An In-Plane Single-Photon Emitter Combining a Triangular Split-Ring Micro-Optical Resonator and a Colloidal Quantum Dot
Abstract
:1. Introduction
2. Device Structure and Basic Performance
3. Fabrication of SRR and Tolerance of Manufacturing Errors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lund-Hansen, T.; Stobbe, S.; Julsgaard, B.; Thyrrestrup, H.; Sünner, T.; Kamp, M.; Forchel, A.; Lodahl, P. Experimental Realization of Highly Efficient Broadband Coupling of Single Quantum Dots to a Photonic Crystal Waveguide. Phys. Rev. Lett. 2008, 101, 113903. [Google Scholar] [CrossRef] [PubMed]
- Nomura, M.; Ota, Y.; Kumagai, N.; Iwamoto, S.; Arakawa, Y. Zero-cell photonic crystal nanocavity laser with quantum dot gain. Appl. Phys. Lett. 2010, 97, 191108. [Google Scholar] [CrossRef]
- Nakamura, T.; Asano, T.; Kojima, K.; Kojima, T.; Noda, S. Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning. Phys. Rev. B 2011, 84, 245309. [Google Scholar] [CrossRef]
- Fang, A.; Koschny, T.; Wegener, M.; Soukoulis, C.M. Self-consistent calculation of metamaterials with gain. Phys. Rev. B 2009, 79, 241104. [Google Scholar] [CrossRef]
- Sivan, Y.; Xiao, S.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M. Frequency-domain simulations of a negative-index material with embedded gain. Opt. Express 2009, 17, 24060. [Google Scholar] [CrossRef]
- Meinzer, N.; Ruther, M.; Linden, S.; Soukoulis, C.M.; Khitrova, G.; Hendrickson, J.; Olitzky, J.D.; Gibbs, H.M.; Wegener, M. Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain. Opt. Express 2010, 18, 24140. [Google Scholar] [CrossRef]
- Tanaka, K.; Plum, E.; Ou, J.Y.; Uchino, T.; Zheludev, N.I. Multifold Enhancement of Quantum Dot Luminescence in Plasmonic Metamaterials. Phys. Rev. Lett. 2010, 105, 227403. [Google Scholar] [CrossRef]
- Tanabe, T.; Notomi, M.; Kuramochi, E.; Shinya, A.; Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nat. Photonics 2006, 1, 49–52. [Google Scholar] [CrossRef]
- Tandaechanurat, A.; Ishida, S.; Aoki, K.; Guimard, D.; Nomura, M.; Iwamoto, S.; Arakawa, Y. Demonstration of high-three-dimensional photonic crystal nanocavity embedding quantum dots. Appl. Phys. Lett. 2009, 94, 171115. [Google Scholar] [CrossRef]
- Lee, K.G.; Chen, X.W.; Eghlidi, H.; Kukura, P.; Lettow, R.; Renn, A.; Sandoghdar, V.; Götzinger, S. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat. Photonics 2011, 5, 166–169. [Google Scholar] [CrossRef]
- Curto, A.G.; Taminiau, T.H.; Volpe, G.; Kreuzer, M.P.; Quidant, R.; van Hulst, N.F. Multipolar radiation of quantum emitters with nanowire optical antennas. Nat. Commun. 2013, 4, 1750. [Google Scholar] [CrossRef] [PubMed]
- Vercruysse, D.; Zheng, X.; Sonnefraud, Y.; Verellen, N.; Di Martino, G.; Lagae, L.; Vandenbosch, G.A.E.; Moshchalkov, V.V.; Maier, S.A.; Van Dorpe, P. Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion. ACS Nano 2014, 8, 8232–8241. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.B.; Akselrod, G.M.; Mikkelsen, M.H. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities. Nano Lett. 2016, 16, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Livneh, N.; Harats, M.G.; Istrati, D.; Eisenberg, H.S.; Rapaport, R. Highly Directional Room-Temperature Single Photon Device. Nano Lett. 2016, 16, 2527. [Google Scholar] [CrossRef]
- Tang, J.W.; Xiao, J.; Fang, M.D.; Bao, F.L.; Cao, G.J.; Shen, J.Q.; Evans, J.L.; He, S.L. Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity. Nat. Commun. 2018, 9, 1705. [Google Scholar] [CrossRef]
- Ge, D.D.; Marguet, S.; Issa, A.; Jradi, S.; Nguyen, T.H.; Nahra, M.; Béal, J.; Deturche, R.; Chen, H.S.; Blaize, S.; et al. Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field. Nat. Commun. 2020, 11, 3414. [Google Scholar] [CrossRef]
- Li, S.; Ai, R.; Chui, K.K.; Fang, Y.; Lai, Y.; Zhuo, X.; Shao, L.; Wang, J.; Lin, H.Q. Routing the Exciton Emissions of WS2 Monolayer with the High-Order Plasmon Modes of Ag Nanorods. Nano Lett. 2023, 23, 4183–4190. [Google Scholar] [CrossRef]
- Huang, X.; Horder, J.; Wong, W.W.; Wang, N.; Bian, Y.; Yamamura, K.; Aharonovich, I.; Jagadish, C.; Tan, H.H. Scalable Bright and Pure Single Photon Sources by Droplet Epitaxy on InP Nanowire Arrays. ACS Nano 2024, 18, 5581–5589. [Google Scholar] [CrossRef]
- Khalid, S.; Laussy, F.P. Perfect single-photon sources. Sci. Rep. 2024, 14, 2684. [Google Scholar] [CrossRef]
- Bendix, P.M.; Jauffred, L.; Norregaard, K.; Oddershede, L.B. Optical Trapping of Nanoparticles and Quantum Dots. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 4800112. [Google Scholar]
- Sugawara, M.; Xuan, Y.; Mitsumori, Y.; Edamatsu, K.; Sadgrove, M. Plasmon-enhanced single photon source directly coupled to an optical fiber. Phys. Rev. Res. 2022, 4, 043146. [Google Scholar] [CrossRef]
- Darbandi, M.; Thomann, R.; Nann, T. Single Quantum Dots in Silica Spheres by Microemulsion Synthesis. Chem. Mater. 2005, 17, 5720–5725. [Google Scholar] [CrossRef]
- Yang, Y.; Jing, L.; Yu, X.; Yan, D.; Gao, M. Coating Aqueous Quantum Dots with Silica via Reverse Microemulsion Method: Toward Size-Controllable and Robust Fluorescent Nanoparticles. Chem. Mater. 2007, 19, 4123–4128. [Google Scholar] [CrossRef]
- Chu, M.; Sun, Y.; Xu, S. Silica-coated quantum dots fluorescent spheres synthesized using a quaternary ‘water-in-oil’ microemulsion system. J. Nanopart. Res. 2008, 10, 613–624. [Google Scholar] [CrossRef]
- Qualtieri, A.; Morello, G.; Spinicelli, P.; Todaro, M.T.; Stomeo, T.; Martiradonna, L.; Giorgi, M.D.; Quelin, X.; Buil, S.; Bramati, A.; et al. Nonclassical emission from single colloidal nanocrystals in a microcavity: A route towards room temperature single photon sources. New J. Phys. 2009, 11, 033025. [Google Scholar] [CrossRef]
- Yang, P.; Ando, M.; Murase, N. Highly Luminescent CdSe/CdxZn1−xS Quantum Dots Coated with Thickness-Controlled SiO2 Shell through Silanization. Langmuir 2011, 27, 9535–9540. [Google Scholar] [CrossRef]
- Mukai, K.; Okumura, I.; Nishizaki, Y.; Yamashita, S.; Niwa, K. Silica coating of PbS quantum dots and their position control using a nanohole on Si substrate. Jpn. J. Appl. Phys. 2018, 57, 04FH01. [Google Scholar] [CrossRef]
- Mukai, K.; Sugimoto, T.; Sugisaki, S.; Ikeda, K.; Watanabe, S. Photon generator combined with silica-coated quantum dot and metamaterial fabricated by the scanning probe microscope lithography. Jpn. J. Appl. Phys. 2020, 59, SGGH06. [Google Scholar] [CrossRef]
- Mukai, K.; Watanabe, S.; Okumura, I.; Sugimoto, T. A photon generating device composed of a quantum dot and a metamaterial element. Jpn. J. Appl. Phys. 2019, 58, SBBI06. [Google Scholar] [CrossRef]
- Mukai, K.; Pribyl, I.; Nakagawa, T.; Uchiyama, K. Polarization-controlled ultrasmall single photon emitter combining a quantum dot and an elliptical split ring metamaterial element. Jpn. J. Appl. Phys. 2024, 63, 02SP37. [Google Scholar] [CrossRef]
- Mukai, K.; Shibata, K.; Nakatsuka, Y.; Ikai, M. All-silicon photon emitter with colloidal PbS quantum dot in tunable microcavity. Phy. E low-Dimens. Syst. Nanostruct. 2018, 103, 417–422. [Google Scholar] [CrossRef]
- Tututuncu, B.; Torpi, H.; Urul, B. A comparative study on different types of metamaterials for A comparative study on different types of metamaterials for enhancement of microstrip patch antenna directivity at the Ku-enhancement of microstrip patch antenna directivity at the Ku-band (12 GHz). Turk. J. Elec. Eng. Comput. Sci. 2018, 26, 1171–1179. [Google Scholar]
- Berka, M.; Rouabhi, A.Y.; Bendaoudi, A.; Mahdjoub, Z. Triangular Split Ring Resonators for X-Band Applications and Operations. J. Nano-Electron. Phys. 2022, 14, 01007. [Google Scholar] [CrossRef]
- Sivasangari, A.; Danasegaran, S.K.; Dhanasekar, S.; Britto, E.C.; Paranthaman, M. Design and Analysis of Triangular Split-Ring Resonator–Based Patch Antenna for High-Speed Terahertz Devices. Braz. J. Phys. 2024, 54, 213. [Google Scholar] [CrossRef]
- Scalari, G.; Maissen, C.; Cibella, S.; Leoni, R.; Faist, J. High quality factor, fully switchable terahertz superconducting metasurface. Appl. Phys. Lett. 2014, 105, 261104. [Google Scholar] [CrossRef]
- Lilley, G.; Messner, M.; Unterrainer, K. Improving the quality factor of the localized surface plasmon resonance. Opt. Mater. Exp. 2015, 5, 246872. [Google Scholar] [CrossRef]
- Tan, T.C.W.; Srivastava, Y.K.; Manjappa, M.; Plum, E.; Singh, R. Lattice induced strong coupling and line narrowing of split resonances in metamaterials. Appl. Phys. Lett. 2018, 112, 201111. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, G.; Lu, Y.; Li, G. Narrow plasmonic surface lattice resonances with preference to asymmetric dielectric environment. Opt. Exp. 2019, 27, 371465. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; Liu, M.; Xiao, G.; Luo, Y.; Liu, H.; Li, J.; Yuan, L. High Q-Factor Hybrid Metamaterial Waveguide Multi-Fano Resonance Sensor in the Visible Wavelength Range. Nanomaterials 2021, 11, 1583. [Google Scholar] [CrossRef]
- Deal, B.E.; Grove, A.S. General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys. 1965, 36, 3770–3778. [Google Scholar] [CrossRef]
- Mukai, K.; Ikeda, K.; Hatta, R. Improvement of monodispersity and shape symmetry of silica shell for PbS quantum dots by introducing surface silanization and adjusting reverse micelle size. Jpn. J. Appl. Phys. 2022, 61, 015001. [Google Scholar] [CrossRef]
- Mukai, K.; Suzuki, S.; Roppongi, H. Improvement of emission intensity of PbS quantum dots in thick silica shell by initial coating in organic solvent. Jpn. J. Appl. Phys. 2023, 62, 108001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukai, K.; Uchiyama, K.; Iwata, K.; Pribyl, I. An In-Plane Single-Photon Emitter Combining a Triangular Split-Ring Micro-Optical Resonator and a Colloidal Quantum Dot. Nanomaterials 2025, 15, 335. https://doi.org/10.3390/nano15050335
Mukai K, Uchiyama K, Iwata K, Pribyl I. An In-Plane Single-Photon Emitter Combining a Triangular Split-Ring Micro-Optical Resonator and a Colloidal Quantum Dot. Nanomaterials. 2025; 15(5):335. https://doi.org/10.3390/nano15050335
Chicago/Turabian StyleMukai, Kohki, Kyosuke Uchiyama, Kohei Iwata, and Issei Pribyl. 2025. "An In-Plane Single-Photon Emitter Combining a Triangular Split-Ring Micro-Optical Resonator and a Colloidal Quantum Dot" Nanomaterials 15, no. 5: 335. https://doi.org/10.3390/nano15050335
APA StyleMukai, K., Uchiyama, K., Iwata, K., & Pribyl, I. (2025). An In-Plane Single-Photon Emitter Combining a Triangular Split-Ring Micro-Optical Resonator and a Colloidal Quantum Dot. Nanomaterials, 15(5), 335. https://doi.org/10.3390/nano15050335