Compact Near-Infrared Imaging Device Based on a Large-Aperture All-Si Metalens
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Piatkevich, K.D.; Subach, F.V.; Verkhusha, V.V. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Cheminform 2013, 42, 3441–3452. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Hashimoto, D.; Fujiwara, H.; Mogi, C. Usefulness of Near-Infrared Imaging for Intraoperative Parathyroid Detection. Nippon. Jibiinkoka Tokeibugeka Gakkai Kaiho (Tokyo) 2021, 124, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Near-infrared brain imaging based on nanomaterials. In Proceedings of the Second International Conference on Biological Engineering and Medical Science (ICBioMed 2022), Online, 7–13 November 2022. [Google Scholar]
- Rockett, T.B.O.; Boone, N.A.; Richards, R.D.; Willmott, J.R. Thermal Imaging Metrology Using High Dynamic Range Near-Infrared Photovoltaic-Mode Camera. Sensors 2021, 21, 6151. [Google Scholar] [CrossRef]
- Chen, M.K.; Wu, Y.; Feng, L.; Fan, Q.; Lu, M.; Xu, T.; Tsai, D.P. Principles, Functions, and Applications of Optical Meta-Lens. Adv. Opt. Mater. 2021, 9, 2001414. [Google Scholar] [CrossRef]
- Greisukh, G.I.; Danilov, V.A.; Ezhov, E.G.; Stepanov, S.A.; Usievich, B.A. Spectral and angular dependences of the efficiency of relief-phase diffractive lenses with two- and three-layer microstructures. Opt. Spectrosc. 2015, 118, 964–970. [Google Scholar] [CrossRef]
- Wang, P.; Mohammad, N.; Menon, R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 2016, 6, 21545. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, F.; Pu, M.; Li, X.; Ma, X.; Guo, Y.; Luo, X. Dual-wavelength multilevel diffractive lenses for near-infrared imaging. J. Phys. D Appl. Phys. 2021, 54, 175109. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Hu, T.; Zhong, Q.; Li, N.; Dong, Y.; Xu, Z.; Fu, Y.H.; Li, D.; Bliznetsov, V.; Zhou, Y.; Lai, K.H.; et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics 2020, 9, 823–830. [Google Scholar] [CrossRef]
- Tang, F.; Ye, X.; Li, Q.; Li, H.; Yu, H.; Wu, W.; Li, B.; Zheng, W. Quadratic Meta-Reflectors Made of HfO2 Nanopillars with a Large Field of View at Infrared Wavelengths. Nanomaterials 2020, 10, 1148. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, X.; Du, L.; Li, J.; Zhu, L. Design of a dielectric ultrathin near-infrared metalens based on electromagnetically induced transparency. Opt. Mater. Express 2023, 13, 2541–2549. [Google Scholar] [CrossRef]
- Gusev, E.Y.; Klimin, V.S.; Avdeev, S.P.; Kislyak, P.E.; Gaidukasov, R.A.; Wang, S.; Wang, Z.; Ren, X.; Chen, D.; Han, L. Terahertz All-Dielectric Metalens: Design and Fabrication Features. Russ. Microelectron. 2024, 52 (Suppl. S1), S145–S150. [Google Scholar] [CrossRef]
- Xu, Y.; Geng, Y.; Liang, Y.; Tang, F.; Sun, Y.; Wang, Y. Research on the design of metalens with achromatic and amplitude modulation. Optoelectron. Lett. 2023, 19, 77–82. [Google Scholar] [CrossRef]
- Dong, L.; Kong, W.; Zhang, F.; Liu, L.; Pu, M.; Wang, C.; Li, X.; Ma, X.; Luo, X. Ultra-thin sub-diffraction metalens with a wide field-of-view for UV focusing. Opt. Lett. 2024, 49, 1189–1192. [Google Scholar] [CrossRef]
- Shi, Y.; Dai, H.; Tang, R.; Chen, Z.; Si, Y.; Ma, H.; Wei, M.; Luo, Y.; Li, X.; Zhao, Q.; et al. Ultra-thin, zoom capable, flexible metalenses with high focusing efficiency and large numerical aperture. Nanophotonics 2024, 13, 1339–1349. [Google Scholar] [CrossRef]
- Hou, Y.C.M.; Li, J.; Yi, F. Single 5—centimeter—aperture metalens enabled intelligent lightweight mid—infrared thermographic camera. Sci. Adv. 2024, 10, eado4847. [Google Scholar] [CrossRef]
- Johansen, V.E.; Gür, U.M.; Martínez-Llinás, J.; Hansen, J.F.; Samadi, A.; Larsen, M.S.V.; Nielsen, T.; Mattinson, F.; Schmidlin, M.; Mortensen, N.A.; et al. Nanoscale precision brings experimental metalens efficiencies on par with theoretical promises. Commun. Phys. 2024, 7, 123. [Google Scholar] [CrossRef]
- Li, Z.; Lv, Y. Optimization for Si Nano-Pillar-Based Broadband Achromatic Metalens. IEEE Photonics J. 2024, 16, 1–7. [Google Scholar] [CrossRef]
- Wen, D.; Yue, F.; Li, G.; Zheng, G.; Chan, K.; Chen, S.; Chen, M.; Li, K.F.; Wong, P.W.H.; Cheah, K.W. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 2015, 6, 8241. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, G.; Zhou, N.; Deng, L.; Tao, J. Full-space metasurface holograms in the visible range. Opt. Express 2024, 29, 2920–2930. [Google Scholar]
- Zhang, X.; Chen, L.; Hong, M.; Wang, Y.; Ma, X.; Zhao, Z.; Pu, M.; Li, X.; Li, Y.; Luo, X. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2016, 2, e1601102. [Google Scholar]
- Miyata, M.; Hatada, H.; Takahara, J. Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas. Nano Lett. 2016, 16, 3166. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Zhu, A.Y.; Li, Z.; Huang, Y.W.; Capasso, F. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion. Sci. Adv. 2020, 6, eaba3367. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, S.; Liu, M.; Huo, P.; Tan, L.; Xu, T. Compact meta-optics infrared camera based on a polarization-insensitive metalens with a large field of view. Opt. Lett. 2023, 48, 4709–4712. [Google Scholar] [CrossRef]
- Zhou, L.; Lu, D.-H. A near infrared optimal wavelength imaging method for detection of foreign materials. In Proceedings of theInternational Symposium on Photoelectronic Detection and Imaging 2007: Laser, Ultraviolet, and Terahertz Technology, Beijing, China, 9–12 September 2007. [Google Scholar]
- Lin, H.I.; Geldmeier, J.; Baleine, E.; Yang, F.; An, S.; Pan, Y.; Rivero-Baleine, C.; Gu, T.; Hu, J. Wide-Field-of-View, Large-Area Long-Wave Infrared Silicon Metalenses. ACS Photonics 2023, 11, 1943–1949. [Google Scholar] [CrossRef]
- Shrestha, S.; Overvig, A.; Lu, M.; Stein, A.; Yu, N. Multi-element metasurface system for imaging in the near-infrared. Appl. Phys. Lett. 2023, 122, 201701. [Google Scholar] [CrossRef]
- Hu, T.; Wen, L.; Li, H.; Wang, S.; Xia, R.; Mei, Z.; Yang, Z.; Zhao, M. Aberration-corrected hybrid metalens for longwave infrared thermal imaging. Nanophotonics 2024, 13, 3059–3066. [Google Scholar] [CrossRef]
- He, W.; Xin, L.; Yang, Z.; Li, W.; Wang, Z.; Liu, Z. Mid-infrared large-aperture metalens design verification and double-layer micro-optical system optimization. Opt. Mater. Express 2024, 14, 1321–1335. [Google Scholar] [CrossRef]
- Guo, C.; Zheng, Z.; Liu, Z.; Yan, Z.; Wang, Y.; Chen, R.; Liu, Z.; Yu, P.; Wan, W.; Zhao, Q.; et al. Design and Analysis of the Dual-Band Far-Field Super-Resolution Metalens with Large Aperture. Nanomaterials 2024, 14, 513. [Google Scholar] [CrossRef]
- Hou, M.; Chen, Y.; Yi, F. Lightweight Long-Wave Infrared Camera via a Single 5-Centimeter-Aperture Metalens. In Proceedings of the 2022 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 15–20 May 2022. [Google Scholar]
- Liu, M.; Zhao, W.; Wang, Y.; Huo, P.; Zhang, H.; Lu, Y.-Q.; Xu, T. Achromatic and Coma-Corrected Hybrid Meta-Optics for High-Performance Thermal Imaging. Nano Lett. 2024, 24, 7609–7615. [Google Scholar] [CrossRef]
- Yoon, G.; Kim, K.; Kim, S.-U.; Han, S.; Lee, H.; Rho, J. Printable Nanocomposite Metalens for High-Contrast Near-Infrared Imaging. ACS Nano 2021, 15, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Deng, R.X.; Song, L.X.; Zhang, T. Numerical investigation on dielectric-metal based dual narrowband visible absorber. Mater. Res. Express 2019, 6, 115809. [Google Scholar] [CrossRef]
- Li, A.; Duan, H.; Jia, H.; Long, L.; Li, J.; Hu, Y. Large-aperture imaging system based on 100 mm all-Si metalens in long-wave infrared. J. Opt. 2024, 26, 065005. [Google Scholar] [CrossRef]
- Shalaginov, M.Y.; Campbell, S.D.; An, S.; Zhang, Y.; Ríos, C.; Whiting, E.B.; Wu, Y.; Kang, L.; Zheng, B.; Fowler, C.; et al. Design for quality: Reconfigurable flat optics based on active metasurfaces. Nanophotonics 2020, 9, 3505–3534. [Google Scholar] [CrossRef]
- Jin, Z.; Lin, Y.; Wang, C.; Han, Y.; Li, B.; Zhang, J.; Zhang, X.; Jia, P.; Hu, Y.; Liu, Q.; et al. Topologically optimized concentric-nanoring metalens with 1 mm diameter, 0.8 NA and 600 nm imaging resolution in the visible. Opt. Express 2023, 31, 10489–10499. [Google Scholar] [CrossRef]
- Qin, F.; Huang, K.; Wu, J.; Teng, J.; Qiu, C.W.; Hong, M. A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance. Adv. Mater. 2016, 29, 1602721.1–1602721.6. [Google Scholar] [CrossRef]
- Luo, Y.; Bao, J. A material-field series-expansion method for topology optimization of continuum structures. Comput. Struct. 2019, 225, 106122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liu, W.; Zhang, Y.; Tang, F.; Yang, L.; Ye, X. Compact Near-Infrared Imaging Device Based on a Large-Aperture All-Si Metalens. Nanomaterials 2025, 15, 453. https://doi.org/10.3390/nano15060453
Li Z, Liu W, Zhang Y, Tang F, Yang L, Ye X. Compact Near-Infrared Imaging Device Based on a Large-Aperture All-Si Metalens. Nanomaterials. 2025; 15(6):453. https://doi.org/10.3390/nano15060453
Chicago/Turabian StyleLi, Zhixi, Wei Liu, Yubing Zhang, Feng Tang, Liming Yang, and Xin Ye. 2025. "Compact Near-Infrared Imaging Device Based on a Large-Aperture All-Si Metalens" Nanomaterials 15, no. 6: 453. https://doi.org/10.3390/nano15060453
APA StyleLi, Z., Liu, W., Zhang, Y., Tang, F., Yang, L., & Ye, X. (2025). Compact Near-Infrared Imaging Device Based on a Large-Aperture All-Si Metalens. Nanomaterials, 15(6), 453. https://doi.org/10.3390/nano15060453