Next Issue
Volume 15, November-1
Previous Issue
Volume 15, October-1
 
 
nanomaterials-logo

Journal Browser

Journal Browser

Nanomaterials, Volume 15, Issue 20 (October-2 2025) – 65 articles

Cover Story (view full-size image): A highly efficient InPOx/TiO2 core–shell nanorod array photoanode was developed for solar-driven water oxidation. The InPOx layer promotes effective charge separation and suppresses electron–hole recombination, significantly enhancing the photoelectrochemical performance and stability. Under visible-light illumination, the optimized heterostructure exhibits remarkable photoelectrochemical activity, demonstrating its great potential for solar energy conversion and sustainable photoelectrochemical applications. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 3574 KB  
Article
The Dose-Dependent Effect of Carbon Quantum Dots as a Photosynthesis Enhancer on Soybean Plant Growth
by Qianyuyue Wang, Kun Lv, Jian Song, Moyan Li, Xingnan Ouyang, Chengcheng Liu, Shuang Gong, Jinxing Wang, Jianming Li and Zhe Zhang
Nanomaterials 2025, 15(20), 1603; https://doi.org/10.3390/nano15201603 - 21 Oct 2025
Viewed by 339
Abstract
When carbon quantum dots (CDs) are used to enhance photosynthesis, they inevitably enter the plant. However, the dose-dependent effects of CDs on plant growth are poorly understood. In this study, we investigated the dose-dependent effects of CDs on soybean growth. CDs were synthesized [...] Read more.
When carbon quantum dots (CDs) are used to enhance photosynthesis, they inevitably enter the plant. However, the dose-dependent effects of CDs on plant growth are poorly understood. In this study, we investigated the dose-dependent effects of CDs on soybean growth. CDs were synthesized from citric acid and urea via a hydrothermal procedure. The analysis of the structure, chemical composition, and optical properties revealed that synthetic CDs have a sphere-like shape with rich hydrophilic groups on their surface. CDs exhibited superior upconverted photoluminescence properties and emitted strong fluorescence (exciting wavelength of 220 nm; emitting wavelength of 438 nm). Various concentrations of synthetic CDs (0–1000 mg L−1), as a photosynthesis enhancer, were applied to soybean plants under hydroculture for 1–10 days. CDs positively affected soybean growth at concentrations less than 200 mg L−1. However, at higher concentrations (500 or 1000 mg L−1), they exhibited significant toxicity to plant growth, which was evidenced by the mass accumulation of CDs in damaged leaves. Metabolomic and transcriptomic analyses indicated that CDs at a low concentration (100 mg L−1) could increase antioxidant and biomass accumulation in soybeans to promote plant growth. This study provided valuable insights into the impacts of CDs on plants in sustainable agricultural practices involving the use of nanomaterials. Full article
Show Figures

Graphical abstract

16 pages, 2711 KB  
Article
Study on the Passivation of Defect States in Wide-Bandgap Perovskite Solar Cells by the Dual Addition of KSCN and KCl
by Min Li, Zhaodong Peng, Xin Yao, Jie Huang and Dawei Zhang
Nanomaterials 2025, 15(20), 1602; https://doi.org/10.3390/nano15201602 - 21 Oct 2025
Viewed by 331
Abstract
Wide-bandgap (WBG) perovskite solar cells (PSCs) are critical for high-efficiency tandem photovoltaic devices, but their practical application is severely limited by phase separation and poor film quality. To address these challenges, this study proposes a dual-additive passivation strategy using potassium thiocyanate (KSCN) and [...] Read more.
Wide-bandgap (WBG) perovskite solar cells (PSCs) are critical for high-efficiency tandem photovoltaic devices, but their practical application is severely limited by phase separation and poor film quality. To address these challenges, this study proposes a dual-additive passivation strategy using potassium thiocyanate (KSCN) and potassium chloride (KCl) to synergistically optimize the crystallinity and defect state of WBG perovskite films. The selection of KSCN/KCl is based on their complementary functionalities: K+ ions occupy lattice vacancies to suppress ion migration, Cl ions promote oriented crystal growth, and SCN ions passivate surface defects via Lewis acid-base interactions. A series of KSCN/KCl concentrations (relative to Pb) were tested, and the effects of dual additives on film properties and device performance were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), space-charge-limited current (SCLC), current-voltage (J-V), and external quantum efficiency (EQE) measurements. Results show that the dual additives significantly enhance film crystallinity (average grain size increased by 27.0% vs. control), reduce surface roughness (from 86.50 nm to 24.06 nm), and passivate defects-suppressing non-radiative recombination and increasing electrical conductivity. For WBG PSCs, the champion device with KSCN (0.5 mol%) + KCl (1 mol%) exhibits a power conversion efficiency (PCE) of 16.85%, representing a 19.4% improvement over the control (14.11%), along with enhanced open-circuit voltage (Voc: +2.8%), short-circuit current density (Jsc: +6.7%), and fill factor (FF: +8.9%). Maximum power point (MPP) tracking confirms superior operational stability under illumination. This dual-inorganic-additive strategy provides a generalizable approach for the rational design of stable, high-efficiency WBG perovskite films. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

17 pages, 2360 KB  
Article
Gas–Water Two-Phase Flow Mechanisms in Deep Tight Gas Reservoirs: Insights from Nanofluidics
by Xuehao Pei, Li Dai, Cuili Wang, Junjie Zhong, Xingnan Ren, Zengding Wang, Chaofu Peng, Qihui Zhang and Ningtao Zhang
Nanomaterials 2025, 15(20), 1601; https://doi.org/10.3390/nano15201601 - 21 Oct 2025
Viewed by 272
Abstract
Understanding gas–water two-phase flow mechanisms in deep tight gas reservoirs is critical for improving production performance and mitigating water invasion. However, the effects of pore-throat-fracture multiscale structures on gas–water flow remain inadequately understood, particularly under high-temperature and high-pressure conditions (HT/HP). In this study, [...] Read more.
Understanding gas–water two-phase flow mechanisms in deep tight gas reservoirs is critical for improving production performance and mitigating water invasion. However, the effects of pore-throat-fracture multiscale structures on gas–water flow remain inadequately understood, particularly under high-temperature and high-pressure conditions (HT/HP). In this study, we developed visualizable multiscale throat-pore and throat-pore-fracture physical nanofluidic chip models (feature sizes 500 nm–100 μm) parameterized with Keshen block geological data in the Tarim Basin. We then established an HT/HP nanofluidic platform (rated to 240 °C, 120 MPa; operated at 100 °C, 100 MPa) and, using optical microscopy, directly visualized spontaneous water imbibition and gas–water displacement in the throat-pore and throat-pore-fracture nanofluidic chips and quantified fluid saturation, front velocity, and threshold pressure gradients. The results revealed that the spontaneous imbibition process follows a three-stage evolution controlled by capillarity, gas compression, and pore-scale heterogeneity. Nanoscale throats and microscale pores exhibit good connectivity, facilitating rapid imbibition without significant scale-induced resistance. In contrast, 100 μm fractures create preferential flow paths, leading to enhanced micro-scale water locking and faster gas–water equilibrium. The matrix gas displacement threshold gradient remains below 0.3 MPa/cm, with the cross-scale Jamin effect—rather than capillarity—dominating displacement resistance. At higher pressure gradients (~1 MPa/cm), water is efficiently expelled to low saturations via nanoscale throat networks. This work provides an experimental platform for visualizing gas–water flow in multiscale porous media under ultra-high temperature and pressure conditions and offers mechanistic insights to guide gas injection strategies and water management in deep tight gas reservoirs. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology for the Oil and Gas Industry)
Show Figures

Figure 1

11 pages, 7087 KB  
Article
Cu-Contamination-Free Hybrid Bonding via MoS2 Passivation Layer
by Hyunbin Choi, Kyungman Kim, Sihoon Son, Dongho Lee, Seongyun Je, Jieun Kang, Sunjae Jeong, Doo San Kim, Minjong Lee, Jiyoung Kim and Taesung Kim
Nanomaterials 2025, 15(20), 1600; https://doi.org/10.3390/nano15201600 - 21 Oct 2025
Viewed by 360
Abstract
Hybrid bonding technology has emerged as a critical 3D integration solution for advanced semiconductor packaging, enabling simultaneous bonding of metal interconnects and dielectric materials. However, conventional hybrid bonding processes face significant contamination challenges during O2 plasma treatment required for OH group formation [...] Read more.
Hybrid bonding technology has emerged as a critical 3D integration solution for advanced semiconductor packaging, enabling simultaneous bonding of metal interconnects and dielectric materials. However, conventional hybrid bonding processes face significant contamination challenges during O2 plasma treatment required for OH group formation on SiCN or the other dielectric material surfaces. The aggressive plasma conditions cause Cu sputtering and metal migration, leading to chamber and substrate contamination that accumulates over time and degrades process reliability. In this work, we present a novel approach to address these contamination issues by implementing a molybdenum disulfide (MoS2) barrier layer formed through plasma-enhanced chemical vapor deposition (PECVD) sulfurization of Mo films. The ultrathin MoS2 layer acts as an effective barrier preventing Cu sputtering during O2 plasma processing, thereby eliminating chamber contamination, and it also enables post-bonding electrical connectivity through controlled Cu filament formation via memristive switching mechanisms. When voltage is applied to the Cu-MoS2-Cu structure after hybrid bonding, Cu ions migrate through the MoS2 layer to form conductive filaments, establishing reliable electrical connections without compromising the bonding interface integrity. This innovative approach successfully resolves the fundamental contamination problem in hybrid bonding while maintaining excellent electrical performance, offering a pathway toward contamination-free and high-yield hybrid bonding processes for next-generation 3D-integrated devices. Full article
Show Figures

Figure 1

1 pages, 139 KB  
Correction
Correction: Klonos et al. Segmental Mobility, Interfacial Polymer, Crystallization and Conductivity Study in Polylactides Filled with Hybrid Lignin-CNT Particles. Nanomaterials 2025, 15, 660
by Panagiotis A. Klonos, Rafail O. Ioannidis, Andreas Pitsavas, Nikolaos D. Bikiaris, Sofia P. Makri, Stefania Koutsourea, Alexios Grigoropoulos, Ioanna Deligkiozi, Alexandros Zoikis-Karathanasis, Apostolos Kyritsis and Dimitrios N. Bikiaris
Nanomaterials 2025, 15(20), 1599; https://doi.org/10.3390/nano15201599 - 21 Oct 2025
Viewed by 184
Abstract
In the original publication [...] Full article
13 pages, 1758 KB  
Article
Comparison of Two Measurement Methods for Scattering and Absorption Coefficients in Boron Carbide Nanodispersions
by Luca Mercatelli, Maria Raffaella Martina, Javier P. Vallejo, Luis Lugo and Elisa Sani
Nanomaterials 2025, 15(20), 1598; https://doi.org/10.3390/nano15201598 - 21 Oct 2025
Viewed by 382
Abstract
Nanoparticles suspended in a liquid alter the properties of the base liquid, expanding its fields of application. Nanodispersions can have several applications in solar energy, including serving as liquid sunlight absorbers, acting as optical filters in optics, or functioning as heat transfer fluids [...] Read more.
Nanoparticles suspended in a liquid alter the properties of the base liquid, expanding its fields of application. Nanodispersions can have several applications in solar energy, including serving as liquid sunlight absorbers, acting as optical filters in optics, or functioning as heat transfer fluids in solar thermal applications. However, for a precise evaluation of their use in a specific field, their properties must be carefully assessed. In this work, we use two different methods for the determination of the optical scattering and absorption coefficients of a nanodispersion of boron carbide (B4C), and we compare the obtained results. Monochromatic measurements are performed at 635, 685, 730, and 830 nm, utilizing a technique that relies on the theory of optical scattering in an infinite medium. They are compared with spectrally resolved measurements of ballistic and total transmittance in the wavelength range of 400–850 nm, obtained using a spectrophotometer with an integrating sphere. The two methods are consistent and give results in good agreement. We also found that the mean radius of nanoparticles is higher than expected, confirming the non-negligible scattering. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

11 pages, 3383 KB  
Article
All-Optically Controlled Terahertz Modulation by Silicon-Grown CdSe/CdZnS Colloidal Quantum Wells
by Reyihanguli Tudi, Zhongxin Zhang, Xintian Song, AbulimitiYasen, Bumaliya Abulimiti and Mei Xiang
Nanomaterials 2025, 15(20), 1597; https://doi.org/10.3390/nano15201597 - 20 Oct 2025
Viewed by 316
Abstract
The CdSe/CdZnS colloidal quantum wells, with their exceptionally high carrier mobility and ultrafast response characteristics, emerge as highly promising candidate material for high-performance active terahertz modulators—indispensable core components critical for next-generation communication technologies. A high-performance, cost-effective terahertz modulator was fabricated through spin-coating CdSe(4ML)/CdZnS [...] Read more.
The CdSe/CdZnS colloidal quantum wells, with their exceptionally high carrier mobility and ultrafast response characteristics, emerge as highly promising candidate material for high-performance active terahertz modulators—indispensable core components critical for next-generation communication technologies. A high-performance, cost-effective terahertz modulator was fabricated through spin-coating CdSe(4ML)/CdZnS nanosheets onto a silicon substrate. This all-optical device demonstrates broadband modulation capabilities (0.25–1.4 THz), achieving a remarkable modulation depth of 87.6% at a low power density of 2 W/cm2. Demonstrating pump-power-efficient terahertz modulation characteristics, this core–shell composite shows immediate applicability in terahertz communication systems and non-destructive testing equipment. Full article
Show Figures

Graphical abstract

16 pages, 2743 KB  
Article
Unique Design of Functionalized Covalent Organic Frameworks for Highly Selective Removal of Cyano-Neonicotinoids
by Yan Yang, Shuojie Wang, Wenxin Mai, Shiyu Wei, Guixiang Teng, Peng Pu, Jiaxing Zhao and Yongqiang Tian
Nanomaterials 2025, 15(20), 1596; https://doi.org/10.3390/nano15201596 - 20 Oct 2025
Viewed by 268
Abstract
Acetamiprid (ACE) and thiacloprid (THIA) are the dominant cyano-substituted neonicotinoids detected in fruit juices and bottled water, which raises food-safety concerns and regulatory scrutiny. Conventional purification with activated carbon or advanced oxidation shows limited selectivity and has a high energy demand. Covalent organic [...] Read more.
Acetamiprid (ACE) and thiacloprid (THIA) are the dominant cyano-substituted neonicotinoids detected in fruit juices and bottled water, which raises food-safety concerns and regulatory scrutiny. Conventional purification with activated carbon or advanced oxidation shows limited selectivity and has a high energy demand. Covalent organic frameworks (COFs) offer tunable chemistry for targeted adsorption, yet no strategy exists to engineer COF sites that preferentially recognize the cyano group of ACE/THIA. Here, we synthesized a magnetic core-shell adsorbent, Fe3O4@COF(TBTD-BD)-Au, by growing cyano-affinitive Au nanoparticles on a Cl-decorated COF shell surrounding a Fe3O4 core. Under optimized conditions (pH 6.0, 25 °C), the Fe3O4@COF(TBTD-BD)-Au achieved maximum adsorption capacities of 157 mg g−1 (ACE) and 156 mg g−1 (THIA). Uptake followed pseudo-second-order kinetics and the Freundlich isotherm; thermodynamic analysis confirmed an endothermic, spontaneous process. Competitive tests showed >80% removal of ACE and THIA in the presence of four co-occurring neonicotinoids, and the adsorbent retained 91.5% of its initial capacity after six adsorption–desorption cycles. Synergistic Au-cyano coordination, Cl-mediated hydrogen bonding, and π–π stacking confinement confer high selectivity and capacity. This ligand-guided, post-functionalized COF provides promising potential in the field of food sample treatment for contaminant removal. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

4 pages, 141 KB  
Editorial
Advances in Carbon Nanotubes: Synthesis, Properties, and Cutting-Edge Applications
by Guohai Chen and Dai-Ming Tang
Nanomaterials 2025, 15(20), 1595; https://doi.org/10.3390/nano15201595 - 20 Oct 2025
Viewed by 419
Abstract
Carbon nanotubes (CNTs) have remained at the forefront of nanoscience for more than three decades, owing to their unique cylindrical structures, exceptional physical, chemical, and mechanical properties, and broad potential in electronics, energy, composites, and biomedical applications [...] Full article
14 pages, 1916 KB  
Article
Nematic Alignment of Composite Silver-Coated Gold Nanorods and Cellulose Nanocrystals
by Chenxi Li, Julian Evans, Bo Gao, Guancheng Shen, Sailing He and Weixing Yu
Nanomaterials 2025, 15(20), 1594; https://doi.org/10.3390/nano15201594 - 19 Oct 2025
Viewed by 366
Abstract
Cellulose nanocrystals (CNCs) have been extensively studied for their ability to maintain liquid crystal (LC) order within solid films, providing a robust template for the self-assembly of plasmonic nanorods (NRs) and the construction of nanostructures. The self-assembly mechanism of NRs combined with uniaxially [...] Read more.
Cellulose nanocrystals (CNCs) have been extensively studied for their ability to maintain liquid crystal (LC) order within solid films, providing a robust template for the self-assembly of plasmonic nanorods (NRs) and the construction of nanostructures. The self-assembly mechanism of NRs combined with uniaxially nematic CNC LCs has long attracted considerable attention. In this study, we investigated the influence of pH and aspect ratio on the self-assembly of composite NR–uniaxial nematic CNC systems. The phase diagram indicates that the uniaxial nematic phase of CNCs becomes more stable at higher pH, while it is more sensitive to disturbance from NRs with smaller aspect ratios. Furthermore, a composite effective excluded volume model was developed, in which the interaction between NRs and CNCs is incorporated, and the effective excluded volume is governed by both the effective CNC diameter and the NR aspect ratio. This study elucidates the influence mechanism of pH and aspect ratio on the self-assembly of composite NR–uniaxial nematic CNC systems, in good agreement with experimental observations. Our results provide fundamental insights into the utilization of uniaxial nematic CNC LCs as templates for fabricating novel nanomaterials and nanostructures, and deepen understanding of the mechanisms governing such composites. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

18 pages, 3566 KB  
Article
Pseudocapacitive Behavior of Blade-Coated Mo1.33CTx i-MXene Electrodes in Aqueous Electrolytes
by Alexey Tsyganov, Olga Grapenko, Evgeniy Korotaev, Alexander Shindrov, Andrei Alferov, Alexander Gorokhovsky and Nikolay Gorshkov
Nanomaterials 2025, 15(20), 1593; https://doi.org/10.3390/nano15201593 - 19 Oct 2025
Viewed by 390
Abstract
Two-dimensional molybdenum carbide (Mo1.33CTx MXene) with ordered vacancies is one of the most promising materials for electrochemical energy storage. However, the high defectivity and tendency to aggregate of nanosheets hinders the large-scale fabrication of highly efficient Mo1.33CTx [...] Read more.
Two-dimensional molybdenum carbide (Mo1.33CTx MXene) with ordered vacancies is one of the most promising materials for electrochemical energy storage. However, the high defectivity and tendency to aggregate of nanosheets hinders the large-scale fabrication of highly efficient Mo1.33CTx -based electrodes. In this study, Mo1.33CTx/carbon nanotubes (CNTs) electrodes of varying thicknesses were fabricated using a scalable doctor blade technique. Their electrochemical performance was studied in H2SO4, H3PO4, LiCl and KCl electrolytes using cyclic voltammetry and galvanostatic charge–discharge methods. Electrodes with an active material mass loading of 1.6 mg/cm2 exhibited specific capacitances of 352, 287, 172, and 107 F/g in H2SO4, H3PO4, LiCl, and KCl electrolytes, respectively, at a scan rate of 2 mV/s. Increasing the mass loading of the electrode material to 3.5 mg/cm2 resulted in a specific capacitance of 349, 260, 162 and 98 F/g in the same electrolytes. The incorporation of CNTs enabled rapid electrolyte ion transport throughout the electrode bulk, maintaining high capacitance values even at high scan rates. These results open new avenues for the development of high-performance electrode materials for supercapacitors. Full article
(This article belongs to the Special Issue 2D Materials for Energy Conversion and Storage)
Show Figures

Figure 1

15 pages, 6316 KB  
Article
Interfacial P-O-Cu Bonds Drive Rapid Z-Scheme Charge Transfer for Efficient Photocatalytic O2 Evolution Synchronized with Cr(VI) Reduction
by Yingcong Wei, Zeyu Su and Bo Weng
Nanomaterials 2025, 15(20), 1592; https://doi.org/10.3390/nano15201592 - 19 Oct 2025
Viewed by 318
Abstract
Addressing the challenges of energy production and environmental sustainability necessitates the development of advanced materials capable of facilitating both photocatalytic reduction and oxidation processes. Here, we report a Z-scheme Ag3PO4/CuBi2O4 heterojunction photocatalyst, which was fabricated via [...] Read more.
Addressing the challenges of energy production and environmental sustainability necessitates the development of advanced materials capable of facilitating both photocatalytic reduction and oxidation processes. Here, we report a Z-scheme Ag3PO4/CuBi2O4 heterojunction photocatalyst, which was fabricated via the in situ anisotropic growth of Ag3PO4 nanoparticles on the ends of CuBi2O4 microrods. The prepared heterojunction exhibits a low lattice mismatch (~3%) and features a covalently bonded interface, anchored by oxygen atoms, with the formation of P-O-Cu bonds. This interface synergizes with the built-in electric field to drive an efficient Z-scheme charge transfer mechanism, significantly enhancing the separation and migration of carriers. Furthermore, the interfacial chemical bonds induce electron redistribution that effectively weakens the Ag-O bond, thereby activating surface lattice oxygen. As a result, the photocatalyst shows remarkably improved performance for photocatalytic oxygen evolution synchronized with Cr(VI) reduction by enabling both the conventional adsorbate evolution mechanism and the lattice oxygen mechanism. This work provides critical insights into the design of efficient photocatalysts. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

18 pages, 3272 KB  
Article
Elucidating the Role of the Mo2C/MgO Catalyst Interface in the Mechanism of the Reverse Water Gas Shift Reaction
by Cameron Holder, Andrew Shabaev, Jeffrey Baldwin and Heather Willauer
Nanomaterials 2025, 15(20), 1591; https://doi.org/10.3390/nano15201591 - 18 Oct 2025
Viewed by 373
Abstract
The reverse water gas shift reaction (RWGS) is a key step in the valorization of CO2 to value-added products such as fuel. Metal carbides, particularly molybdenum carbide (Mo2C), supported on transition metal oxide supports have been reported as promising materials [...] Read more.
The reverse water gas shift reaction (RWGS) is a key step in the valorization of CO2 to value-added products such as fuel. Metal carbides, particularly molybdenum carbide (Mo2C), supported on transition metal oxide supports have been reported as promising materials to be used as catalysts for the low-temperature RWGS reaction. A deeper understanding of catalyst support interactions can be greatly beneficial for the development of better and more efficient catalysts in the future. To this end, this study computationally investigated the effect of the interaction between the Mo2C(001) surface and the MgO(001) surface on the RWGS mechanism. The RWGS mechanisms were explored at the Mo2C/MgO interface, as well as on the bare surface of Mo2C. While the pathway at the interface went through an associative-type mechanism and a carboxylate intermediate, the Mo2C surface was found to go through a redox-type mechanism. Interestingly, both the kinetics and thermodynamics of each pathway were similar, suggesting that the observed differences in the CO2 hydrogenation pathways were primarily limited by the diffusion of CO2 across the MgO surface rather than inhibitory energetics resulting from the interplay of the Mo2C material and MgO support. Full article
(This article belongs to the Special Issue Theoretical and Computational Studies of Nanocrystals)
Show Figures

Figure 1

2 pages, 140 KB  
Retraction
RETRACTED: Dukenbayev et al. Fe3O4 Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy. Nanomaterials 2019, 9, 494
by Kanat Dukenbayev, Ilya V. Korolkov, Daria I. Tishkevich, Artem L. Kozlovskiy, Sergey V. Trukhanov, Yevgeniy G. Gorin, Elena E. Shumskaya, Egor Y. Kaniukov, Denis A. Vinnik, Maxim V. Zdorovets, Marina Anisovich, Alex V. Trukhanov, Daniele Tosi and Carlo Molardi
Nanomaterials 2025, 15(20), 1590; https://doi.org/10.3390/nano15201590 - 17 Oct 2025
Viewed by 382
Abstract
This journal retracts the article “Fe3O4 Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy” [...] Full article
13 pages, 3779 KB  
Article
In Situ Optical Monitoring and Morphological Evolution of Si Nanowires Grown on Faceted Al2O3(0001) Substrates
by Olzat Toktarbaiuly, Mergen Zhazitov, Muhammad Abdullah, Yerbolat Tezekbay, Nazerke Kydyrbay, Nurxat Nuraje and Tolagay Duisebayev
Nanomaterials 2025, 15(20), 1589; https://doi.org/10.3390/nano15201589 - 17 Oct 2025
Viewed by 438
Abstract
This paper presents the growth and in situ optical characterization of silicon nanowires (Si NWs) on Al2O3(0001) substrates that are thermally faceted using the atomic low angle shadowing technique (ATLAS) method. Annealing Al2O3 substrates in air [...] Read more.
This paper presents the growth and in situ optical characterization of silicon nanowires (Si NWs) on Al2O3(0001) substrates that are thermally faceted using the atomic low angle shadowing technique (ATLAS) method. Annealing Al2O3 substrates in air before surface faceting was used for the first time, as identified by atomic force microscopy (AFM). Planar Si NW arrays were subsequently deposited and characterized in real-time by reflectance anisotropy spectroscopy (RAS). RAS measurements detected irreversible spectral changes during growth, e.g., red-shift in peak energy for marking amorphous Si NW formation. Blue-shifts in RAS spectra following annealing post-growth at varied temperatures were found to be associated with structural nanowire development. AFM analysis following annealing detected dramatic changes in morphology, e.g., quantifiable differences in NW height and thickness and complete disappearance of nanowire structures at high temperatures. These results confirm the validity of in situ RAS as a monitoring tool for nanowire growth and illustrate Si NW morphology’s sensitivity to thermal processing. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

26 pages, 3436 KB  
Review
Nano-Enabled Agrochemicals for Heavy Metal Remediation in Agriculture: Current Status, Mechanisms, and Future Prospects
by Muhammad Mudassir Nazir, Guanlin Li, Mohsin Nawaz, Temoor Ahmed, Muhammad Noman, Sanaullah Jalil, Xiaojun Zheng, Xunfeng Chen and Daolin Du
Nanomaterials 2025, 15(20), 1588; https://doi.org/10.3390/nano15201588 - 17 Oct 2025
Viewed by 821
Abstract
Heavy metals (HMs) contamination in agricultural soils poses significant risks to crop production and human health through bioaccumulation in the food chain. While traditional remediation techniques exist, they often face limitations including high operational costs, low efficiency, and time-intensive processes. Nano-enabled agrochemicals have [...] Read more.
Heavy metals (HMs) contamination in agricultural soils poses significant risks to crop production and human health through bioaccumulation in the food chain. While traditional remediation techniques exist, they often face limitations including high operational costs, low efficiency, and time-intensive processes. Nano-enabled agrochemicals have emerged as a promising solution for HM remediation in contaminated soils. In this review, we highlight distinct nano-enabled mechanisms involved in HMs remediation in agricultural soils. Further, this review describes HM remediation potential of three different classes of nano-agrochemicals exhibiting unique physicochemical properties, such as surface charge, controlled release capability, and metal chelating ability, etc. Nano-agrochemicals also enhance plant resilience through multiple pathways, such as the regulation of nutrient profiles and photosynthesis, activation of antioxidant defense systems, modulation of protein and osmolyte synthesis, stimulation of phytohormone pathways, and activation of stress-responsive transcription factors. While nano-agrochemicals show tremendous potential for sustainable agriculture, their environmental impact and safety considerations require careful assessment. The review highlights the need for continued research to fully understand nano-agrochemical interactions with plants and soil ecosystems, and to develop improved strategies for their safe and effective implementation in agricultural systems. Future studies should focus on optimizing nano-agrochemical formulations, investigating long-term effects, and establishing comprehensive risk assessment frameworks. Full article
Show Figures

Graphical abstract

15 pages, 2491 KB  
Article
Multilayer Cyclo-Olefin Polymer Films for Enhanced OLED Encapsulation
by Ji-Hoon Park and Kwan-Young Han
Nanomaterials 2025, 15(20), 1587; https://doi.org/10.3390/nano15201587 - 17 Oct 2025
Viewed by 424
Abstract
The development of organic light-emitting diodes (OLEDs) for high-resolution, large-area displays relies on effective encapsulation technology. Accordingly, this study proposes a novel multilayer structure utilizing a cyclo-olefin polymer-based film. This solution significantly reduces process time and cost while achieving remarkable barrier performance. Optimization [...] Read more.
The development of organic light-emitting diodes (OLEDs) for high-resolution, large-area displays relies on effective encapsulation technology. Accordingly, this study proposes a novel multilayer structure utilizing a cyclo-olefin polymer-based film. This solution significantly reduces process time and cost while achieving remarkable barrier performance. Optimization involved presenting various models and enhancing substrate–film adhesion via ultraviolet or plasma treatment, consequently improving water vapor transmission rate. Furthermore, the optimized structure’s feasibility as an OLED encapsulation layer was confirmed. These results promise to enhance core technological capabilities, improving production yield and minimizing costs—key factors for next-generation displays. Full article
Show Figures

Graphical abstract

21 pages, 6090 KB  
Article
Preparation of ZnCl2-Activated Magnetic Biochar and Its Performance in Removing Hexavalent Chromium from Water
by Pingqiang Gao, Zhe Tan, Yonghao Yan, Min Yang, Shuai Han, Chen Yang, Shuai Li and Yan Zhang
Nanomaterials 2025, 15(20), 1586; https://doi.org/10.3390/nano15201586 - 17 Oct 2025
Viewed by 366
Abstract
Magnetic biochar (Zn/Fe-BC) was prepared from jujube branches via an impregnation pyrolysis–coprecipitation technique to eliminate Cr(VI) from water. ZnFe2O4 was introduced through ZnCl2-based impregnation and pyrolysis, which can regulate the microstructure of hydrocarbon frameworks. Furthermore, FeSO4·7H [...] Read more.
Magnetic biochar (Zn/Fe-BC) was prepared from jujube branches via an impregnation pyrolysis–coprecipitation technique to eliminate Cr(VI) from water. ZnFe2O4 was introduced through ZnCl2-based impregnation and pyrolysis, which can regulate the microstructure of hydrocarbon frameworks. Furthermore, FeSO4·7H2O was used as the precursor for co-precipitation to embed Fe3O4 into the material, improving its reducibility and magnetism. The results demonstrated that Zn/Fe-BC exhibited excellent Cr(VI) removal efficiency. Under optimal conditions (an initial Cr(VI) concentration of 50 mg/L, pH 2, and an adsorbent dosage of 2 g/L), the maximum adsorption capacity of Zn/Fe-BC reached 27.85 mg/g, which was significantly higher than that of unmodified biochar (23.20 mg/g). Following five cycles of adsorption and desorption, the desorption efficiency was still higher than 60.35%. The following were the inhibitory effects of coexisting anions on the elimination of Cr(VI): CO32− > PO43− > SO42− > NO3. According to kinetic and isothermal adsorption experiments, the adsorption process adhered to the Freundlich isotherm and followed a pseudo-second-order kinetic model, indicating a multilayer adsorption process. Cr(VI) removal by Zn/Fe-BC was driven by physical adsorption and chemical reduction, involving a synergistic combination of electrostatic attraction, reduction, complexation, precipitation, and pore filling. These findings demonstrate the potential of the Zn/Fe-BC magnetic biochar as an effective adsorbent for Cr(VI) remediation in water treatment applications. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

17 pages, 5460 KB  
Article
Peroxydisulfate Activation by Pyrolysis Products of Iron Grinding Sludge and Polyethylene Glycol for Methylene Blue Degradation: Mechanism and Performance
by De-Feng Kong, Hui-Lai Liu, Yi Han, Ting Shi, De-Jin Wang and Xing Chen
Nanomaterials 2025, 15(20), 1585; https://doi.org/10.3390/nano15201585 - 17 Oct 2025
Viewed by 302
Abstract
The pollution problem of iron grinding sludge (IS) and polyethylene glycol (PEG) threatens the ecosystem and human health. In this study, an iron-rich catalyst (ISPEG) was prepared by co-pyrolysis of grinding sludge and polyethylene glycol and used to activate peroxydisulfate (PDS) for degrading [...] Read more.
The pollution problem of iron grinding sludge (IS) and polyethylene glycol (PEG) threatens the ecosystem and human health. In this study, an iron-rich catalyst (ISPEG) was prepared by co-pyrolysis of grinding sludge and polyethylene glycol and used to activate peroxydisulfate (PDS) for degrading organic wastewater. In the ISPEG/PDS system, methylene blue (MB) was almost completely removed within 60 min with an apparent rate constant (Kobs) of 0.32 min−1 and a wide range of pH. The effects of IS doping ratio, pyrolysis temperature, catalyst injection, PDS concentration, co-existing ions, and pH on MB removal were investigated. The results showed that ISPEG/PDS had a high removal rate of various organics in the water column. The catalytic mechanism of the ISPEG/PDS system was explored by free radical quenching, electron paramagnetic resonance, and frontier orbital theory studies, in which the main active substance for degrading SDZ was SO4•−. Finally, the degradation pathways of MB in the ISPEG/PDS system were analyzed by LC-MS. These results indicate that the ISPEG/PDS system has the potential to treat organic wastewater under the concept of waste control waste. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

11 pages, 2467 KB  
Article
Scatterers of Non-Electric-Dipole Radiation
by Yafei Li, Zhihui Liu, Shuanglong Cheng, Mansha Li, Jianchao Meng, Tao Jiang, Jiani Li, Zhuangzhuang Xu, Xike Qian, Meng Wang and Ze Li
Nanomaterials 2025, 15(20), 1584; https://doi.org/10.3390/nano15201584 - 17 Oct 2025
Viewed by 277
Abstract
We theoretically demonstrate that nonmagnetic silicon nanodisk dimers, under plane-wave illumination, can achieve electric dipole mode-free by suppressing electric dipole responses at magnetic resonance frequencies through structural parameter tuning. This is enabled by the anapole mode, where destructive interference between Cartesian electric and [...] Read more.
We theoretically demonstrate that nonmagnetic silicon nanodisk dimers, under plane-wave illumination, can achieve electric dipole mode-free by suppressing electric dipole responses at magnetic resonance frequencies through structural parameter tuning. This is enabled by the anapole mode, where destructive interference between Cartesian electric and toroidal dipole moments results in low spherical electric dipole scattering. Furthermore, the magnetic resonance responses in this nanostructure are tunable within the visible spectrum and compatible with current nanofabrication technology. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

15 pages, 2122 KB  
Article
DNA–Gold Nanoparticle Dumbbells: Synthesis and Nanoscale Characterization
by Esraa Hijaze, Liat Katrivas, Zakhar Reveguk, Shachar Richter and Alexander B. Kotlyar
Nanomaterials 2025, 15(20), 1583; https://doi.org/10.3390/nano15201583 - 17 Oct 2025
Viewed by 374
Abstract
We report an efficient, high-yield method for synthesizing dumbbell-shaped conjugates composed of gold nanoparticles (AuNPs) connected by double-stranded (ds) DNA. The dsDNA, bearing terminal thiol groups, was covalently attached to two AuNPs to form uniform constructs comprising either 15 nm or 25 nm [...] Read more.
We report an efficient, high-yield method for synthesizing dumbbell-shaped conjugates composed of gold nanoparticles (AuNPs) connected by double-stranded (ds) DNA. The dsDNA, bearing terminal thiol groups, was covalently attached to two AuNPs to form uniform constructs comprising either 15 nm or 25 nm particles bridged by 38 base pairs (bp) or 100 bp dsDNA. The dumbbells were purified by gel electrophoresis and exhibited high stability, remaining intact for several days in pure water or buffers at ambient temperature. Deposition onto solid substrates followed by drying, however, led to their partial structural collapse. TEM imaging showed that deposition on carbon grids typically yielded dumbbell structures with interparticle gaps of only 1–2 nm, suggesting that the dsDNA bridge contracts during deposition and drying. However, deposition on polylysine-coated mica for AFM imaging preserved the native geometry, with the gaps consistent with the expected DNA length. Our results reveal that deposition significantly affects the structure and integrity of dsDNA bridges in dumbbell constructs, highlighting the importance of appropriate substrate and surface coating selection for reliable characterization of DNA properties in dried dumbbells. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

15 pages, 3834 KB  
Article
Nanomechanical Properties of Rib Bones in Diabetic vs. Healthy Rat Models
by Tamás Tarjányi, Csaba Rosztóczy, Ferenc Peták, Fruzsina Kun-Szabó, Gábor Gulyás, József Tolnai, Krisztián Bali, Petra Somogyi, Rebeka Anna Kiss and Gergely H. Fodor
Nanomaterials 2025, 15(20), 1582; https://doi.org/10.3390/nano15201582 - 17 Oct 2025
Viewed by 386
Abstract
This study examines how diabetes mellitus and physiological aging influence the nanomechanical behavior of rat rib cortical bone using combined static and dynamic nanoindentation. Ribs from young control, old, and streptozotocin-induced diabetic rats were analyzed to quantify both intrinsic and frequency-dependent mechanical properties. [...] Read more.
This study examines how diabetes mellitus and physiological aging influence the nanomechanical behavior of rat rib cortical bone using combined static and dynamic nanoindentation. Ribs from young control, old, and streptozotocin-induced diabetic rats were analyzed to quantify both intrinsic and frequency-dependent mechanical properties. Static nanoindentation revealed markedly higher hardness and elastic modulus in the diabetic group (0.47 ± 0.22 GPa and 9.53 ± 3.03 GPa, respectively) compared to controls (0.11 ± 0.03 GPa and 3.21 ± 0.51 GPa; p < 0.001). The modulus-to-hardness ratio, an indicator of fracture toughness, was reduced from 30.34 in controls to 20.45 in diabetics, suggesting increased stiffness but greater brittleness. Dynamic nanoindentation (0–4.5 Hz) demonstrated significant aging-related changes in the storage and loss moduli (p < 0.001), while the loss factor (tan δ < 1) and viscosity remained similar across groups, indicating predominantly solid-like behavior. These results show that diabetes stiffens bone tissue through matrix-level alterations, whereas aging primarily affects its viscoelastic damping capacity. The combined static–dynamic nanoindentation protocol provides a robust framework for distinguishing disease- and age-related bone degradation at the tissue scale. Translationally, the findings help explain why bones in diabetic or elderly individuals may fracture despite normal mineral density, underscoring the need to assess bone quality beyond conventional densitometry. Full article
(This article belongs to the Special Issue Advances in Nanoindentation and Nanomechanics)
Show Figures

Graphical abstract

13 pages, 2413 KB  
Article
A Small-Angle Neutron Scattering Methodology for Quantitative Characterization of Channel Width in Gamma Matrix Phase
by Zhong Chen, Tianfu Li, Erdong Wu, Xiaoming Du, Shaohua Zhang, Shibo Yan, Zijun Wang, Kai Sun and Dongfeng Chen
Nanomaterials 2025, 15(20), 1581; https://doi.org/10.3390/nano15201581 - 16 Oct 2025
Viewed by 312
Abstract
This study establishes a robust small-angle neutron scattering (SANS) methodology for the quantitative characterization of γ matrix channel widths in the nickel-based single-crystal superalloy DD10. By combining SANS with TEM analyses and modeling the one-dimensional SANS data via a polydisperse lamellar model, we [...] Read more.
This study establishes a robust small-angle neutron scattering (SANS) methodology for the quantitative characterization of γ matrix channel widths in the nickel-based single-crystal superalloy DD10. By combining SANS with TEM analyses and modeling the one-dimensional SANS data via a polydisperse lamellar model, we accurately determined the channel width distribution across macroscopic sample volumes. In the virgin state, the mean channel widths were nearly isotropic, measuring 17.8 ± 0.1 nm along [002] and 20.5 ± 0.1 nm along [020]. After standard heat treatment (solution and two-step aging), significant anisotropic coarsening was observed, with widths increasing to 36.8 ± 0.2 nm along [002] and 28.0 ± 0.1 nm along [020], indicating stress-free rafting. Elemental mapping revealed substantial redistribution of key alloying elements: Al content in γ′ precipitates increased by 2.6 at.%, while Cr in the γ channels rose by 5.9 at.%. These quantitative results demonstrate that SANS provides reliable, bulk-statistical insights into nanoscale channel geometry, highlighting its critical role in influencing elemental diffusion kinetics and microstructural evolution during thermal exposure. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

16 pages, 6023 KB  
Article
Electromagnetic Shielding Performance of Ta-Doped NiFe2O4 Composites Reinforced with Chopped Strands for 7–18 GHz Applications
by Mehriban Emek, Ethem İlhan Şahin, Jamal Eldin F. M. Ibrahim and Mesut Kartal
Nanomaterials 2025, 15(20), 1580; https://doi.org/10.3390/nano15201580 - 16 Oct 2025
Viewed by 288
Abstract
This study reports the synthesis, structural characterization, and electromagnetic shielding performance of tantalum (Ta)-doped nickel ferrite (NiFe2O4) composites reinforced with chopped strands. Ta-doped NiFe2O4 powders were prepared via the conventional mixed-oxide route and sintered at 1200 [...] Read more.
This study reports the synthesis, structural characterization, and electromagnetic shielding performance of tantalum (Ta)-doped nickel ferrite (NiFe2O4) composites reinforced with chopped strands. Ta-doped NiFe2O4 powders were prepared via the conventional mixed-oxide route and sintered at 1200 °C for 4 h, resulting in a well-crystallized single-phase spinel structure. Comprehensive structural and chemical analyses were carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), confirming the successful incorporation of Ta into the NiFe2O4 lattice and the uniform microstructural distribution. The ferrite powders were subsequently embedded with chopped strands and epoxy resin through hot pressing to fabricate composites with varying filler contents. The electromagnetic interference (EMI) shielding effectiveness (SE) of the composites was systematically evaluated in the 7–18 GHz frequency range using a network analyzer (NA). The optimized composite, with a thickness of 1.2 mm, demonstrated a maximum SE of 34.74 dB at 17.4 GHz, primarily attributed to interfacial polarization, dipolar relaxation, and multiple scattering effects induced by the chopped strands. The results indicate that the shielding performance of the composites can be precisely tuned by modifying the filler concentration and microstructural characteristics, enabling selective frequency-band applications. Overall, this work highlights the potential of Ta-doped NiFe2O4/chopped strand composites as lightweight, cost-effective, and high-performance candidates for advanced microwave absorption and electromagnetic shielding applications in defense, and next-generation communication technologies. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

15 pages, 4211 KB  
Article
Reusable BiOI-Modified CuWO4 Heterojunction Films and Their Excellent Photocatalytic Oxidation Activity of Nanoplastics and Methylene Blue
by Te Hu, Liang Hao, Xiaohui Zhao, Sujun Guan and Yun Lu
Nanomaterials 2025, 15(20), 1579; https://doi.org/10.3390/nano15201579 - 16 Oct 2025
Viewed by 290
Abstract
CuWO4 films were prepared on FTO glass substrates by the hydrothermal method. To improve their photocatalytic activity, the CuWO4 films were further modified with BiOI using the successive ionic layer adsorption and reaction (SILAR) method. Characterization results indicate that BiOI and [...] Read more.
CuWO4 films were prepared on FTO glass substrates by the hydrothermal method. To improve their photocatalytic activity, the CuWO4 films were further modified with BiOI using the successive ionic layer adsorption and reaction (SILAR) method. Characterization results indicate that BiOI and CuWO4 achieved nanoscale mixing and formed a Type II p-n heterojunction. The heterojunction formation not only extends the light absorption threshold of CuWO4 from 530 nm to 660 nm but also enhances the light absorption capacity across the entire solar spectrum. More importantly, the heterojunction formation facilitates the separation and transfer of photogenerated carriers and inhibits the recombination of photogenerated electrons and holes, which is evidenced by the results of PL spectra, photocurrent density, and EIS spectra. Compared with individual CuWO4 films, the photocatalytic activity of BiOI/CuWO4 heterojunction films in degrading the organic dye MB is increased by up to 1.17 times. Additionally, BiOI/CuWO4 heterojunction films exhibit certain activity in the photocatalytic degradation of polystyrene (PS) nanoplastics and are capable of reducing the average particle size of nanoplastics from 425 nm to 325 nm within 80 h. Full article
Show Figures

Graphical abstract

19 pages, 4980 KB  
Article
Combustion-Synthesized BaAl2O4: Eu2+, Nd3+, Pr3+ Triple-Co-Doped Long-Afterglow Phosphors: Luminescence and Anti-Counterfeiting Applications
by Chuanming Wang, Jigang Wang, Yuansheng Qi, Jindi Hu, Haiming Li, Jianhui Lv, Xiaohan Cheng, Deyu Pan, Zhenjun Li and Junming Li
Nanomaterials 2025, 15(20), 1578; https://doi.org/10.3390/nano15201578 - 16 Oct 2025
Viewed by 344
Abstract
Solution combustion-synthesized BaAl2O4: Eu2+, Nd3+, and Pr3+ blue–green long-afterglow phosphors are prepared and systematically investigated. First, XRD confirms the BaAl2O4 host and screens for trace residual features. SEM reveals the agglomerated [...] Read more.
Solution combustion-synthesized BaAl2O4: Eu2+, Nd3+, and Pr3+ blue–green long-afterglow phosphors are prepared and systematically investigated. First, XRD confirms the BaAl2O4 host and screens for trace residual features. SEM reveals the agglomerated granular morphology typical of combustion products. XPS verifies the valence states (Eu2+, Nd3+, Pr3+) and the chemical environment of the host lattice. UV-Vis diffuse reflectance spectra, transformed via the Kubelka–Munk function and analyzed using Tauc plots (indirect-allowed), indicate a wide band gap of the BaAl2O4 host with small, systematic shifts upon Nd3+/Pr3+ co-doping. PL measurements show Eu2+ 4f–5d emission and co-dopant-assisted excitation/defect pathways without altering the Eu2+ emission band shape. Afterglow lifetime and decay analyses correlate trap depth/distribution with the extended persistence. Finally, we demonstrate anti-counterfeiting by (i) snowflake printing and (ii) a binary 3 × 3 grid printed with two afterglow inks of different lifetimes to realize multi-level authentication. The sequential evidence links structure, chemistry, optical absorption, carrier trapping, and practical readout, providing a coherent basis for performance enhancement and application. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

29 pages, 22311 KB  
Article
Comprehensive Optoelectronic Study of Copper Nitride: Dielectric Function and Bandgap Energies
by Manuel Ballester, Almudena P. Marquez, Eduardo Blanco, Jose M. Manuel, Maria I. Rodriguez-Tapiador, Susana M. Fernandez, Florian Willomitzer, Aggelos K. Katsaggelos and Emilio Marquez
Nanomaterials 2025, 15(20), 1577; https://doi.org/10.3390/nano15201577 - 16 Oct 2025
Viewed by 288
Abstract
Copper nitride (Cu3N) is gaining attention as an eco-friendly thin-film semiconductor in a myriad of applications, including storage devices, microelectronic components, photodetectors, and photovoltaic cells. This work presents a detailed optoelectronic study of Cu3N thin films grown by reactive [...] Read more.
Copper nitride (Cu3N) is gaining attention as an eco-friendly thin-film semiconductor in a myriad of applications, including storage devices, microelectronic components, photodetectors, and photovoltaic cells. This work presents a detailed optoelectronic study of Cu3N thin films grown by reactive RF-magnetron sputtering under pure N2. An overview of the state-of-the-art literature on this material and its potential applications is also provided. The studied films consist of Cu3N polycrystals with a cubic anti-ReO3 type structure exhibiting a preferential (100) orientation. Their optical properties across the UV-Vis-NIR spectral range were investigated using a combination of multi-angle spectroscopic ellipsometry, broadband transmission, and reflection measurements. Our model employs a stratified geometrical approach, primarily to capture the depth-dependent compositional variations of the Cu3N film while also accounting for surface roughness and the underlying glass substrate. The complex dielectric function of the film material is precisely determined through an advanced dispersion model that combines multiple oscillators. By integrating the Tauc–Lorentz, Gaussian, and Drude models, this approach captures the distinct electronic transitions of this polycrystal. This customized optical model allowed us to accurate extract both the indirect (1.83–1.85 eV) and direct (2.38–2.39 eV) bandgaps. Our multifaceted characterization provides one of the most extensive studies of Cu3N thin films to date, paving the way for optimized device applications and broader utilization of this promising binary semiconductor, and showing its particular potential for photovoltaic given its adequate bandgap energies for solar applications. Full article
Show Figures

Figure 1

14 pages, 3840 KB  
Article
Building Polyacryronitrile Fiber/Epoxy Resin (PANER) Interleaving Film to Strengthen Flexural and Compressive Performances of Laminated CFRP Composites
by Sidra Ashfaq, Jiaxin He, Yanan Lyu, Fei Cheng, Xiang Yuan, Xueling Liang, Shuying Shi, Evgeny Lomakin, Daria Bondarchuk, Rasuljon Tojiyev, Hao Liu, Xiaozhi Hu and Xi Chen
Nanomaterials 2025, 15(20), 1576; https://doi.org/10.3390/nano15201576 - 16 Oct 2025
Viewed by 327
Abstract
Carbon fiber-reinforced polymer (CFRP) composites have excellent mechanical properties, but their performance is hampered by delamination caused by weak interfacial bonding and resin-rich region (RRR). This research has proposed an interleaving film to improve interlaminar structure and mechanical properties by adding polyacrylonitrile (PAN) [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites have excellent mechanical properties, but their performance is hampered by delamination caused by weak interfacial bonding and resin-rich region (RRR). This research has proposed an interleaving film to improve interlaminar structure and mechanical properties by adding polyacrylonitrile (PAN) fiber into the epoxy interlayer of the CFRP laminates. The PAN fiber/epoxy resin (PANER) interleaving film could be prepared, which was beneficial to hinder crack initiation paths and improve the load transfer. Flexural and compression performance testing results showed optimum performance was obtained when 2 wt.% PAN fiber was added, and an increment of 28.6% was obtained in the flexural strength and 11.7% increment in compressive strength. The damaged energy absorption was improved up to 21.4% and 11.3% for the flexural and compressive properties, respectively. The overall thickness increments in the interlayer with PANER interleaving film were approximately 4–9 μm. X-Ray micro-computed tomography and scanning electron microscopy observations exhibited the potential of PAN fiber in the reduction of RRR, resulting in modes replacement from delamination-dominant failure to crossing-multi-layer failure. In all, PANER interleaving film at the interlayer has been confirmed to be an effective approach to produce a simple reinforcement technology for FRP laminates. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

10 pages, 2185 KB  
Article
Enhancing Structural and Interfacial Stability of NaNi1/3Mn1/3Fe1/3O2 Cathodes via Sb3+ Doping for Sodium Ion Batteries
by Yong Liu, You Shi, Mengjie Zhang, Dan Sun, Huanhuan Li, Haiyan Wang and Yougen Tang
Nanomaterials 2025, 15(20), 1575; https://doi.org/10.3390/nano15201575 - 16 Oct 2025
Viewed by 292
Abstract
O3-type NaNi1/3Mn1/3Fe1/3O2 (NFM) cathodes for sodium-ion batteries face critical challenges of sluggish Na+ diffusion and structural degradation during cycling. In this study, we implement an Sb3+ doping strategy that enhances structural stability and interfacial [...] Read more.
O3-type NaNi1/3Mn1/3Fe1/3O2 (NFM) cathodes for sodium-ion batteries face critical challenges of sluggish Na+ diffusion and structural degradation during cycling. In this study, we implement an Sb3+ doping strategy that enhances structural stability and interfacial stability by modulating the NFM grain morphology to promote densification of primary particles and shorten Na+ migration paths. The optimized Sb-doped NFM1Sb (1%mol Sb) cathode exhibits excellent electrochemical performance, achieving 86.48% capacity retention after 200 cycles at 1 C and a high rate capability of 122.2 mAh g−1 at 5 C. These improvements are attributed to the alleviation of stress concentration and suppression of microcrack formation during cycling. This work demonstrates the critical role of grain morphology regulation through heavy-metal doping in developing long-life and high-rate SIBs, providing a viable pathway toward next-generation energy storage systems. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

19 pages, 6030 KB  
Article
Towards the Removal of HMTA Molecules in the Chemical Bath Deposition of ZnO Nanowires
by Adrien Baillard, Estelle Appert, Fabrice Wilhelm, Eirini Sarigiannidou and Vincent Consonni
Nanomaterials 2025, 15(20), 1574; https://doi.org/10.3390/nano15201574 - 16 Oct 2025
Viewed by 334
Abstract
The chemical bath deposition of ZnO nanowires is of high interest for many functional devices, but the typical use of hexamethylenetetramine (HMTA) molecules forming formaldehyde as a harmful substance raises health, environment, and regulation issues. After a careful review of the multiple roles [...] Read more.
The chemical bath deposition of ZnO nanowires is of high interest for many functional devices, but the typical use of hexamethylenetetramine (HMTA) molecules forming formaldehyde as a harmful substance raises health, environment, and regulation issues. After a careful review of the multiple roles of HMTA molecules, we unambiguously show, using X-ray near-edge structure absorption spectroscopy with synchrotron radiation, that they do not form any complexes with the Zn(II) species, both in the low- and high-pH regions. In contrast and in agreement with thermodynamic computations, [Zn(H2O)6]2+ and Zn(NH3)42+ ion complexes are revealed to be the predominant Zn(II) species in the low- and high-pH regions. The use of HMTA molecules is found to be critical to form ZnO nanowires with a high aspect ratio in the low-pH region. In contrast, HMTA molecules are shown to be fully substituted by ammonia in the high-pH region to form ZnO nanowires with a high structural and optical quality. The removal of HMTA molecules for the chemical bath deposition of ZnO nanowires in the high-pH region represents a significant step forward towards the development of a chemical synthesis fully compatible with green chemistry. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop