Harnessing Biogenic Silica: Nanoarchitected Pt3Pd1 on Nettle-Derived N,Si-CQDs for High-Performance Methanol Electrooxidation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of N,Si-CQDs
2.3. Preparation of Pt-, Pd- and Pt3Pd1/N,Si-CQDs
2.4. Physical and Chemical Characterization
2.5. Electrochemical Measurements
3. Results
3.1. Characterization of N,Si-CQDs
3.2. Characterization of Pt-, Pd-, and Pt3Pd1/N,Si-CQDs
3.3. Catalytic Performance of Pt-, Pd-, and Pt3Pd1/N,Si-CQDs
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DMFCs | Direct methanol fuel cells |
MOR | Methanol oxidation reaction |
ORR | Oxygen reduction reaction |
CO | Carbon monoxide |
CQDs | Carbon quantum dots |
MCE | Mixed cellulose esters |
UV-Vis | Ultraviolet visible |
PL | Photoluminescence |
EEM | Excitation emission matrix |
ATR-FTIR | Attenuated total reflection-Fourier transform infrared |
XRD | X-ray diffraction |
ICDD | International center for diffraction data |
JCPDS | Joint committee on powder diffraction standards |
XPS | X-ray photoelectron spectroscopy |
TEM | Transmission electron microscopy |
NIH | National Institutes of Health |
GC | Glassy carbon |
CV | Cyclic voltammetry |
MA | Mass activity |
SA | Specific activity |
CA | Chronoamperometry |
ADT | Accelerated durability test |
ECSA | Electrochemically active surface area |
MeOH | Methanol |
References
- Dohle, H.; Schmitz, H.; Bewer, T.; Mergel, J.; Stolten, D. Development of a compact 500 W class direct methanol fuel cell stack. J. Power Sources 2002, 106, 313–322. [Google Scholar] [CrossRef]
- Gasteiger, H.A.; Markovic, N.; Ross, P.N., Jr.; Cairns, E.J. Methanol Electrooxidation on Well-Characterized Platinum-Ruthenium Bulk Alloys. J. Phys. Chem. 1993, 97, 12020–12029. [Google Scholar] [CrossRef]
- Dillon, R.; Srinivasan, S.; Arico, A.S.; Antonucci, V. International activities in DMFC R&D: Status of technologies and potential applications. J. Power Sources 2004, 127, 112–126. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, H.M.; Gupta, R.K.; Kumar, A. Recent Advancements and Prospects in Noble and Non-Noble Electrocatalysts for Materials Methanol Oxidation Reactions. Discov. Nano 2024, 19, 128. [Google Scholar] [CrossRef] [PubMed]
- Beygisangchin, M.; Kamarudin, S.K.; Abdul Rashid, S.; Md Ishak, N.A.I.; Karim, N.A.; Jakmunee, J.; Letchumanan, I.; Hanapi, I.H.; Osman, S.H.; Baghdadi, A.H. Anode electrocatalysts and their supporting materials for methanol oxidation reaction based on research conducted in recent five years: Comprehensive review. J. Environ. Chem. Eng. 2024, 12, 114447. [Google Scholar] [CrossRef]
- Yousaf, A.B.; Imran, M.; Uwitonze, N.; Zeb, A.; Zaidi, S.J.; Ansari, T.M.; Yasmeen, G.; Manzoor, S. Enhanced Electrocatalytic Performance of Pt3Pd1 Alloys Supported on CeO2/C for Methanol Oxidation and Oxygen Reduction Reactions. J. Phys. Chem. C 2017, 121, 2069–2079. [Google Scholar] [CrossRef]
- Kim, D.; Ryou, K.-E.; Park, G.; Jung, S.; Park, J.; Kim, M.; Jang, J.; Song, M.; Kim, S.; Kim, J.; et al. Tailoring Mesopores on Ultrathin Hollow Carbon Nanoarchitecture with N2O2 Coordinated Ni Single-Atom Catalysts for Hydrogen Evolution. J. Am. Chem. Soc. 2025, 147, 16522–16535. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Leong, K.K.; Amiralian, N.; Bando, Y.; Ahamad, T.; Alshehri, S.M.; Yamauchi, Y. Nanoarchitectured MOF-derived Porous Carbons: Road to Future Carbon Materials. Appl. Phys. Rev. 2024, 11, 041317. [Google Scholar] [CrossRef]
- Kim, M.; Xin, R.; Earnshaw, J.; Tang, J.; Hill, J.P.; Ashok, A.; Kumar, A.; Nanjundan, A.K.; Kim, J.; Young, C.; et al. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nat. Protoc. 2022, 17, 2990–3027. [Google Scholar] [CrossRef]
- Zhang, A.; Li, X.; He, Y. Platinum/nitrogen-doped carbon nanoparticles synthesized in nitrogen-doped carbon quantum dots aqueous solution for methanol electro-oxidation. Electrochim. Acta 2016, 213, 332–340. [Google Scholar] [CrossRef]
- Ozyurt, D.; Al Kobaisi, M.; Hocking, R.K.; Fox, B. Properties, synthesis, and applications of carbon dots: A review. Carbon Trends 2023, 12, 100276. [Google Scholar] [CrossRef]
- Tian, L.; Li, Z.; Wang, P.; Zhai, X.; Wang, X.; Li, T. Carbon quantum dots for advanced electrocatalysis. J. Energy Chem. 2021, 55, 279–294. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Dong, P.; Huang, J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front. Chem. 2019, 7, 671. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Wang, Z.-B.; Li, C.; Zhao, L.; Liu, J.; Zhang, L.-M.; Gu, D.-M. Multiwall-carbon nanotube modified by N-doped carbon quantum dots as Pt catalyst support for methanol electrooxidation. J. Power Sources 2015, 289, 63–70. [Google Scholar] [CrossRef]
- Qian, Z.; Shan, X.; Chai, L.; Ma, J.; Chen, J.; Feng, H. Si-Doped Carbon Quantum Dots: A Facile and General Preparation Strategy, Bioimaging Application, and Multifunctional Sensor. ACS Appl. Mater. Interfaces 2014, 6, 6797–6805. [Google Scholar] [CrossRef]
- Beyhan, S.; Coutanceau, C.; Léger, J.-M.; Napporn, T.W.; Kadırgan, F. Promising Anode Candidates for Direct Ethanol Fuel Cell: Carbon Supported PtSn-Based Trimetallic Catalysts Prepared by Bönnemann Method. Int. J. Hydrogen Energy 2013, 38, 6830–6841. [Google Scholar] [CrossRef]
- Beyhan, S.; Léger, J.-M.; Kadırgan, F. Pronounced synergetic effect of the nano-sized PtSnNi/C catalyst for ethanol oxidation in direct ethanol fuel cell. Appl. Catal. B Environ. 2013, 130–131, 305–313. [Google Scholar] [CrossRef]
- Li, W.; Zhou, W.; Li, H.; Zhou, Z.; Zhou, B.; Sun, G.; Xin, Q. Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim. Acta 2004, 49, 1045–1055. [Google Scholar] [CrossRef]
- Nguyen, K.G.; Baragau, I.-A.; Gromicova, R.; Nicolaev, A.; Thomson, S.A.J.; Rennie, A.; Power, N.P.; Sajjad, M.T.; Kellici, S. Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening. Sci. Rep. 2022, 12, 13806. [Google Scholar] [CrossRef] [PubMed]
- Marković, Z.M.; Budimir, M.D.; Danko, M.; Milivojević, D.D.; Kubat, P.; Zmejkoski, D.Z.; Pavlović, V.B.; Mojsin, M.M.; Stevanović, M.J.; Todorović Marković, B.M. Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. Beilstein J. Nanotechnol. 2023, 14, 165–174. [Google Scholar] [CrossRef]
- Wang, W.; Kim, T.; Yan, Z.; Zhu, G.; Cole, I.; Nguyen, N.-T.; Li, Q. Carbon Dots Functionalized by Organosilane with Double-Sided Anchoring for Nanomolar Hg2+ Detection. J. Colloid Interface Sci. 2015, 437, 28–34. [Google Scholar] [CrossRef]
- Lin, Z.; Dou, X.; Li, H.; Chen, Q.; Lin, J.-M. Silicon-hybrid carbon dots strongly enhance the chemiluminescence of luminol. Microchim. Acta 2014, 181, 805–811. [Google Scholar] [CrossRef]
- Chen, P.-C.; Chen, Y.-N.; Hsu, P.-C.; Shih, C.-C.; Chang, H.-T. Photoluminescent organosilane-functionalized carbon dots as temperature probes. Chem. Commun. 2013, 49, 1639–1641. [Google Scholar] [CrossRef]
- Zhao, F.; Li, X.; Zuo, M.; Liang, Y.; Qin, P.; Wang, H.; Wu, Z.; Luo, L.; Liu, C.; Leng, L. Preparation of photocatalysts decorated by carbon quantum dots (CQDs) and their applications: A review. J. Environ. Chem. Eng. 2023, 11, 109487. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Y.; Shao, Y.; Sun, Y. High Quality Nitrogen and Silicon Co-Doped Carbon Dots (N/Si–CDs) for Fe3+ Sensing. J. Nanosci. Nanotechnol. 2018, 18, 4196–4203. [Google Scholar] [CrossRef]
- Shen, F.; Lu, Z.; Yan, K.; Luo, K.; Pei, S.; Xiang, P. Synthesis and properties of carbon quantum dots as an antimicrobial agent and detection of ciprofloxacin. Sci. Rep. 2025, 15, 28535. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shi, H.; Yang, M.; Yan, Y.; Liu, E.; Ji, Z.; Fan, J. Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions. Mater. Res. Bull. 2020, 124, 110730. [Google Scholar] [CrossRef]
- Liu, P.; Ga, L.; Wang, Y.; Ai, J. Synthesis of temperature sensing nitrogen-doped carbon dots and their application in fluorescent ink. Molecules 2023, 28, 6607. [Google Scholar] [CrossRef]
- Dolling, D.S.; Chen, J.; Schober, J.-C.; Creutzburg, M.; Jeromin, A.; Vonk, V.; Sharapa, D.I.; Keller, T.F.; Plessow, P.N.; Noei, H.; et al. Probing Active Sites on Pd/Pt Alloy Nanoparticles by CO Adsorption. ACS Nano 2024, 18, 31098–31108. [Google Scholar] [CrossRef]
- McEnaney, J.M.; Schaak, R.E. Solution Synthesis of Metal Silicide Nanoparticles. Inorg. Chem. 2015, 54, 707–709. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, L.; Long, R.; Ma, L.; Wang, L.; Li, Z.; Xiong, Y. Anisotropic Growth of Palladium Twinned Nanostructures Controlled by Kinetics and Their Unusual Activities in Galvanic Replacement. J. Mater. Chem. 2012, 22, 8195–8198. [Google Scholar] [CrossRef]
- Okumura, M.; Sakane, S.; Kitagawa, Y.; Kawakami, T.; Toshima, N.; Yamaguchi, K. DFT Studies of the Characteristics of Pd–Pt Core–Shell Clusters. Res. Chem. Intermed. 2008, 34, 737–742. [Google Scholar] [CrossRef]
- Wang, M.; Hu, Z.; Lv, J.; Yin, Z.; Xu, Z.; Liu, J.; Feng, S.; Wang, X.; He, J.; Luo, S.; et al. Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction. Interdiscip. Mater. 2024, 3, 907–918. [Google Scholar] [CrossRef]
- Lallo, J.; Tenney, S.A.; Kramer, A.; Sutter, P.; Batzill, M. Oxidation of palladium on Au(111) and ZnO(0001) supports. J. Chem. Phys. 2014, 141, 154702. [Google Scholar] [CrossRef]
- Wang, R.; Lou, M.; Zhang, J.; Sun, Z.; Li, Z.; Wen, P. ZIF-8@ZIF-67-Derived Co Embedded into Nitrogen-Doped Carbon Nanotube Hollow Porous Carbon Supported Pt as an Efficient Electrocatalyst for Methanol Oxidation. Nanomaterials 2021, 11, 2491. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Li, H.; Huang, B.; Ji, D.; Li, G.; Zhao, X. Precisely Engineered Nitrogen Dopants in Pd/NC Catalysts: Synergistic Pyridinic–Pyrrolic–Graphitic Triad for Alkaline Methanol Electrooxidation. Langmuir 2025, 41, 23582–23595. [Google Scholar] [CrossRef]
- Perini, L.; Durante, C.; Favaro, M.; Perazzolo, V.; Agnoli, S.; Schneider, O.; Granozzi, G.; Gennaro, A. Metal–Support Interaction in Platinum and Palladium Nanoparticles Loaded on Nitrogen-Doped Mesoporous Carbon for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2015, 7, 1170–1179. [Google Scholar] [CrossRef]
- Hou, G.; Parrondo, J.; Ramani, V.; Prakash, J. Kinetic and Mechanistic Investigation of Methanol Oxidation on a Smooth Polycrystalline Pt Surface. J. Electrochem. Soc. 2014, 161, F252–F258. [Google Scholar] [CrossRef]
- Reddy, G.V.; Raghavendra, P.; Sri Chandana, P.; Sarma, L.S. Halide-Aided Controlled Fabrication of Pt–Pd/Graphene Bimetallic Nanocomposites for Methanol Electrooxidation. RSC Adv. 2015, 5, 100522–100530. [Google Scholar] [CrossRef]
- Xiang, L.; Hu, Y.; Zhao, Y.; Cao, S.; Kuai, L. Carbon-Supported High-Loading Sub-4 nm PtCo Alloy Electrocatalysts for Superior Oxygen Reduction Reaction. Nanomaterials 2023, 13, 2367. [Google Scholar] [CrossRef]
- Ning, X.; Li, Y.; Dong, B.; Wang, H.; Yu, H.; Peng, F.; Yang, Y. Electron Transfer Dependent Catalysis of Pt on N-Doped Carbon Nanotubes: Effects of Synthesis Method on Metal–Support Interaction. J. Catal. 2017, 348, 100–109. [Google Scholar] [CrossRef]
- Osman, S.H.; Kamarudin, S.K.; Basri, S.; Karim, N.A. Potential of 3D Hierarchical Porous TiO2-Graphene Aerogel (TiO2-GA) as Electrocatalyst Support for Direct Methanol Fuel Cells. Nanomaterials 2023, 13, 1819. [Google Scholar] [CrossRef]
- Wang, S.; Ma, L.; Song, D.; Yang, S. Au Doping PtNi Nanodendrites for Enhanced Electrocatalytic Methanol Oxidation Reaction. Nanomaterials 2023, 13, 2855. [Google Scholar] [CrossRef] [PubMed]
- Tate, G.L.; Mehrabadi, B.A.T.; Xiong, W.; Kenvin, A.; Monnier, J.R. Synthesis of Highly Active Pd@Cu–Pt/C Methanol Oxidation Electrocatalysts via Continuous, Co-Electroless Deposition. Nanomaterials 2021, 11, 793. [Google Scholar] [CrossRef]
- Ji, W.; Qi, W.; Tang, S.; Peng, H.; Li, S. Hydrothermal Synthesis of Ultrasmall Pt Nanoparticles as Highly Active Electrocatalysts for Methanol Oxidation. Nanomaterials 2015, 5, 2203–2211. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, S.; Li, P.; Ibraheem, S.; Li, J.; Deng, J.; Wei, Z. Surface Ru enriched structurally ordered intermetallic PtFe@PtRuFe core–shell nanostructure boosts methanol oxidation reaction catalysis. Appl. Catal. B Environ. 2019, 252, 120–127. [Google Scholar] [CrossRef]
- Bai, X.; Geng, J.; Zhao, S.; Li, H.; Li, F. Tunable hollow Pt@Ru dodecahedra via galvanic replacement for efficient methanol oxidation. ACS Appl. Mater. Interfaces 2020, 12, 23046–23050. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Wang, X.; Hu, J.; Liu, Y.; Fu, G.; Tang, Y. Concave PtCo nanocrosses for methanol oxidation reaction. Appl. Catal. B Environ. 2020, 277, 119135. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Li, S.; Li, M.; Liu, Y.; Fang, X.; Dai, X.; Zhang, X. Pt3Mn alloy nanostructure with high-index facets by Sn doping modified for highly catalytic active electro-oxidation reactions. J. Catal. 2021, 395, 282–292. [Google Scholar] [CrossRef]
- Dong, K.; Dai, H.; Pu, H.; Zhang, T.; Wang, Y.; Deng, Y. Synthesis of alloyed PtPd nanowires and study on their electro-catalytic performance to methanol oxidation reaction. Int. J. Hydrogen Energy 2023, 48, 35240–35249. [Google Scholar] [CrossRef]
- Dharmalingam, S.T.; Dar, M.A.; Gul, R.; Sundaram, M.M.; Alnaser, I.A.; Sivasubramanian, R. Nano-Octahedron Cobalt Oxide Decorated Graphene Nanocomposites for the Selective/Simultaneous Detection of Dopamine. Adv. Mater. Interfaces 2025, 12, 2400981. [Google Scholar] [CrossRef]
- Chen, X.; Ojha, K.; Koper, M.T.M. Subsurface Hydride Formation Leads to Slow Surface Adsorption Processes on a Pd(111) Single-Crystal Electrode in Acidic Electrolytes. JACS Au 2023, 3, 2780–2789. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.C.; Galeano, C.; Katsounaros, I.; Topalov, A.A.; Klingan, K.; Mayrhofer, K.J.J. Degradation mechanisms of platinum electrocatalysts under realistic fuel cell conditions. ACS Catal. 2012, 2, 832–843. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, Y.; Deng, S.; Zhu, R.; Zhang, S.; Zhang, J.; Zhao, Y.; Xia, Z. Platinum Alloys for Methanol Oxidation Electrocatalysis: Reaction Mechanism and Rational Design of Catalysts with Exceptional Activity and Stability. Catalysts 2024, 14, 60. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, X.-Z.; Hin, J.N.C.; Wang, H.; Friedrich, K.A.; Schulze, M. A Review of Platinum-Based Catalyst Layer Degradation in Proton Exchange Membrane Fuel Cells. J. Power Sources 2009, 194, 588–600. [Google Scholar] [CrossRef]
Element | BEs (at.%) | Identification | |||
---|---|---|---|---|---|
S0 | S1 | S2 | S3 | ||
Pt 4f7/2 | - | 71.33 (100) | - | 71.29 (100) | Pt0 |
Pd 3d5/2 | - | - | 334.87 (100) | 335.38 (61) 337.70 (39) | Pd0 Pd2+ |
O 1s | 531.03 (83) 532.03 (17) | 531.44 (69) 532.83 (31) | 531.11 (40) 532.45 (60) | 531.31 (60) 532.69 (40) | C=O C-O/Si-O-Si |
N 1s | 399.33 (100) | 399.86 (100) | 399.69 (100) | 399.99 (100) | -C=N- |
C 1s | 284.22 (76) 285.77 (10) 287.75 (14) | 284.50 (76) 285.81 (18) 287.74 (6) | 284.50 (69) 286.06 (26) 288.04 (5) | 284.50 (68) 285.68 (23) 287.68 (9) | C-C/C=C C=O/C-N C=O/O-C=O |
Sample a | Surface Atomic Percentages (at.%) | |||||
---|---|---|---|---|---|---|
Pt | Pd | C | O | N | Si | |
S0 b | - | - | 66.42 | 21.37 | 7.24 | 2.29 |
S1 | 1.70 | - | 75.48 | 17.23 | 5.59 | n.d. |
S2 | - | 1.63 | 76.24 | 16.60 | 5.53 | n.d. |
S3 | 2.61 | 0.23 | 70.74 | 20.85 | 5.56 | n.d. |
Catalysts a | Eonset (V) | ECSA (m2 g Pt−1) | MA (A gmetal−1) | SA (mA/cm2 Pt) | Activity b (A gcatalyst−1) |
---|---|---|---|---|---|
S1 | - | 14.3 | 61.05 | 0.427 | 3.05 |
S2 | - | - | 43.35 | - | 2.17 |
S3 | 0.164 | 181.0 | 648.39 | 0.424 | 32.42 |
S4 | 0.206 | 27.7 | 64.05 | 0.358 | 6.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyhan, S. Harnessing Biogenic Silica: Nanoarchitected Pt3Pd1 on Nettle-Derived N,Si-CQDs for High-Performance Methanol Electrooxidation. Nanomaterials 2025, 15, 1561. https://doi.org/10.3390/nano15201561
Beyhan S. Harnessing Biogenic Silica: Nanoarchitected Pt3Pd1 on Nettle-Derived N,Si-CQDs for High-Performance Methanol Electrooxidation. Nanomaterials. 2025; 15(20):1561. https://doi.org/10.3390/nano15201561
Chicago/Turabian StyleBeyhan, Seden. 2025. "Harnessing Biogenic Silica: Nanoarchitected Pt3Pd1 on Nettle-Derived N,Si-CQDs for High-Performance Methanol Electrooxidation" Nanomaterials 15, no. 20: 1561. https://doi.org/10.3390/nano15201561
APA StyleBeyhan, S. (2025). Harnessing Biogenic Silica: Nanoarchitected Pt3Pd1 on Nettle-Derived N,Si-CQDs for High-Performance Methanol Electrooxidation. Nanomaterials, 15(20), 1561. https://doi.org/10.3390/nano15201561