Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials
Abstract
:1. Introduction
2. Two-Dimensional Material-Based Broadband Photodetectors
2.1. Transition Metal Dichalcogenides
2.2. Two-Dimensional Perovskite
2.3. Graphene
2.4. Topological Insulators
2.5. Black Phosphorus
2.6. Other Materials
Device | Bias (V) | Range (nm) | Responsivity (A/W) | Detectivity (109 Jones) | Rise Time (ms) | Fall Time (ms) | NEP [WHz−1/2] | EQE (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
SnSe | 0.8 | 532–1064 | 2.14@532 nm | 1.7@532 nm | 70 | 69 | 7.4 × 10−12 | 499 | [55] |
Ta2NiSe5 nanosheets | 1 | 405–2200 | 138.9@405 nm | 8.4@405 nm | 11.7 × 103 | 15.9 × 103 | - | 4.3 × 104 | [56] |
Bi2O2Se thin film | −0.05 | 365–940 | 0.18@365 nm | 1.2@470 nm | 32 | 44 | - | - | [57] |
Sn-Pb perovskite films | 0 | 350–1000 | 0.29@720 nm | 1.6@720 nm | 2 × 10−3 | 12.1 × 103 | 1.06 × 10−10 | - | [63] |
CH3NH3PbBr3 crystal | 1 | 355–1560 | 0.23@520 nm | 143@520 nm | 0.21 × 103 | 0.93 | - | 55 | [66] |
(BA)2(MA)Sn2I7 | 1 | 365–1064 | 28.4@365 nm | 23@365 nm | 0.7 × 103 | 1.2 × 103 | - | - | [64] |
MAPbBr3 nanoplate | 2 | 850–1450 | 5.04@520 nm | 5370@520 nm | 80 × 10−3 | 110 × 10−3 | - | 1200 | [65] |
Graphene | 1 | 375 nm–118 μm | 1@532 nm | - | 0.16 × 103 | 0.14 × 103 | - | - | [70] |
Graphene | 0 | 800–1600 | 0.025@1400 nm | - | 0.2 | 0.2 | 4.4 × 10−10 | - | [72] |
TaIrTe4 | 0 | 532–10.6 μm | 0.02@10.6 μm | 0.18@10.6 μm | 27 × 10−3 | 27 × 10−3 | - | - | [76] |
Black phosphorus | −1 | 400–900 | 106@900 nm | - | - | - | - | 1 × 109 | [79] |
Black phosphorus | 0 | 2.5 μm–3.7 μm | 0.047@2.7 μm | - | - | - | - | 2 | [81] |
Te nanosheets | 3 | 261–405 | 65,000@261 nm | 0.37@261 nm | 2 × 103 | 5 × 103 | - | 2.2 × 106 | [85] |
Sb2Se3 thin film | 1 | 400–1200 | 3.37@1064 nm | 100@1064 nm | 73 | 69 | 2.95 × 10−13 | 369.3 | [86] |
SnTe nanosheets | 1 | 254–4650 | 71.11@254 nm | - | 0.21 × 103 | 0.73 × 103 | - | - | [87] |
GeTe nanofilm | 0.8 | 600–900 | 100@850 nm | 10,000@850 nm | - | - | - | ~100 | [88] |
PdTe2 | 0.1 | 1 mm–7.5 mm | 10@0.3 THz | - | 1 × 10−3 | 2.2 × 10−3 | 2 × 10−12 | - | [89] |
PtTe2 | −0.4 | 200–1650 | 0.406@980 nm | 3620@980 nm | 7.51 × 10−3 | 36.7 × 10−3 | 5.52 × 10−15 | 32.1 | [90] |
PdPs | 1 | 254–1064 | 1180@532 nm | 440@532 nm | 1.4 | 1.2 | - | - | [91] |
InSiTe3 flakes | 11 | 365–1310 | 0.07@365 nm | 7.6@365 nm | 5.45 × 10−4 | 5.76 × 10−4 | - | - | [92] |
Ga2In4S9 flakes | 0 | 330–900 | 112@360 nm | 225@360 nm | 40 | 50 | - | 2.2 × 104 | [93] |
AgSbTe2 | 1 | 405–980 | 0.024@405 nm | 2@405 nm | 0.49 × 103 | 0.58 × 103 | - | - | [94] |
MoS2 | 0 | 500–1100 | 1.358@950 nm | 28@950 nm | 0.71 | 0.66 | 4.5 × 10−13 | 476 | [95] |
3. Strategies for Enhancing Photodetection Performances
3.1. Chemical Doping
3.2. Defect Engineering
3.3. Constructing Heterostructures
3.3.1. Heterostructures Made of Only 2D Materials
3.3.2. Heterostructures Combining 2D Materials with Other Materials
3.4. Strain Engineering
4. Outlook and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, J.; Yang, G. 2D material broadband photodetectors. Nanoscale 2020, 12, 454–476. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hu, Y.; Yang, J.; Wei, Z. Recent advances in wide-spectrum photodetectors based on low-dimensional semiconductors. Mater. Today Electron. 2022, 2, 100013. [Google Scholar] [CrossRef]
- Si, W.; Zhou, W.; Liu, X.; Wang, K.; Liao, Y.; Yan, F.; Ji, X. Recent Advances in Broadband Photodetectors from Infrared to Terahertz. Micromachines 2024, 15, 427. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, Y.; Li, Y.; Yan, H.; Kang, F.; Shen, Y.; Zhang, X.P.; Wei, G.; Fu, H. High Speed Dual-Band Photodetector for Dual-Channel Optical Communications in Wavelength Division Multiplexing and Security Enhancement. Adv. Funct. Mater. 2024, 34, 2310911. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, D.; Guo, D.; Yang, L.; Li, J.; Ma, D. An Ultrafast Organic Photodetector with Low Dark Current for Optical Communication Systems. ACS Photonics 2023, 10, 1382–1388. [Google Scholar] [CrossRef]
- Bao, C.; Yang, J.; Bai, S.; Xu, W.; Yan, Z.; Xu, Q.; Liu, J.; Zhang, W.; Gao, F. High Performance and Stable All-Inorganic Metal Halide Perovskite-Based Photodetectors for Optical Communication Applications. Adv. Mater. 2018, 30, 1803422. [Google Scholar] [CrossRef]
- Pospischil, A.; Humer, M.; Furchi, M.M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892–896. [Google Scholar] [CrossRef]
- Wang, J.; Ling, C.; Xue, X.; Ji, H.; Rong, C.; Xue, Q.; Zhou, P.; Wang, C.; Lu, H.; Liu, W. Self-Powered and Broadband Photodetectors Based on High-performance Mixed Dimensional Sb2O3/PdTe2/Si Heterojunction for Multiplex Environmental Monitoring. Small 2024, 20, 2310107. [Google Scholar] [CrossRef]
- Liu, F.; Liu, K.; Rafique, S.; Xu, Z.; Niu, W.; Li, X.; Wang, Y.; Deng, L.; Wang, J.; Yue, X.; et al. Highly Efficient and Stable Self-Powered Mixed Tin-Lead Perovskite Photodetector Used in Remote Wearable Health Monitoring Technology. Adv. Sci. 2023, 10, 2205879. [Google Scholar] [CrossRef]
- Zhang, T.; Ling, C.; Wang, X.; Feng, B.; Cao, M.; Xue, X.; Xue, Q.; Zhang, J.; Zhu, L.; Wang, C.; et al. Six-arm Stellat Dendritic-PbS Flexible Infrared Photodetector for Intelligent Healthcare Monitoring. Adv. Mater. Technol. 2022, 7, 2200250. [Google Scholar] [CrossRef]
- Qiu, M.; Sun, P.; Liu, Y.; Huang, Q.; Zhao, C.; Li, Z.; Mai, W. Visualized UV Photodetectors Based on Prussian Blue/TiO2 for Smart Irradiation Monitoring Application. Adv. Mater. Technol. 2018, 3, 1700288. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, C.; Shen, K.; Sun, P.; Li, W.J.; Zhao, C.; Ji, Z.; Mai, Y.H.; Mai, W.J. Underwater Multispectral Computational Imaging Based on a Broadband Water-Resistant Sb2Se3 Heterojunction Photodetector. ACS Nano 2022, 16, 5820–5829. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Gao, Y.; Wang, X.; Li, X.; Wang, L.; Zhao, X.; Sun, B. Quantum dot-enabled infrared hyperspectral imaging with single-pixel detection. Light Sci. Appl. 2024, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Bala, A.; Sritharan, M.; Liu, N.; Naqi, M.; Sen, A.; Han, G.; Rho, H.Y.; Yoon, Y.; Kim, S. Active pixel image sensor array for dual vision using large-area bilayer WS2. InfoMat. 2024, 6, e12513. [Google Scholar] [CrossRef]
- Feng, S.; Liu, Z.; Feng, L.; Wang, J.; Xu, H.; Deng, L.; Zhou, O.; Jiang, X.; Liu, B.; Zhang, X. High-performance self-powered ultraviolet photodetector based on Ga2O3/GaN heterostructure for optical imaging. J. Alloys Compd. 2023, 945, 169274. [Google Scholar] [CrossRef]
- Devarakonda, V.; Pandey, A.; Chakrabarti, P. Enhanced optoelectronic properties of a mercury cadmium telluride based double heterojunction photodetector for terahertz applications. Optik 2021, 247, 167947. [Google Scholar] [CrossRef]
- Chen, M.; Lu, H.; Abdelazim, N.M.; Zhu, Y.; Wang, Z.; Ren, W.; Kershaw, S.V.; Rogach, A.L.; Zhao, N. Mercury Telluride Quantum Dot Based Phototransistor Enabling High-Sensitivity Room-Temperature Photodetection at 2000 nm. ACS Nano 2017, 11, 5614–5622. [Google Scholar] [CrossRef]
- Kimukin, I.; Biyikli, N.; Kartaloglu, T.; Aytür, O.; Ozbay, E. High-speed InSb photodetectors on GaAs for Mid-IR applications. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 766–770. [Google Scholar] [CrossRef]
- Du, S.; Lu, W.; Ali, A.; Zhao, P.; Shehzad, K.; Guo, H.; Ma, L.; Liu, X.; Pi, X.; Wang, P.; et al. A Broadband Fluorographene Photodetector. Adv. Mater. 2017, 29, 1700463. [Google Scholar] [CrossRef]
- Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Guo, Z.; Liu, Z.; Lin, H.; Li, X.; Chen, J.; Deng, S.; Liu, F. Efficiently enhanced the visible-light absorption of monolayer WS2 by constructing an asymmetric Fabry-Perot cavity. Mater. Today Nano 2021, 14, 100112. [Google Scholar] [CrossRef]
- Li, G.; Song, Y.; Feng, S.; Feng, L.; Liu, Z.; Leng, B.; Fu, Z.; Li, J.; Jiang, X.; Liu, B.; et al. Improved Optoelectronic Performance of MoS2 Photodetector via Localized Surface Plasmon Resonance Coupling of Double-Layered Au Nanoparticles with Sandwich Structure. ACS Appl. Electron. Mater. 2022, 4, 1626–1632. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Li, J.; Ma, Z.; Leng, B.; Xia, Q.; Shen, L.; Song, Y.; Fu, Z.; Feng, S.; et al. Simultaneous visible and ultraviolet photoresponse improvement of MoS2/ZnO heterostructure photodetector via direct resonant coupling of Au nanoparticles localized surface plasmon resonance. Opt. Mater. 2022, 124, 111997. [Google Scholar] [CrossRef]
- Li, Y.; Guo, F.; Yu, S.; Wang, J.; Yang, S. Bipolar dual-broadband photodetectors based on perovskite heterojunctions. Nano Futures 2022, 6, 025006. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, G.; Guan, Z.; Tian, Y.; Liu, J.; Chen, J.; Deng, S.; Liu, F. An advanced self-powered visible-light photodetector based on the asymmetric Au/CsPbBr3/SmB6 junction. J. Mater. Chem. C 2024, 12, 17395–17402. [Google Scholar] [CrossRef]
- Guan, Z.; Mi, H.; Liu, Z.; Tian, Y.; Lin, H.; Chen, H.; Deng, S.; Liu, F. Colossal photodetection enhancement via plasmon-exciton synergy in ultra-smooth CsPbBr3 microplates. J. Mater. Chem. C 2024, 12, 15955–15964. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- He, Q.L.; Hughes, T.L.; Armitage, N.P.; Tokura, Y.; Wang, K.L. Topological spintronics and magnetoelectronics. Nat. Mater. 2022, 21, 15–23. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Sun, H.; He, Q.L. Topological insulator: Spintronics and quantum computations. Front. Phys. Beijing 2019, 14, 43401. [Google Scholar] [CrossRef]
- Rachel, S. Interacting topological insulators: A review. Rep. Prog. Phys. 2018, 81, 116501. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Shen Yang, H.; Guo Wei, Z.; Fan Jie, W.; Yu Chen, L.; Hu Gen, Y. Optical properties of two-dimensional black phosphorus. Acta Phys. Sin. 2021, 70, 027802. [Google Scholar] [CrossRef]
- Wyatt, B.C.; Rosenkranz, A.; Anasori, B. 2D MXenes: Tunable Mechanical and Tribological Properties. Adv. Mater. 2021, 33, 2007973. [Google Scholar] [CrossRef]
- Gao, L.; Bao, W.; Kuklin, A.V.; Mei, S.; Zhang, H.; Agren, H. Hetero-MXenes: Theory, Synthesis, and Emerging Applications. Adv. Mater. 2021, 33, 2004129. [Google Scholar] [CrossRef]
- Shahzad, F.; Iqbal, A.; Kim, H.; Koo, C.M. 2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material. Adv. Mater. 2020, 32, 202002159. [Google Scholar] [CrossRef]
- Lovergine, N.; Liaci, L.; Ganiere, J.D.; Leo, G.; Drigo, A.V.; Romanato, F.; Mancini, A.M.; Vasanelli, L. Inhomogeneous strain relaxation and defect distribution of ZnTe layers deposited on (100)GaAs by metalorganic vapor phase epitaxy. J. Appl. Phys. 1995, 78, 229–235. [Google Scholar] [CrossRef]
- Ryou, J.; Kim, Y.-S.; Santosh, K.C.; Cho, K. Monolayer MoS2 Bandgap Modulation by Dielectric Environments and Tunable Bandgap Transistors. Sci. Rep. 2016, 6, 29184. [Google Scholar] [CrossRef]
- Deng, B.; Tran, V.; Xie, Y.; Jiang, H.; Li, C.; Guo, Q.; Wang, X.; Tian, H.; Koester, S.J.; Wang, H.; et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 2017, 8, 14474. [Google Scholar] [CrossRef] [PubMed]
- Baranov, D.G.; Wersall, M.; Cuadra, J.; Antosiewicz, T.J.; Shegai, T. Novel Nanostructures and Materials for Strong Light Matter Interactions. ACS Photonics 2018, 5, 24–42. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, R.; Mishra, H.; Liu, Y. Two-Dimensional Semiconductors with High Intrinsic Carrier Mobility at Room Temperature. Phys. Rev. Lett. 2023, 130, 087001. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Peng, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 2014, 104, 251915. [Google Scholar] [CrossRef]
- Zhuang, X.; Mai, Y.; Wu, D.; Zhang, F.; Feng, X. Two-Dimensional Soft Nanomaterials: A Fascinating World of Materials. Adv. Mater. 2015, 27, 403–427. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; McGuckin, T.; Hawley, C.J.; Gallo, E.M.; Prete, P.; Miccoli, I.; Lovergine, N.; Spanier, J.E. Subsurface Imaging of Coupled Carrier Transport in GaAs/AlGaAs Core-Shell Nanowires. Nano Lett. 2015, 15, 75–79. [Google Scholar] [CrossRef]
- Persano, A.; Nabet, B.; Taurino, A.; Prete, P.; Lovergine, N.; Cola, A. Polarization anisotropy of individual core/shell GaAs/AlGaAs nanowires by photocurrent spectroscopy. Appl. Phys. Lett. 2011, 98, 153106. [Google Scholar] [CrossRef]
- Wang, X.; Shen, H.; Chen, Y.; Wu, G.; Wang, P.; Xia, H.; Lin, T.; Zhou, P.; Hu, W.; Meng, X.; et al. Multimechanism Synergistic Photodetectors with Ultrabroad Spectrum Response from 375 nm to 10 μm. Adv. Sci. 2019, 6, 1901050. [Google Scholar] [CrossRef]
- Pi, L.; Wang, P.; Liang, S.-J.; Luo, P.; Wang, H.; Li, D.; Li, Z.; Chen, P.; Zhou, X.; Miao, F.; et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 2022, 5, 248–254. [Google Scholar] [CrossRef]
- Li, A.; Chen, Q.; Wang, P.; Gan, Y.; Qi, T.; Wang, P.; Tang, F.; Wu, J.Z.; Chen, R.; Zhang, L.; et al. Ultrahigh-Sensitive Broadband Photodetectors Based on Dielectric Shielded MoTe2/Graphene/SnS2 p-g-n Junctions. Adv. Mater. 2019, 31, 1805656. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; et al. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 2015, 9, 11509–11539. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Vashishtha, P.; Goswami, P.; Prajapat, P.; Gangwar, A.K.; Singh, P.; Gupta, G. Highly efficient, self-powered, and air-stable broadband photodetector based on SnSe thin film. Mat. Sci. Eng. B-Adv. 2023, 297, 116808. [Google Scholar] [CrossRef]
- Guo, T.; Sa, Z.; Wei, P.; Jian, Y.; Chen, X.; Chen, Z.; Avila, J.; Dudin, P.; Yang, Z.-X.; Song, X.; et al. High-performance flexible broadband photodetectors enabled by 2D Ta2NiSe5 nanosheets. 2D Mater. 2023, 10, 025004. [Google Scholar] [CrossRef]
- Ren, S.; Gao, S.; Rong, P.; Li, L.; Zhang, M.; Lu, H.; Yan, J.; Ling, D.; Jiao, S.; Wang, J. Ultra-stable, sensitive and broadband photodetector based on large-area 2D bismuth oxyselenide film for multiband image sensing. Chem. Eng. J. 2023, 468, 143626. [Google Scholar] [CrossRef]
- Saidaminov, M.I.; Haque, M.A.; Savoie, M.; Abdelhady, A.L.; Cho, N.; Dursun, I.; Buttner, U.; Alarousu, E.; Wu, T.; Bakr, O.M. Perovskite Photodetectors Operating in Both Narrowband and Broadband Regimes. Adv. Mater. 2016, 28, 8144–8149. [Google Scholar] [CrossRef]
- Huang, F.; Shen, L.; Zhou, S.; Wang, S.; Wang, S.; Deng, G.; Zhou, S. Flexible broadband photodetector based on laser-induced graphene/CH3NH3PbI3 composite. Opt. Mater. 2022, 128, 112364. [Google Scholar] [CrossRef]
- Yang, Z.; Rajagopal, A.; Jen, A.K.Y. Ideal Bandgap Organic-Inorganic Hybrid Perovskite Solar Cells. Adv. Mater. 2017, 29, 1704418. [Google Scholar] [CrossRef]
- Tsai, C.M.; Wu, H.P.; Chang, S.T.; Huang, C.F.; Wang, C.H.; Narra, S.; Yang, Y.W.; Wang, C.L.; Hung, C.H.; Diau, E.W.G. Role of Tin Chloride in Tin-Rich Mixed-Halide Perovskites Applied as Mesoscopic Solar Cells with a Carbon Counter Electrode. ACS Energy Lett. 2016, 1, 1086–1093. [Google Scholar] [CrossRef]
- Buin, A.; Comin, R.; Xu, J.; Ip, A.H.; Sargent, E.H. Halide-Dependent Electronic Structure of Organolead Perovskite Materials. Chem. Mater. 2015, 27, 4405–4412. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Lin, H.; Zhou, S.; Yan, G.; Zhao, Z.; Zhao, C.; Mai, W. The UV-vis-NIR Broadband Ultrafast Flexible Sn-Pb Perovskite Photodetector for Multispectral Imaging to Distinguish Substance and Foreign-Body in Biological Tissues. Adv. Opt. Mater. 2024, 12, 2301373. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, F.; Xu, J.; Lv, X.; Zhao, G.; Sun, Z.; Xie, Z.; Zhu, S. UV-VIS-NIR broadband flexible photodetector based on layered lead-free organic-inorganic hybrid perovskite. Opt. Express 2023, 31, 8428–8439. [Google Scholar] [CrossRef]
- Mei, L.; Zhang, K.; Cui, N.; Yu, W.; Li, Y.; Gong, K.; Li, H.; Fu, N.; Yuan, J.; Mu, H.; et al. Ultraviolet-Visible-Short-Wavelength Infrared Broadband and Fast-Response Photodetectors Enabled by Individual Monocrystalline Perovskite Nanoplate. Small 2023, 19, 2301386. [Google Scholar] [CrossRef]
- Xu, M.; Wang, X.; Weng, J.; Shen, J.; Hou, Y.; Zhang, B. Ultraviolet-to-infrared broadband photodetector and imaging application based on a perovskite single crystal. Opt. Express 2022, 30, 40611–40625. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Chen, Z.F.; Cheng, Z.Z.; Wang, J.Q.; Wan, X.; Shu, C.; Tsang, H.K.; Ho, H.P.; Xu, J.B. High Responsivity, Broadband, and Fast Graphene/Silicon Photodetector in Photoconductor Mode. Adv. Opt. Mater. 2015, 3, 1207–1214. [Google Scholar] [CrossRef]
- Liu, C.H.; Chang, Y.C.; Norris, T.B.; Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 2014, 9, 273–278. [Google Scholar] [CrossRef]
- Yang, H.; Cao, Y.; He, J.; Zhang, Y.; Jin, B.; Sun, J.; Wang, Y.; Zhao, Z. Highly conductive free-standing reduced graphene oxide thin films for fast photoelectric devices. Carbon 2017, 115, 561–570. [Google Scholar] [CrossRef]
- Qasim, M.; Sulaman, M.; Bukhtiar, A.; Deng, B.; Jalal, A.; Sandali, Y.; Shah, N.H.; Li, C.; Dastgeer, G.; Bin, H. High-Performance Self-Powered Broadband Schottky Junction Photodetector Based on Graphene-Silicon van der Waals Heterostructure. Energy Technol. 2023, 11, 2300492. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Zheng, Z.; Zhang, C.; Zheng, H.; Liu, C.; Chen, H.; Wang, M. Self-Driven Graphene Photodetector Arrays Enabled by Plasmon-Induced Asymmetric Electric Field. Nano Lett. 2024, 24, 11654–11660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Zhang, S.C. Topological insulators for high-performance terahertz to infrared applications. Phys. Rev. B 2010, 82, 245107. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, H.; Sun, Z.; Ding, K.; Mao, J.; Shao, Z.; Jie, J. Topological insulator Bi2Se3 nanowire/Si heterostructure photodetectors with ultrahigh responsivity and broadband response. J. Mater. Chem. C 2016, 4, 5648–5655. [Google Scholar] [CrossRef]
- Chen, J.; Ying, X. High-performance, ultra-broadband Sb2Te3 photodetector assisted by multimechanism. AIP Adv. 2024, 14, 035025. [Google Scholar] [CrossRef]
- Lai, J.; Liu, Y.; Ma, J.; Zhuo, X.; Peng, Y.; Lu, W.; Liu, Z.; Chen, J.; Sun, D. Broadband Anisotropic Photoresponse of the “Hydrogen Atom” Version Type-II Weyl Semimetal Candidate TaIrTe4. ACS Nano 2018, 12, 4055–4061. [Google Scholar] [CrossRef]
- Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A.S.; Su, H.; Castro Neto, A.H. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061. [Google Scholar] [CrossRef]
- Vy, T.; Soklaski, R.; Liang, Y.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319. [Google Scholar] [CrossRef]
- Huang, M.; Wang, M.; Chen, C.; Ma, Z.; Li, X.; Han, J.; Wu, Y. Broadband Black-Phosphorus Photodetectors with High Responsivity. Adv. Mater. 2016, 28, 3481–3485. [Google Scholar] [CrossRef]
- Guo, Q.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B.; Li, C.; Han, S.J.; Wang, H.; et al. Black Phosphorus Mid-Infrared Photodetectors with High Gain. Nano Lett. 2016, 16, 4648–4655. [Google Scholar] [CrossRef]
- Xu, M.; Gu, Y.; Peng, R.; Youngblood, N.; Li, M. Black phosphorus mid-infrared photodetectors. Appl. Phys. B-Lasers Opt. 2017, 123, 130. [Google Scholar] [CrossRef]
- Suess, R.J.; Leong, E.; Garrett, J.L.; Zhou, T.; Salem, R.; Munday, J.N.; Murphy, T.E.; Mittendorff, M. Mid-infrared time-resolved photoconduction in black phosphorus. 2D Mater. 2016, 3, 041006. [Google Scholar] [CrossRef]
- Curreli, N.; Serri, M.; Zappia, M.I.; Spirito, D.; Bianca, G.; Buha, J.; Najafi, L.; Sofer, Z.; Krahne, R.; Pellegrini, V.; et al. Liquid-Phase Exfoliated Gallium Selenide for Light-Driven Thin-Film Transistors. Adv. Electron. Mater. 2021, 7, 2001080. [Google Scholar] [CrossRef]
- Petrini, N.; Asaithambi, A.; Rebecchi, L.; Curreli, N. Bismuth telluride iodide monolayer flakes with nonlinear optical response obtained via gold-assisted mechanical exfoliation. Opt. Mater. X 2023, 19, 100255. [Google Scholar] [CrossRef]
- Cao, R.; Zhang, Y.; Wang, H.; Zeng, Y.; Zhao, J.; Zhang, L.; Li, J.; Meng, F.; Shi, Z.; Fan, D.; et al. Solar-blind deep-ultraviolet photodetectors based on solution-synthesized quasi-2D Te nanosheets. Nanophotonics 2020, 9, 2459–2466. [Google Scholar] [CrossRef]
- Prajapat, P.; Vashishtha, P.; Goswami, P.; Gupta, G. Fabrication of Sb2Se3-based high-performance self-powered Visible-NIR broadband photodetector. Mater. Sci. Semicond. Process. 2024, 169, 107873. [Google Scholar] [CrossRef]
- Yang, J.; Yu, W.; Pan, Z.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y.; Sun, T.; Bao, Q.; Zhang, K. Ultra-Broadband Flexible Photodetector Based on Topological Crystalline Insulator SnTe with High Responsivity. Small 2018, 14, 1802598. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, L.; Yang, S.; Teng, K.S.; Lau, S.P. Infrared photodetector based on GeTe nanofilms with high performance. Opt. Lett. 2020, 45, 1108–1111. [Google Scholar] [CrossRef]
- Guo, C.; Hu, Y.B.; Chen, G.; Wei, D.C.; Zhang, L.B.; Chen, Z.Q.Z.; Guo, W.L.; Xu, H.; Kuo, C.N.; Lue, C.S.; et al. Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection. Sci. Adv. 2020, 6, eabb6500. [Google Scholar] [CrossRef]
- Tong, X.W.; Lin, Y.N.; Huang, R.; Zhang, Z.X.; Fu, C.; Wu, D.; Luo, L.B.; Li, Z.J.; Liang, F.X.; Zhang, W. Direct Tellurization of Pt to Synthesize 2D PtTe2 for High-Performance Broadband Photodetectors and NIR Image Sensors. ACS Appl. Mater. Interfaces 2020, 12, 53921–53931. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, T.; Zhao, K.; Zhou, Z.; Xin, K.; Deng, H.X.; Kang, J.; Yang, J.; Liu, Y.Y.; Wei, Z. Polarimetric Image Sensor and Fermi Level Shifting Induced Multichannel Transition Based on 2D PdPS. Adv. Mater. 2022, 34, 2107206. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, L.; Gong, P.; Zhang, H.; Yin, S.; Li, M.; Wu, L.; Gao, W.; Long, M.; Shan, L.; et al. A Submicrosecond-Response Ultraviolet-Visible-Near-Infrared Broadband Photodetector Based on 2D Tellurosilicate InSiTe3. ACS Nano 2022, 16, 7745–7754. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, T.; Zhang, Q.; Hu, Z.-Y.; Jin, B.; Li, L.; Zhou, X.; Li, H.; Van Tendeloo, G.; Zhai, T. Liquid-Alloy-Assisted Growth of 2D Ternary Ga2In4S9 toward High-Performance UV Photodetection. Adv. Mater. 2019, 31, 1806306. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, K.; Cheng, L.; Wu, Z.; Qian, Y. Solution-grown ternary quasi-cube AgSbTe2 and its optoelectronic performance for broadband photodetection. CrystEngComm 2023, 25, 2237–2242. [Google Scholar] [CrossRef]
- Vashishtha, P.; Prajapat, P.; Sharma, A.; Goswami, P.; Walia, S.; Gupta, G. Self-driven and thermally resilient highly responsive nano-fenced MoS2 based photodetector for near-infrared optical signal. Mater. Res. Bull. 2023, 164, 112260. [Google Scholar] [CrossRef]
- Zhang, R.; Li, M.; Li, L.; Wei, Z.; Jiao, F.; Geng, D.; Hu, W. The More, the Better-Recent Advances in Construction of 2D Multi-Heterostructures. Adv. Funct. Mater. 2021, 31, 2102049. [Google Scholar] [CrossRef]
- Hu, Z.H.; Wu, Z.T.; Han, C.; He, J.; Ni, Z.H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Elahi, E.; Amin, A.; Hussain, G.; Aftab, S. Chemical doping of transition metal dichalcogenides (TMDCs) based field effect transistors: A review. Superlattices Microstruct. 2020, 137, 106350. [Google Scholar] [CrossRef]
- Yang, S.; Chen, Y.; Jiang, C. Strain engineering of two-dimensional materials: Methods, properties, and applications. Infomat 2021, 3, 397–420. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Sun, Z.; Luo, J. Rational chemical doping of metal halide perovskites. Chem. Soc. Rev. 2019, 48, 517–539. [Google Scholar] [CrossRef]
- Zhao, W.; Ding, J.; Zou, Y.; Di, C.-A.; Zhu, D. Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 2020, 49, 7210–7228. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Zhang, C.; Han, J.; Li, C.; Zhou, H.; Yu, H.; Chen, C.; Gou, J.; Wang, J. High-Performance Te-Doped PbSe Film Heterojunction Photodetector with Current Rectification Effect and Broadband Detection Capability. Adv. Opt. Mater. 2023, 11, 2300915. [Google Scholar] [CrossRef]
- Shah, P.V.; Pataniya, P.; Som, N.N.; Sathe, V.; Ck, S. Flexible and Hand-Printed Photodetector Based on Mg-SnS Nanoflakes. ACS Appl. Nano Mater. 2024, 7, 5967–5981. [Google Scholar] [CrossRef]
- Shah, P.; Modi, K.; Patel, R.P.; Pataniya, P.M.; Sathe, V.; Sumesh, C.K. Scalable and cost-effective synthesis of flexible paper-based Indium doped SnS photodetector in the VIS-NIR range. Surf. Interfaces 2023, 42, 103408. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, Y.; Coile, C.O.; Li, J.; Zhang, D.; Arora, S.K.; Jiang, Z.; Wu, H.-C. High response and broadband photodetection by monolayer MoSe2with vanadium doping and Mo vacancies. Appl. Surf. Sci. 2021, 564, 150399. [Google Scholar] [CrossRef]
- Feng, L.; Ma, Z.; Feng, S.; Liu, Z.; Xu, H.; Zhou, O.; Deng, L.; Yang, L.; Altynay, S.; Jiang, X.; et al. High-responsivity ultraviolet-visible photodetector based on an individual (GaN)1-x(ZnO)x solid solution nanobelt. Opt. Mater. 2023, 139, 113796. [Google Scholar] [CrossRef]
- Wu, D.; Guo, J.; Wang, C.; Ren, X.; Chen, Y.; Lin, P.; Zeng, L.; Shi, Z.; Li, X.J.; Shan, C.X.; et al. Ultrabroadband and High-Detectivity Photodetector Based on WS2/Ge Heterojunction through Defect Engineering and Interface Passivation. ACS Nano 2021, 15, 10119–10129. [Google Scholar] [CrossRef]
- Xie, Y.; Liang, F.; Chi, S.; Wang, D.; Zhong, K.; Yu, H.; Zhang, H.; Chen, Y.; Wang, J. Defect Engineering of MoS2 for Room-Temperature Terahertz Photodetection. ACS Appl. Mater. Interfaces 2020, 12, 7351–7357. [Google Scholar] [CrossRef]
- Cao, X.; Peng, L.; Liu, L.; Lv, J.; Li, Z.; Tian, F.; Dong, Y.; Liu, X.; Shen, Y.; Sun, H.; et al. Defect-induced photocurrent gain for carbon nanofilm-based broadband infrared photodetector. Carbon 2022, 198, 244–251. [Google Scholar] [CrossRef]
- Duan, R.; Qi, W.; Li, P.; Tang, K.; Ru, G.; Liu, W. A High-Performance MoS2-Based Visible-Near-Infrared Photodetector from Gateless Photogating Effect Induced by Nickel Nanoparticles. Research 2023, 6, 0915. [Google Scholar] [CrossRef]
- Liu, J.; Hao, Q.; Gan, H.; Li, P.; Li, B.; Tu, Y.; Zhu, J.; Qi, D.; Chai, Y.; Zhang, W.; et al. Selectively Modulated Photoresponse in Type-I Heterojunction for Ultrasensitive Self-Powered Photodetectors. Laser Photonics Rev. 2022, 16, 2200338. [Google Scholar] [CrossRef]
- Vashishtha, P.; Dash, A.; Prajapat, P.; Goswami, P.; Walia, S.; Gupta, G. Self-Powered Broadband Photodetection of MoS2/Sb2Se3 Heterostructure. ACS Appl. Opt. Mater. 2023, 1, 1952–1962. [Google Scholar] [CrossRef]
- Yuan, L.; Xu, Z.; Li, J.; Zhang, F.; Liu, S.; Shi, H.; Xia, Q.; Zhong, M. Broad-spectrum and ultrasensitive photodetectors based on GeSe/SnS2 heterostructures with type-III band alignment. Appl. Phys. Lett. 2023, 122, 241106. [Google Scholar] [CrossRef]
- Duan, J.; Chava, P.; Ghorbani-Asl, M.; Lu, Y.; Erb, D.; Hu, L.; Echresh, A.; Rebohle, L.; Erbe, A.; Krasheninnikov, A.V.; et al. Self-Driven Broadband Photodetectors Based on MoSe2/FePS3 van der Waals n-p Type-II Heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 11927–11936. [Google Scholar] [CrossRef]
- Vashishtha, P.; Dash, A.; Walia, S.; Gupta, G. Self-bias Mo-Sb-Ga multilayer photodetector encompassing ultra-broad spectral response from UV-C to IR-B. Opt. Laser Technol. 2025, 181, 111705. [Google Scholar] [CrossRef]
- Asaithambi, A.; Tofighi, N.K.; Curreli, N.; De Franco, M.; Patra, A.; Petrini, N.; Baranov, D.; Manna, L.; Di Stasio, F.; Kriegel, I. Generation of Free Carriers in MoSe2 Monolayers Via Energy Transfer from CsPbBr3 Nanocrystals. Adv. Opt. Mater. 2022, 10, 2200638. [Google Scholar] [CrossRef]
- Asaithambi, A.; Thakur, M.K.; Zhu, D.; Tofighi, N.K.; Cresi, J.S.P.; Kuriyil, S.; Curreli, N.; Petrini, N.; Rebecchi, L.; De Trizio, L.; et al. Charge Transfer in InAs@ZnSe-MoS2 Heterostructures for Broadband Photodetection. Adv. Funct. Mater. 2024, 34, 2409951. [Google Scholar] [CrossRef]
- Zhang, X.L.; Li, J.; Leng, B.; Yang, L.; Song, Y.D.; Feng, S.Y.; Feng, L.Z.; Liu, Z.T.; Fu, Z.W.; Jiang, X.; et al. High-performance ultraviolet-visible photodetector with high sensitivity and fast response speed based on MoS2-on-ZnO photogating heterojunction. Tungsten 2023, 5, 91–99. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhou, J.; Li, B.; Ma, Z.; Huang, Z.; Yang, Y.; Zhang, Y.; Huang, Y.; Zhang, H.; Fan, K.; et al. Vertical Van Der Waals Epitaxy of p-MoXRe1-Xs2 on GaN for Ultrahigh Detectivity Uv-vis-NIR Photodetector. Adv. Opt. Mater. 2024, 12, 2302613. [Google Scholar] [CrossRef]
- Vashishtha, P.; Tanwar, R.; Gautam, S.; Goswami, L.; Kushwaha, S.S.; Gupta, G. Wavelength-modulated polarity switch self-powered Bi2Se3/GaN heterostructure photodetector. Mater. Sci. Semicond. Process. 2024, 180, 108553. [Google Scholar] [CrossRef]
- Vashishtha, P.; Abidi, I.H.; Giridhar, S.P.; Verma, A.K.; Prajapat, P.; Bhoriya, A.; Murdoch, B.J.; Tollerud, J.O.; Xu, C.; Davis, J.A.; et al. CVD-Grown Monolayer MoS2 and GaN Thin Film Heterostructure for a Self-Powered and Bidirectional Photodetector with an Extended Active Spectrum. ACS Appl. Mater. Interfaces 2024, 16, 31294–31303. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Sadi, M.A.; Hu, D.; Zheng, M.; Wu, Z.; Jiang, Y.; Chen, Y.P. Recent Progress in Strain Engineering on Van der Waals 2D Materials: Tunable Electrical, Electrochemical, Magnetic, and Optical Properties. Adv. Mater. 2023, 35, 2205714. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Zhao, Y.; Zhang, S.; Shi, R.; Zhang, T. Strain Engineering: A Boosting Strategy for Photocatalysis. Adv. Mater. 2022, 34, 2200868. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Sumant, A.V.; Berry, V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 2018, 22, 14–35. [Google Scholar] [CrossRef]
- Shang, C.; Wang, W.; Zhang, J.; Zhao, Y.; Li, J.; Chen, L.; Jia, G.; Zhou, N.; Liu, G.; Hui, M.; et al. Uniaxial Strain Engineering of Anisotropic Phonon in Few-Layer Violet Phosphorus with High Stretchability for Polarized Sensitive Flexible Photodetector. Adv. Funct. Mater. 2024, 34, 2410783. [Google Scholar] [CrossRef]
- Mao, J.; Wu, Z.; Guo, F.; Hao, J. Strain-Induced Performance Enhancement of a Monolayer Photodetector via Patterned Substrate Engineering. ACS Appl. Mater. Interfaces 2022, 14, 36052–36059. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Y.; Kong, L.; Luo, C.; Lu, Z.; Tao, Q.; Song, W.; Ma, L.; Li, Z.; Li, W.; et al. Strain-Plasmonic Coupled Broadband Photodetector Based on Monolayer MoS2. Small 2022, 18, 2107104. [Google Scholar] [CrossRef]
- Wang, H.; Dong, C.; Gui, Y.; Ye, J.; Altaleb, S.; Thomaschewski, M.; Nouri, B.M.; Patil, C.; Dalir, H.; Sorger, V.J. Self-Powered Sb2Te3/MoS2 Heterojunction Broadband Photodetector on Flexible Substrate from Visible to Near Infrared. Nanomaterials 2023, 13, 1973. [Google Scholar] [CrossRef]
- Zeng, H.; Yu, H.; Liu, B.; Lu, S.; Wei, X.; Gao, L.; Hong, M.; Zhang, X.; Zhang, Z.; Zhang, Y. Gradient-Strained Van Der Waals Heterojunctions for High-Efficient Photodetectors. Adv. Funct. Mater. 2024, 34, 2400712. [Google Scholar] [CrossRef]
- Li, F.; Shen, T.; Xu, L.; Hu, C.; Qi, J. Strain Improving the Performance of a Flexible Monolayer MoS2 Photodetector. Adv. Electron. Mater. 2019, 5, 1900803. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Ma, B.; Zeng, X.; Liu, Y.; Ma, Z.; Yang, Z.; Wang, X. High-Performance Ultraviolet to Near-Infrared Antiambipolar Photodetectors Based on 1D CdSxSe1-x/2D Te Heterojunction. ACS Appl. Mater. Interfaces 2024, 16, 47808–47819. [Google Scholar] [CrossRef] [PubMed]
- Vashishtha, P.; Prajapat, P.; Kumar, K.; Kumar, M.; Walia, S.; Gupta, G. Multiband spectral response inspired by ultra-high responsive thermally stable and self-powered Sb2Se3/GaN heterojunction based photodetector. Surf. Interfaces 2023, 42, 103376. [Google Scholar] [CrossRef]
- Vashishtha, P.; Kumar, M.; Prajapat, P.; Ahmed, J.; Singh, V.N.; Gupta, G. Highly responsive SnSe/GaN heterostructure-based UVC-SWIR broadband photodetector. Mater. Sci. Semicond. Process. 2023, 156, 107277. [Google Scholar] [CrossRef]
- Bianca, G.; Zappia, M.I.; Bellani, S.; Ghini, M.; Curreli, N.; Buha, J.; Galli, V.; Prato, M.; Soll, A.; Sofer, Z.; et al. Indium Selenide/Indium Tin Oxide Hybrid Films for Solution-Processed Photoelectrochemical-Type Photodetectors in Aqueous Media. Adv. Mater. Interfaces 2023, 10, 2201635. [Google Scholar] [CrossRef]
- Zappia, M.I.; Bianca, G.; Bellani, S.; Curreli, N.; Sofer, Z.; Serri, M.; Najafi, L.; Piccinni, M.; Oropesa-Nunez, R.; Marvan, P.; et al. Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-type Photodetectors. J. Phys. Chem. C 2021, 125, 11857–11866. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.H.; Yang, R.; Bao, L.H.; Meng, L.; Luo, H.L.; Cai, Y.Q.; Liu, G.D.; Zhao, W.J.; Zhou, Z.; et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453. [Google Scholar] [CrossRef]
- Liu, F.; Wu, W.; Bai, Y.; Chae, S.H.; Li, Q.; Wang, J.; Hone, J.; Zhu, X.Y. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 2020, 367, 903–906. [Google Scholar] [CrossRef]
- Akeredolu, B.J.; Ahemen, I.; Amah, A.N.; Onojah, A.D.; Shakya, J.; Gayathri, H.N.; Ghosh, A. Improved liquid phase exfoliation technique for the fabrication of MoS2/graphene heterostructure-based photodetector. Heliyon 2024, 10, e24964. [Google Scholar] [CrossRef]
- Curreli, N.; Serri, M.; Spirito, D.; Lago, E.; Petroni, E.; Martin-Garcia, B.; Politano, A.; Gurbulak, B.; Duman, S.; Krahne, R.; et al. Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors. Adv. Funct. Mater. 2020, 30, 1908427. [Google Scholar] [CrossRef]
Device | Strategies | Range (nm) | Responsivity (A/W) | Enhancement | Ref. |
---|---|---|---|---|---|
PbSe0.5Te0.5 | Chemical Doping | 405–5000 | 17.5@780 nm | - | [102] |
Mg-doped SnS | Chemical Doping | 400–1100 | 0.052@470 nm | 344% | [103] |
MoSe2 with 6% V | Chemical Doping | 365–2240 | 9.7@520 nm | 625% | [105] |
WS2/AlOx/Ge | Defect Engineering | 200–4600 | 0.63@1550 nm | 150% | [107] |
D-nMAG | Defect Engineering | 900–4000 | 0.15@900 nm | 385% | [109] |
CdSxSe1-x/Te | Heterostructure | 355–800 | 435@vis | 446% | [131] |
MoSe2/FePS3 | Heterostructure | 350–900 | 0.052@522 nm | 144% | [114] |
p-MoxRe1-xS2/GaN | Heterostructure | 280–1050 | 888.69@365 nm | 352% | [119] |
Sb2Se3/GaN | Heterostructure | 250–1250 | 1.2@355 nm | 153% | [132] |
SnSe/GaN | Heterostructure | 250–1250 | 128@355 nm | - | [133] |
Bi2Se3/GaN | Heterostructure | 266–1405 | 0.58@355 nm | 148% | [120] |
MoS2 | Strain Engineering | 660–740 | 660@418 nm | 400% | [127] |
MoS2/Sb2Te3 | Strain Engineering | 500–900 | 0.001@600 nm | - | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Liu, H.; Li, J.; Liu, B.; Liu, F. Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials. Nanomaterials 2025, 15, 431. https://doi.org/10.3390/nano15060431
Tian Y, Liu H, Li J, Liu B, Liu F. Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials. Nanomaterials. 2025; 15(6):431. https://doi.org/10.3390/nano15060431
Chicago/Turabian StyleTian, Yan, Hao Liu, Jing Li, Baodan Liu, and Fei Liu. 2025. "Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials" Nanomaterials 15, no. 6: 431. https://doi.org/10.3390/nano15060431
APA StyleTian, Y., Liu, H., Li, J., Liu, B., & Liu, F. (2025). Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials. Nanomaterials, 15(6), 431. https://doi.org/10.3390/nano15060431