, X.; Sehrawat, M.; Mitra, R.; Giridhar, S.P.; Waqar, M.; Bhoriya, A.; Murdoch, B.J.; et al. Oxygen-Passivated Sulfur Vacancies in Monolayer MoS2 for Enhanced Piezoelectricity. ACS Nano 2025, 19, 3478–3489. [Google Scholar] [CrossRef]
- Radatović, B.; Çakıroğlu, O.; Jadriško, V.; Frisenda, R.; Senkić, A.; Vujičić, N.; Kralj, M.; Petrović, M.; Castellanos-Gomez, A. Strain-Enhanced Large-Area Monolayer MoS2 Photodetectors. ACS Appl. Mater. Interfaces 2024, 16, 15596–15604. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, B.; Meng, C.; Fang, W.; Xiao, Y.; Li, X.; Hu, Z.; Xu, Y.; Tong, L.; Wang, H.; et al. Ultrafast All-Optical Graphene Modulator. Nano Lett. 2014, 14, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Gu, L.; Ji, Y.; Li, C.; Chen, Y.; Hu, S.; Li, Z.; Gan, X.; Zhao, J. Black Phosphorus Photodetector Enhanced by a Planar Photonic Crystal Cavity. ACS Photonics 2021, 8, 3104–3110. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Zubair, A.; Sajjad, R.N.; Tavakkoli, K.G.A.; Chen, W.; Fang, S.; Ling, X.; Kong, J.; Dresselhaus, M.S.; Kaxiras, E.; et al. MoS2 Field-Effect Transistor with Sub-10 nm Channel Length. Nano Lett. 2016, 16, 7798–7806. [Google Scholar] [CrossRef]
- Qin, C.; Liu, W.; Liu, N.; Zhou, Z.; Song, J.; Ma, S.-h.; Jiao, Z.-Y.; Lei, S. Observation of Hole Transfer in MoS2/WS2 Van der Waals Heterostructures. ACS Photonics 2022, 9, 1709–1716. [Google Scholar] [CrossRef]
- Vashishtha, P.; Kofler, C.; Verma, A.K.; Giridhar, S.P.; Tollerud, J.O.; Dissanayake, N.S.L.; Gupta, T.; Sehrawat, M.; Aggarwal, V.; Mayes, E.L.H.; et al. Epitaxial Interface-Driven Photoresponse Enhancement in Monolayer WS2–MoS2 Lateral Heterostructures. Adv. Funct. Mater. 2025, 10, e12962. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Li, Y.; Cao, S.; Xu, X.; Qian, C. Coupling between 2D Materials and Nanophotonic Cavities. Phys. Status Solidi (b) 2025, 262, 2400549. [Google Scholar] [CrossRef]
- Dange, K.; Yogi, R.; Shukla, A. Two-dimensional transition-metal dichalcogenide-based bilayer heterojunctions for efficient solar cells and photocatalytic applications. Phys. Rev. Appl. 2025, 23, 17. [Google Scholar] [CrossRef]
- Liu, X.; Galfsky, T.; Sun, Z.; Xia, F.; Lin, E.; Lee, Y.; Kéna-Cohen, S.; Menon, V. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics 2015, 9, 30–34. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Cha, E.; Kim, J.; Choi, W. Synthesis of uniform single layer WS2 for tunable photoluminescence. Sci. Rep. 2017, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Li, F.; Tan, C.; Yang, L.; Wang, Z. Defect repairing in two-dimensional transition metal dichalcogenides. Front. Phys. 2023, 18, 18. [Google Scholar] [CrossRef]
- Wu, T.; Wang, C.; Hu, G.; Wang, Z.; Zhao, J.; Wang, Z.; Chaykun, K.; Liu, L.; Chen, M.; Li, D.; et al. Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature. Nat. Commun. 2024, 15, 3295. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.; Mishchenko, A.; Carvalho, A.; Neto, A. 2D materials and van der Waals heterostructures. Science 2016, 353, 7. [Google Scholar] [CrossRef]
- Sun, C.; Zuo, P.; Sun, W.; Xia, R.; Dong, Z.; Zhu, L.; Lv, J.; Deng, G.; Tan, L.; Dai, Y. Self-assembly of Alternating Stacked 2D/2D Ti3C2Tx MXene/ZnMnNi LDH van der Waals Heterostructures with Ultrahigh Supercapacitive Performance. ACS Appl. Energ. Mater. 2020, 3, 10242–10254. [Google Scholar] [CrossRef]
- Onodera, M.; Masubuchi, S.; Moriya, R.; Machida, T. Assembly of van der Waals heterostructures: Exfoliation, searching, and stacking of 2D materials. Jpn. J. Appl. Phys. 2020, 59, 9. [Google Scholar] [CrossRef]
- Lee, K.; Yoon, J.; Lee, S.; Jang, M.; Lee, Y.; Kim, K. Anisotropic assembly and reorganization of noble metals on black phosphorus van der Waals template. Curr. Appl. Phys. 2023, 51, 98–103. [Google Scholar] [CrossRef]
- Munkhbat, B.; Baranov, D.; Bisht, A.; Hogue, M.; Karpiak, B.; Dash, S.; Shegai, T. Electrical Control of Hybrid Monolayer Tungsten Disulfide-Plasmonic Nanoantenna Light-Matter States at Cryogenic and Room Temperatures. Acs Nano 2020, 14, 1196–1206. [Google Scholar] [CrossRef]
- Liu, L.; Tobing, L.Y.M.; Wu, T.; Qiang, B.; Garcia-Vidal, F.J.; Zhang, D.H.; Wang, Q.J.; Luo, Y. Plasmon-induced thermal tuning of few-exciton strong coupling in 2D atomic crystals. Optica 2021, 8, 1416–1423. [Google Scholar] [CrossRef]
- Munkhbat, B.; Baranov, D.G.; Stührenberg, M.; Wersäll, M.; Bisht, A.; Shegai, T. Self-Hybridized Exciton-Polaritons in Multilayers of Transition Metal Dichalcogenides for Efficient Light Absorption. ACS Photonics 2018, 6, 139–147. [Google Scholar] [CrossRef]
- Shi, J.; Liang, W.Y.; Raja, S.S.; Sang, Y.; Zhang, X.Q.; Chen, C.A.; Wang, Y.; Yang, X.; Lee, Y.H.; Ahn, H.; et al. Plasmonic Enhancement and Manipulation of Optical Nonlinearity in Monolayer Tungsten Disulfide. Laser Photonics Rev. 2018, 12, 1800188. [Google Scholar] [CrossRef]
- Greten, L.; Salzwedel, R.; Göde, T.; Greten, D.; Reich, S.; Hughes, S.; Selig, M.; Knorr, A. Strong Coupling of Two-Dimensional Excitons and Plasmonic Photonic Crystals: Microscopic Theory Reveals Triplet Spectra. ACS Photonics 2024, 11, 1396–1411. [Google Scholar] [CrossRef]
- Li, B.; Zu, S.; Zhang, Z.; Zheng, L.; Jiang, Q.; Du, B.; Luo, Y.; Gong, Y.; Zhang, Y.; Lin, F.; et al. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Opto-Electron. Adv. 2019, 2, 19000801–19000809. [Google Scholar] [CrossRef]
- Wen, J.; Wang, H.; Wang, W.; Deng, Z.; Zhuang, C.; Zhang, Y.; Liu, F.; She, J.; Chen, J.; Chen, H.; et al. Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals. Nano Lett. 2017, 17, 4689–4697. [Google Scholar] [CrossRef]
- Stührenberg, M.; Munkhbat, B.; Baranov, D.G.; Cuadra, J.; Yankovich, A.B.; Antosiewicz, T.J.; Olsson, E.; Shegai, T. Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-Pyramids and Excitons in Mono- and Multilayer Wse2. Nano Lett. 2018, 18, 5938. [Google Scholar] [CrossRef]
- Yang, L.; Xie, X.; Yang, J.; Xue, M.; Wu, S.; Xiao, S.; Song, F.; Dang, J.; Sun, S.; Zuo, Z.; et al. Strong Light-Matter Interactions between Gap Plasmons and Two-Dimensional Excitons under Ambient Conditions in a Deterministic Way. Nano Lett. 2022, 22, 2177. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Dai, W.; Yang, L.; Dai, D.; Yang, J.; Fan, Z.; Lin, H.; Li, H.; Chen, X.; Rafiq, A.; et al. Enhanced Light-Matter Interaction with Bloch Surface Wave Modulated Plasmonic Nanocavities. Nano Lett. 2025, 25, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, M.E.; Chikkaraddy, R.; Alexeev, E.M.; Kos, D.; Carnegie, C.; Deacon, W.; de Pury, A.C.; Grosse, C.; de Nijs, B.; Mertens, J.; et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun. 2017, 8, 1296. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, K.; Xing, X.; Wang, M.; Lu, P. Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature. ACS Photonics 2018, 5, 3970–3976. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, J.; Abad-Arredondo, J.; Fernandez-Dominguez, A.I.; Garcia-Vidal, F.J.; Natelson, D. Electroluminescence as a Probe of Strong Exciton-Plasmon Coupling in Few-Layer WSe2. Nano Lett. 2024, 24, 525–532. [Google Scholar] [CrossRef]
- Zhou, J.; Goncalves, P.A.D.; Riminucci, F.; Dhuey, S.; Barnard, E.S.; Schwartzberg, A.; Garcia de Abajo, F.J.; Weber-Bargioni, A. Probing plexciton emission from 2D materials on gold nanotrenches. Nat. Commun. 2024, 15, 9583. [Google Scholar] [CrossRef]
- Wang, S.; Le-Van, Q.; Vaianella, F.; Maes, B.; Eizagirre Barker, S.; Godiksen, R.H.; Curto, A.G.; Gomez Rivas, J. Limits to Strong Coupling of Excitons in Multilayer WS2 with Collective Plasmonic Resonances. ACS Photonics 2019, 6, 286–293. [Google Scholar] [CrossRef]
- Huang, X.; Guo, Y.; Du, S.; Bai, Q.; Sun, C.; Hu, L.; Zheng, R.; Fu, P.; Yang, Y.; Jin, A.; et al. Strong Linearly Polarized Emission from Monolayer WS2 Coupled with Plasmonic Nanocavity Array. Adv. Opt. Mater. 2022, 10, 2200535. [Google Scholar] [CrossRef]
- Davis, T.; Gómez, D. Colloquium: An algebraic model of localized surface plasmons and their interactions. Rev. Mod. Phys. 2017, 89, 20. [Google Scholar] [CrossRef]
- Osberg, K.; Harris, N.; Ozel, T.; Ku, J.; Schatz, G.; Mirkin, C. Systematic Study of Antibonding Modes in Gold Nanorod Dimers and Trimers. Nano Lett. 2014, 14, 6949–6954. [Google Scholar] [CrossRef]
- Zhang, S.; Genov, D.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 2008, 101, 4. [Google Scholar] [CrossRef][Green Version]
- Sun, M.; Xu, L.; Banhg, J.; Kuang, H.; Alben, S.; Kotov, N.; Xu, C. Intracellular localization of nanoparticle dimers by chirality reversal. Nat. Commun. 2017, 8, 10. [Google Scholar] [CrossRef]
- Verellen, N.; López-Tejeira, F.; Paniagua-Domínguez, R.; Vercruysse, D.; Denkova, D.; Lagae, L.; Van Dorpe, P.; Moshchalkov, V.; Sánchez-Gil, J. Mode Parity-Controlled Fano- and Lorentz-like Line Shapes Arising in Plasmonic Nanorods. Nano Lett. 2014, 14, 2322–2329. [Google Scholar] [CrossRef]
- Li, Q.; Zhuo, X.; Li, S.; Ruan, Q.; Xu, Q.; Wang, J. Production of Monodisperse Gold Nanobipyramids with Number Percentages Approaching 100% and Evaluation of Their Plasmonic Properties. Adv. Opt. Mater. 2015, 3, 801–812. [Google Scholar] [CrossRef]
- Sivun, D.; Vidal, C.; Munkhbat, B.; Arnold, N.; Klar, T.; Hrelescu, C. Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity. Nano Lett. 2016, 16, 7203–7209. [Google Scholar] [CrossRef]
- Roller, E.-M.; Argyropoulos, C.; Högele, A.; Liedl, T.; Pilo-Pais, M. Plasmon–Exciton Coupling Using DNA Templates. Nano Lett. 2016, 16, 5962–5966. [Google Scholar] [CrossRef]
- Zhan, P.; Wen, T.; Wang, Z.; He, Y.; Shi, J.; Wang, T.; Liu, X.; Lu, G.; Ding, B. DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering. Angew. Chem.-Int. Edit. 2018, 57, 2846–2850. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, K.; Jiang, Y.; Xing, X.; Li, S.; Hu, H.; Liu, W.; Wang, B.; Lu, P. Controllable Plexcitonic Coupling in a WS2-Ag Nanocavity with Solvents. ACS Appl. Mater. Interfaces 2021, 13, 43554–43561. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, L.; Song, Z.; Xiao, J.; Li, L.; Zhang, G.; Wang, W. Ultrafast Investigation of the Strong Coupling System between Square Ag Nanohole Array and Monolayer WS2. Nano Lett. 2025, 25, 3391–3397. [Google Scholar] [CrossRef]
- Kern, J.; Grossmann, S.; Tarakina, N.; Häckel, T.; Emmerling, M.; Kamp, M.; Huang, J.; Biagioni, P.; Prangsma, J.; Hecht, B. Atomic-Scale Confinement of Resonant Optical Fields. Nano Lett. 2012, 12, 5504–5509. [Google Scholar] [CrossRef]
- Hu, Z.; Kan, S.; Han, X.; Hu, H.; Guan, C.; Wang, K. Morphology effect of metal-insulator-metal nanopatch antennas in strong coupling with monolayer WSe2. Opt. Express 2025, 33, 3734–3742. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.; Kabashin, A.; Barnes, W.; Grigorenko, A. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, N.; Barnes, W.; Hooper, I. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 2014, 8, 889–898. [Google Scholar] [CrossRef]
- Wang, P.; Krasavin, A.; Liu, L.; Jiang, Y.; Li, Z.; Guo, X.; Tong, L.; Zayats, A. Molecular Plasmonics with Metamaterials. Chem. Rev. 2022, 122, 15031–15081. [Google Scholar] [CrossRef]
- Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kanté, B. Lasing action from photonic bound states in continuum. Nature 2017, 541, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Xing, H.; Xue, Z.; Lu, D.; Fan, J.; Fan, J.; Shum, P.; Cong, L. Recent Advances and Perspective of Photonic Bound States in the Continuum. Ultrafast Sci. 2023, 3, 17. [Google Scholar] [CrossRef]
- Koshelev, K.; Lepeshov, S.; Liu, M.; Bogdanov, A.; Kivshar, Y. Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. Phys. Rev. Lett. 2018, 121, 6. [Google Scholar] [CrossRef]
- Hsu, C.; Zhen, B.; Stone, A.; Joannopoulos, J.; Soljacic, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 13. [Google Scholar] [CrossRef]
- Weber, T.; Kühner, L.; Sortino, L.; Ben Mhenni, A.; Wilson, N.; Kühne, J.; Finley, J.; Maier, S.; Tittl, A. Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater. 2023, 22, 970–976. [Google Scholar] [CrossRef]
- Qin, M.; Duan, J.; Xiao, S.; Liu, W.; Yu, T.; Wang, T.; Liao, Q. Strong coupling between excitons and quasibound states in the continuum in bulk transition metal dichalcogenides. Phys. Rev. B 2023, 107, 6. [Google Scholar] [CrossRef]
- Zhou, Q.; Fu, Y.; Huang, L.; Wu, Q.; Miroshnichenko, A.; Gao, L.; Xu, Y. Geometry symmetry-free and higher-order optical bound states in the continuum. Nat. Commun. 2021, 12, 9. [Google Scholar] [CrossRef]
- Koo, Y.; Moon, T.; Kang, M.; Joo, H.; Lee, C.; Lee, H.; Kravtsov, V.; Park, K. Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. Light-Sci. Appl. 2024, 13, 18. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Z.; Qian, J.; Yuan, J.; Yan, J.; Shen, Z.; Jiang, L. Strong coupling between two-dimensional transition metal dichalcogenides and plasmonic-optical hybrid resonators. Phys. Rev. B 2021, 104, 8. [Google Scholar] [CrossRef]
- Wang, J.; Yu, K.; Yang, Y.; Hartland, G.; Sader, J.; Wang, G. Strong vibrational coupling in room temperature plasmonic resonators. Nat. Commun. 2019, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Deng, X.; Jin, L.; Wang, Y.; Wang, T.; Liang, K.; Yu, L. Strong coupling of second harmonic generation scattering spectrum in a diexcitionic nanosystem. Opt. Express 2023, 31, 10249–10259. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Zhang, C.; Wang, Y.; Bi, X.; Li, Z.; Zhang, L.; Zhang, D.; Fang, Y.; Wang, P. Biexcitons-plasmon coupling of Ag@Au hollow nanocube/MoS(2) heterostructures based on scattering spectra. Opt. Express 2024, 32, 9105–9115. [Google Scholar] [CrossRef]
- He, Z.; Xu, C.; He, W.; He, J.; Zhou, Y.; Li, F. Principle and Applications of Multimode Strong Coupling Based on Surface Plasmons. Nanomaterials 2022, 12, 1242. [Google Scholar] [CrossRef]
- Cuadra, J.; Baranov, D.G.; Wersäll, M.; Verre, R.; Antosiewicz, T.J.; Shegai, T. Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS2−Plasmonic Nanoantenna System. Nano Lett. 2018, 18, 1777–1785. [Google Scholar] [CrossRef]
- Zhang, W.; You, J.B.; Liu, J.; Xiong, X.; Li, Z.; Png, C.E.; Wu, L.; Qiu, C.W.; Zhou, Z.K. Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective. Nano Lett. 2021, 21, 8979–8986. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Cheng, X.; Wang, L.; Zhao, X.; Hou, W.; Rehan, K.; Zhu, M.; Yan, L.; Qin, X.; et al. Programmable multi-mode entanglement via dissipative engineering in vibrating trapped ions. Sci. Adv. 2025, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Mckay, D.; Naik, R.; Reinhold, P.; Bishop, L.; Schuster, D. High-Contrast Qubit Interactions Using Multimode Cavity QED. Phys. Rev. Lett. 2015, 114, 5. [Google Scholar] [CrossRef] [PubMed]
- Reiserer, A. Colloquium: Cavity-enhanced quantum network nodes. Rev. Mod. Phys. 2023, 94, 22. [Google Scholar] [CrossRef]
- Liang, K.; Jin, L.; Deng, X.; Jiang, P.; Yu, L. Fine-tuning biexcitons-plasmon coherent states in a single nanocavity. Nanophotonics 2023, 12, 3471–3480. [Google Scholar] [CrossRef]
- Liu, S.; Deng, F.; Zhuang, W.; He, X.; Huang, H.; Chen, J.D.; Pang, H.; Lan, S. Optical Introduction and Manipulation of Plasmon-Exciton-Trion Coupling in a Si/WS2/Au Nanocavity. ACS Nano 2022, 16, 14390–14401. [Google Scholar] [CrossRef]
- Bisht, A.; Cuadra, J.; Wersäll, M.; Canales, A.; Antosiewicz, T.J.; Shegai, T. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems. Nano Lett. 2018, 19, 189–196. [Google Scholar] [CrossRef]
- Deng, F.; Huang, H.; Chen, J.D.; Liu, S.; Pang, H.; He, X.; Lan, S. Greatly Enhanced Plasmon-Exciton Coupling in Si/WS2/Au Nanocavities. Nano Lett. 2022, 22, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Gao, L.; Xu, H.; Wei, H. Strong coupling of multiple plasmon modes and excitons with excitation light controlled active tuning. Nanophotonics 2023, 12, 735–742. [Google Scholar] [CrossRef]
- Mak, K.; He, K.; Shan, J.; Heinz, T. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.; Wu, S.; Yu, H.; Ghimire, N.; Jones, A.; Aivazian, G.; Yan, J.; Mandrus, D.; Xiao, D.; Yao, W.; et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 6. [Google Scholar] [CrossRef]
- Jones, A.; Yu, H.; Ghimire, N.; Wu, S.; Aivazian, G.; Ross, J.; Zhao, B.; Yan, J.; Mandrus, D.; Xiao, D.; et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638. [Google Scholar] [CrossRef]
- Mak, K.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 4. [Google Scholar] [CrossRef]
- DeLacy, B.G.; Miller, O.D.; Hsu, C.W.; Zander, Z.; Lacey, S.; Yagloski, R.; Fountain, A.W.; Valdes, E.; Anquillare, E.; Soljačić, M.; et al. Coherent Plasmon-Exciton Coupling in Silver Platelet-J-aggregate Nanocomposites. Nano Lett. 2015, 15, 2588–2593. [Google Scholar] [CrossRef]
- Ballarini, D.; De Liberato, S. Polaritonics: From microcavities to sub-wavelength confinement. Nanophotonics 2019, 8, 641–654. [Google Scholar] [CrossRef]
- Ameling, R.; Giessen, H. Microcavity plasmonics: Strong coupling of photonic cavities and plasmons. Laser Photonics Rev. 2013, 7, 141–169. [Google Scholar] [CrossRef]
- Lepeshov, S.; Wang, M.; Krasnok, A.; Kotov, O.; Zhang, T.; Liu, H.; Jiang, T.; Korgel, B.; Terrones, M.; Zheng, Y.; et al. Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS2 Structures. Acs Appl. Mater. Interfaces 2018, 10, 16690–16697. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wen, J.; Wang, W.; Xu, N.; Liu, P.; Yang, J.; Chen, H.; Deng, S. Resonance Coupling in Heterostructures Composed of Silicon Nanosphere and Monolayer WS2: A Magnetic-Dipole-Mediated Energy Transfer Process. Acs Nano 2019, 13, 1739–1750. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Halpin, A.; Fernández-Domínguez, A.I.; Feist, J.; Rodriguez, S.R.-K.; Garcia-Vidal, F.J.; Gómez Rivas, J. Plasmon-exciton-polariton lasing. Optica 2016, 4, 31–37. [Google Scholar] [CrossRef]
- Hakala, T.; Moilanen, A.; Väkeväinen, A.; Guo, R.; Martikainen, J.; Daskalakis, K.; Rekola, H.; Julku, A.; Törmä, P. Bose-Einstein condensation in a plasmonic lattice. Nat. Phys. 2018, 14, 739–744. [Google Scholar] [CrossRef]
- Zheng, J.; Fu, Y.; Wang, J.; Zhang, W.; Lu, X.; Lin, H.; Shao, L.; Wang, J. Circularly polarized OLEDs from chiral plasmonic nanoparticle-molecule hybrids. Nat. Commun. 2025, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, J.; Mao, Y.; Chen, J.; Wang, S.; Chen, H.; Zhang, Y.; Wang, S.; Chen, X.; Li, T.; et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 2020, 581, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.; Högele, A.; Simmel, F.; Govorov, A.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314. [Google Scholar] [CrossRef] [PubMed]

















| Characteristics | Dye Molecules [16,51,56] | J-Aggregates [48,57,58] | QDs [39,59,60] | 2D Materials (TMDs) [40,61,62] |
|---|---|---|---|---|
| Oscillator strength | Low, limited by molecular dipole moment | Moderate, enhanced by collective excitonic effects | High, strong excitonic resonances, size-tunable | High, large exciton binding energy and oscillator strength |
| Stability | Prone to photobleaching and chemical degradation | Improved over single dyes but still susceptible to degradation | High photostability, resistant to photobleaching | Excellent chemical and thermal stability |
| Tunability | Dependent on molecular structure | Tunable via aggregate size and composition | Highly tunable via size, shape, and composition | Bandgap tunable via layer number, temperature, voltage, and magnetic field |
| Scalability | Poor photostability limits long-term use | Dynamic assembly prevents integration | Scalable synthesis via colloidal methods | Mechanical exfoliation limits scalability, improving CVD |
| Loss | 40–700 meV | 50–170 meV | 50–110 meV | 20–60 meV |
| Key challenges | Long-term stability and limited tunability | Long-term stability and structural variability | Surface defect control and toxicity concerns | Defect control, layer uniformity, and integration challenges |
| Structure | QD | QD Number | Rabi Splitting | Spectra |
|---|---|---|---|---|
| Silver nanoshells [124] | CdSe/Zns | Collective | 160 meV | PL |
| Gold nanorods [125] | Pbs | Collective | 231 meV | Absorption |
| Gold nanorod [15] | CdSe/ZnS | 1 | 234 meV | Scattering |
| Gold dimer [26] | CdSe/CdS | 1 | 185 meV | Scattering/PL |
| Silver bowtie [39] | CdSe/Zns | 1–3 | 120 meV | Scattering/PL/EELS |
| Silver bowtie [99] | CdSe/ZnS | 4–10 | 85 meV | EELS |
| Silver bowtie [59] | CdSe/ZnS | 1–3 | 71.7 meV | Scattering/PL |
| One-dimensional photonic crystal Dimer [126] | CdSe/ZnS | 1 | 170 meV | PL |
| Nanoparticle-on-mirror [28] | CdSe/CdS | 1 | 200 meV | PL |
| Tip-on-film [127] | CdSe/ZnS | 1 | 163 meV | Tip-enhanced photoluminescence |
| Silver film [111] | CdSe | Collective | 112 meV | Attenuated total reflection |
| Gold nanohole array [128] | CdSe | Collective | 220 meV | Absorption |
| Silver nanoparticle array [116] | CdSe/ZnS | Collective | 110 meV | PL |
| Structure | TMDs | Layer Number | Rabi Splitting | Spectra |
|---|---|---|---|---|
| Silver nanorod [83] | WSe2 | Monolayer | 49.5 meV | Scattering |
| Gold nanorod [181] | WS2 | Monolayer | 91–133 meV | Scattering |
| Au@Ag nanocube [61] | WS2 | Monolayer | 60.1 meV | Scattering/PL |
| Gold bipyramid [182] | WSe2 | Mono-multilayer | 83–105 meV | Scattering |
| Ag nanobipyramid-on-mirror [40] | WSe2/WS2 | Monolayer | 35/53 meV | Scattering/reflection/PL |
| Gold nanodisk [62] | WS2 | Mono-multilayer | 108/175 meV | Scattering/reflection |
| Gold dimer antenna [176] | WS2 | Monolayer | 115.2–128.6 meV | Scattering/PL |
| Gold bowtie antenna [183] | MoSe2 | 1–8 layer | 80–110 meV | Scattering |
| Bowtie/Bloch surface waves hybrid cavity [184] | WSe2 | Monolayer | 186 meV | Scattering/reflection |
| NPOM [185] | WSe2 | Multilayer | 137 meV | Scattering |
| Au nanoprism-on-film [43] | WS2 | Monolayer | 163 meV | Scattering/PL |
| Ag nanocube-on-mirror [186] | WS2 | Monolayer | 145 meV | Scattering |
| Plasmonic tunnel junction [187] | WSe2 | Few-layer | >50 meV | Electroluminescence |
| Gold nanotrench [188] | WSe2 | Monolayer | 80 meV | Near-field PL mapping |
| Ag nanoparticle array [189] | WS2 | 1–16 layer | 52–100 meV | Scattering/reflection |
| Au nanogroove array [190] | WS2/HBN | Multilayer | 42–65 meV | Scattering |
| Plasmonic metamaterial [41] | MoSe2/WSe2 | Monolayer | 77.86–320 meV | Scattering/reflection |
| Plasmonic grating [54] | WS2 | Monolayer | 93 meV | PL |
| Multi-singular metasurface [170] | WS2 | 1–4 layer | 165.9–240.4 meV | Scattering |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Lü, C.; Sun, S.; Wu, F. Plasmon–Exciton Strong Coupling in Low-Dimensional Materials: From Fundamentals to Hybrid Nanophotonic Platforms. Nanomaterials 2025, 15, 1463. https://doi.org/10.3390/nano15191463
Zhao P, Lü C, Sun S, Wu F. Plasmon–Exciton Strong Coupling in Low-Dimensional Materials: From Fundamentals to Hybrid Nanophotonic Platforms. Nanomaterials. 2025; 15(19):1463. https://doi.org/10.3390/nano15191463
Chicago/Turabian StyleZhao, Peipei, Chengxi Lü, Siyi Sun, and Fan Wu. 2025. "Plasmon–Exciton Strong Coupling in Low-Dimensional Materials: From Fundamentals to Hybrid Nanophotonic Platforms" Nanomaterials 15, no. 19: 1463. https://doi.org/10.3390/nano15191463
APA StyleZhao, P., Lü, C., Sun, S., & Wu, F. (2025). Plasmon–Exciton Strong Coupling in Low-Dimensional Materials: From Fundamentals to Hybrid Nanophotonic Platforms. Nanomaterials, 15(19), 1463. https://doi.org/10.3390/nano15191463

