Diameter-Dependent Carbon Nanotube Hydrogel Formed with Tannic Acid and Its Application in Thermoelectric Power Generation
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparing for New CNT Hydrogel
- Desired amounts of SG101-CNTs and TA are added to 10 mL of pure water in a vial.
- While cooling the solution prepared in Step 1 in a cold water bath (4 °C), the CNT dispersion is prepared by using an ultrasonic homogenizer (UX-050, Mitsui Electric Co., Ltd., Chiba, Japan) for 2 h.
- After Step 2, the dispersion is heated to 80 °C for 2 h.
- After Step 3, the dispersion is assessed to see whether it gelled.
2.2. Aerogelization of Proposed CNT Hydrogel
- The CNT dispersion prepared in Section 2.1 is poured into a pressure-resistant container.
- After Step 1, hydrothermal treatment is conducted on the hydrogel in the container in an autoclave at 160 °C for 24 h.
- After Step 2, the hydrogel is frozen in a freezer, then thawed and dried at room temperature.
2.3. Evaluation of Thermoelectric Properties of Developed CNT Hydrogel and Aerogel
3. Results and Discussion
3.1. Relationship Between Gelation Behavior and Concentrations of CNTs and Tannic Acid
3.2. Investigation of Gelation Feasibility by Combining Tannic Acid with CNTs of Different Diameters
3.3. Aerogelization of Proposed CNT Hydrogel for Its Applications
3.4. Thermoelectric Performance of CNT Hydrogel and Aerogel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNT | Carbon nanotube |
TA | Tannic acid |
TE | Thermoelectric |
3D | Three dimensional |
E.M.F. | Electromotive force |
PF | Power factor |
ZT | Thermoelectric figure of merit |
References
- Ijima, S. Helical micro-tubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Popov, V.N. Carbon nanotubes: Properties and application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Odom, T.W.; Huang, J.L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Avouris, P. (Eds.) Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Jorio, A.; Dresselhaus, M.S.; Dresselhaus, G. (Eds.) Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Gao, C.; Guo, M.; Liu, Y.; Zhang, D.; Gao, F.; Sun, L.; Li, J.; Chen, X.; Terrones, M.; Wang, Y. Surface modification methods and mechanisms in carbon nanotubes dispersion. Carbon 2023, 212, 118133. [Google Scholar] [CrossRef]
- Esbati, A.H.; Irani, S. Effect of functionalized process and CNTs aggregation on fracture mechanism and mechanical properties of polymer nanocomposite. Mech. Mater. 2018, 118, 106–119. [Google Scholar] [CrossRef]
- Zhu, J.-M.; Zare, Y.; Rhee, K.Y. Analysis of the roles of interphase, waviness and agglomeration of CNT in the electrical conductivity and tensile modulus of polymer/CNT nanocomposites by theoretical approaches. Colloids Surf. A 2018, 539, 29–36. [Google Scholar] [CrossRef]
- Oya, T.; Ogino, T. Production of electrically conductive paper by adding carbon nanotubes. Carbon 2008, 46, 169–171. [Google Scholar] [CrossRef]
- Yoshida, M.; Oya, T. Development of carbon-nanotube composite thread and its application to “thread transistor”. Adv. Sci. Technol. 2014, 95, 38–43. [Google Scholar] [CrossRef]
- Kamekawa, Y.; Arai, K.; Oya, T. Development of transpiration-type thermoelectric power generating material using carbon-nanotube-composite papers with capillary action and heat of vaporization. Energies 2023, 16, 8032. [Google Scholar] [CrossRef]
- Ampo, T.; Oya, T. Development of paper actuator based on carbon-nanotube-composite paper. Molecules 2021, 26, 1463. [Google Scholar] [CrossRef]
- Choudhary, M.; Sharma, A.; Raj, S.A.; Sultan, M.T.H.; Hui, D.; Shah, A.U.M. Contemporary review on carbon nanotube (CNT) composites and their impact on multifarious applications. Nanotechnol. Rev. 2022, 11, 2632–2660. [Google Scholar] [CrossRef]
- Kou, Y.; Oya, T. Unique dye-sensitized solar cell using carbon nanotube composite-papers with gel electrolyte. J. Compos. Sci. 2023, 7, 232. [Google Scholar] [CrossRef]
- Ogawa, R.; Arakaki, R.; Oya, T. Development and geometrical considerations of unique conductive and reversible carbon-nanotube hydrogel without need for gelators. Gels 2024, 10, 457. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Takigawa, T.; Ishii, N.; Aida, T. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 2003, 300, 2072–2074. [Google Scholar] [CrossRef]
- Fukushima, T.; Asaka, K.; Kosaka, A.; Aida, T. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. 2005, 44, 2410–2413. [Google Scholar] [CrossRef]
- Ogoshi, T.; Takashima, Y.; Yamaguchi, H.; Harada, A. Chemically-responsive sol−gel transition of supramolecular single-walled carbon nanotubes hydrogel made by hybrids of SWNTs and cyclodextrins. J. Am. Chem. Soc. 2007, 129, 4878–4879. [Google Scholar] [CrossRef]
- Shigeta, M.; Komatsu, M.; Nakashima, N. Individual solubilization of single-walled carbon nanotubes using totally aromatic polyimide. Chem. Phys. Lett. 2006, 418, 115–118. [Google Scholar] [CrossRef]
- Shaffer, M.S.P.; Windle, A.H. Analogies between polymer solutions and carbon. Macromolecules 1999, 32, 6864–6866. [Google Scholar] [CrossRef]
- Nakashima, N.; Tomonari, Y.; Murakami, H. Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chem. Lett. 2002, 31, 638–639. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, B.; Zhong, M.; Liu, W.; Yu, D.; Wang, Y.; Tam, K.C.; Zhou, G.; Zhang, Z. Sustainable and versatile superhydrophobic cellulose nanocrystals. ACS Sustain. Chem. Eng. 2022, 10, 5939–5948. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, Z.; Sun, W.; Wu, J.; Wang, X.; Yu, Y.; Cai, X.; Zhang, X.; Wang, L.; Chen, J.; et al. A versatile flexible film containing phase change microcapsules and polypyrrole/bacterial cellulose with high enthalpy, photothermal and Joule heating for personal thermal management. Chem. Eng. J. 2025, 511, 162036. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, T.; Wei, Q.; Sun, W.; Tang, J.; Yu, G.; Xie, W.; Zhou, G.; Zhang, Z. Highly Conductive, Stable, and Self-Healing MXene-Based Hydrogel Sensor via a Controlled Assembly of Polydopamine and Cellulose Nanocrystal. Energy Environ. Mater. 2025, e70105. [Google Scholar] [CrossRef]
- Radouane, N. Review on thermoelectric aerogels and their applications: Progress and challenges. J. Sol-Gel Sci. Technol. 2023, 106, 639–653. [Google Scholar] [CrossRef]
- Pei, J.; Cai, B.; Zhuang, H.-L.; Li, J.-F. Bi2Te3-based applied thermoelectric materials: Research advances and new challenges. Natl. Sci. Rev. 2020, 7, 1856–1858. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, L.-D. Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Mater. 2018, 3, 55. [Google Scholar] [CrossRef]
- Hu, X.; Jood, P.; Ohta, M.; Kunii, M.; Nagase, K.; Nishiate, H.; Kanatzidis, M.G.; Yamamoto, A. Power generation from nanostructured PbTe-based thermoelectrics: Comprehensive development from materials to modules. Energy Environ. Sci. 2016, 9, 517–529. [Google Scholar] [CrossRef]
- Nakai, Y.; Honda, K.; Yanagi, K.; Kataura, H.; Kato, T.; Yamamoto, T.; Maniwa, Y. Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film. Appl. Phys. Express 2014, 7, 025103. [Google Scholar] [CrossRef]
- Chen, J.; Gui, X.; Wang, Z.; Li, Z.; Xiang, R.; Wang, K.; Wu, D.; Xia, X.; Zhou, Y.; Wang, Q.; et al. Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications. ACS Appl. Mater. Interfaces 2012, 4, 81–86. [Google Scholar] [CrossRef]
- Kang, Y.H.; Bae, E.J.; Lee, M.-H.; Han, M.; Kim, B.J.; Cho, S.Y. Highly flexible and durable thermoelectric power generator using CNT/PDMS foam by rapid solvent evaporation. Small 2022, 18, 5. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environ. Sci. Technol. 2008, 42, 5917–5923. [Google Scholar] [CrossRef]
- Liao, W.; Yu, C.; Peng, Z.; Xu, F.; Zhang, Y.; Zhong, W. Ultrasensitive Mg2+-modulated carbon nanotube/tannic acid aerogels for high-performance wearable pressure sensors. ACS Sustain. Chem. Eng. 2023, 11, 2186–2197. [Google Scholar] [CrossRef]
- Halelfadl, S.; Estellé, P.; Aladag, B.; Doner, N.; Maré, T. Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. Int. J. Therm. Sci. 2013, 71, 111–117. [Google Scholar] [CrossRef]
- Nakashima, N.; Okuzono, S.; Tomonari, Y.; Murakami, H. Solubilization of carbon nanotubes with a pyrene-carrying polymer in water. Trans. Mater. Res. Soc. Jpn. 2004, 29, 525–528. [Google Scholar]
- Grimme, S. Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed. 2008, 47, 3430–3434. [Google Scholar] [CrossRef]
- Pérez, E.M.; Martín, N. π–π interactions in carbon nanostructures. Chem. Soc. Rev. 2015, 44, 6425–6433. [Google Scholar] [CrossRef]
- Lin, D.; Liu, N.; Yang, K.; Zhu, L.; Xu, Y.; Xing, B. The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions. Carbon 2009, 47, 2875–2882. [Google Scholar] [CrossRef]
- Uematsu, T.; Suzuki, M.; Watanabe, O. Structure of chemical coating of tannic acid on zinc plate studied by infrared spectroscopy and computational chemistry. J. Surf. Finish. Soc. Jpn. 2007, 58, 860–863. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, L.; Shao, X.; Liu, X.; Zhao, S.; Xie, S.; Xin, Z. Tannic acid-assisted green fabrication of functionalized graphene towards its enhanced compatibility in NR nanocomposite. Polym. Test. 2018, 70, 396–402. [Google Scholar] [CrossRef]
- Sekine, Y.; Nankawa, T.; Yunoki, S.; Sugita, T.; Nakagawa, H.; Yamada, T. Eco-friendly carboxymethyl cellulose nanofiber hydrogels prepared via freeze cross-linking and their applications. ACS Appl. Polym. Mater. 2020, 2, 5482–5491. [Google Scholar] [CrossRef]
- Hüsing, N.; Schubert, U. Aerogels—Airy materials: Chemistry, structure, and properties. Angew. Chem. Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Blackburn, J.L.; Ferguson, A.J.; Cho, C.; Grunlan, J.C. Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 2018, 30, 11. [Google Scholar] [CrossRef]
- Li, H.; Zong, Y.; Ding, Q.; Han, W.; Li, X. Paper-based thermoelectric generator based on multi-walled carbon nanotube/carboxylated nanocellulose. J. Power Sour. 2021, 500, 229992. [Google Scholar] [CrossRef]
- Abol-Fotouh, D.; Dörling, B.; Zapata-Arteaga, O.; Rodríguez-Martínez, X.; Gómez, A.; Reparaz, J.S.; Laromaine, A.; Roig, A.; Campoy-Quiles, M. Farming thermoelectric paper. Energy Environ. Sci. 2019, 12, 716–726. [Google Scholar] [CrossRef]
- Chen, L.; Lou, J.; Zong, Y.; Liu, Z.; Jiang, Y.; Han, W. Wood-like aerogel for thermoelectric generators based on BC/PEDOT/SWCNT. Cellulose 2023, 30, 3141–3152. [Google Scholar] [CrossRef]
- Meng, C.; Liu, C.; Fan, S. A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv. Mater. 2010, 22, 535–539. [Google Scholar] [CrossRef]
- Song, H.; Qiu, Y.; Wang, Y.; Cai, K.; Li, D.; Deng, Y.; He, J. Polymer/carbon nanotube composite materials for flexible thermoelectric power generator. Compos. Sci. Technol. 2017, 153, 71–83. [Google Scholar] [CrossRef]
SG101-CNTs [wt%] | Gelation |
---|---|
0.03 | Failure |
0.05 | Success |
0.07 | Success |
0.10 | Success |
0.15 | Success |
0.20 | Failure |
Tannic Acid [wt%] | Gelation |
---|---|
0.05 | Failure |
0.075 | Partial |
0.10 | Success |
0.15 | Success |
0.175 | Partial |
0.20 | Failure |
Types of CNTs | Length [µm] | Diameter (ave.) [nm] | Gelation |
---|---|---|---|
(6,5)-chirality CNTs (Single-walled) | 1 (median) | 0.78 | Failure |
SG101-CNTs (Single-walled) | 300–500 | 2–3 | Success |
Double-walled CNTs | 0.5–50 | 5 | Failure |
NC7000 (Multi-walled) | 1.5 (average) | 9.5 | Failure |
Pre-Drying Freezing | |||
---|---|---|---|
Conducted | No | ||
Heating Temperature (sealed) | 80 °C | (a) | (b) |
160 °C | (c) | (d) |
CNT Hydrogel (Heated at 80 °C) | CNT Hydrogel (Heated at 160 °C) | CNT Aerogel | |
---|---|---|---|
Threshold concentration of CNTs (TA is 0.15 wt%) | 0.05 wt% | 0.07 wt% | N/A |
Mechanical strength | 4.4 × 102 Pa | 4.4 × 103 Pa | N/A |
Seebeck coefficient | N/A | 45 µV/K | 45 µV/K |
Conductivity | N/A | 2.5 S/m | 15 S/m |
Power factor (PF) | N/A | 5.1 nW/(m·K2) | 30 W/(m·K2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okubo, N.; Oya, T. Diameter-Dependent Carbon Nanotube Hydrogel Formed with Tannic Acid and Its Application in Thermoelectric Power Generation. Nanomaterials 2025, 15, 1556. https://doi.org/10.3390/nano15201556
Okubo N, Oya T. Diameter-Dependent Carbon Nanotube Hydrogel Formed with Tannic Acid and Its Application in Thermoelectric Power Generation. Nanomaterials. 2025; 15(20):1556. https://doi.org/10.3390/nano15201556
Chicago/Turabian StyleOkubo, Nobuyasu, and Takahide Oya. 2025. "Diameter-Dependent Carbon Nanotube Hydrogel Formed with Tannic Acid and Its Application in Thermoelectric Power Generation" Nanomaterials 15, no. 20: 1556. https://doi.org/10.3390/nano15201556
APA StyleOkubo, N., & Oya, T. (2025). Diameter-Dependent Carbon Nanotube Hydrogel Formed with Tannic Acid and Its Application in Thermoelectric Power Generation. Nanomaterials, 15(20), 1556. https://doi.org/10.3390/nano15201556