Fabrication of Conjugated Conducting Polymers by Chemical Vapor Deposition (CVD) Method
Abstract
:1. Introduction
2. Chemical Vapor Deposition (CVD) Method
2.1. Fundamental of CVD Method
2.2. Gas Delivery System in the CVD Method
2.3. Vacuum Reaction Chamber in CVD Method
2.4. Heating Source in the CVD Method
2.5. Vacuum System and Mean Free Path
- (i)
- Rough vacuum: Pressure range of 760 Torr to 1 mTorr;
- (ii)
- Medium vacuum: Pressure range of 1 mTorr to 10−6 Torr;
- (iii)
- High vacuum: Pressure range of 10−6 to 10−9 Torr;
- (iv)
- Ultra-high vacuum (UHV): Pressure range of 10−9 to 10−12 Torr;
- (v)
- Extreme high vacuum (XHV): Pressure range of below than 10−12 Torr;
- (vi)
- Rough vacuum conditions can be achieved using a variety of pumps, including rotary piston mechanical pumps, dry mechanical pumps, sorption pumps, and blower/booster pumps, each suited for different industrial and laboratory applications. For high vacuum environments, turbo molecular pumps, cryogenic pumps, and diffusion pumps are commonly utilized, providing efficient gas removal and maintaining stable vacuum levels. Achieving an ultra-high vacuum requires specialized pumps, such as ion pumps, which rely on ionization and electrostatic trapping to remove residual gas molecules, making them essential for high-precision applications, like space research, and particle accelerators. In a CVD system, mechanical pumps are sufficient for many processes and can achieve vacuum levels down to 1 mTorr. While oil-sealed pumps are more cost-effective compared to dry pumps of similar capacity, they introduce potential contamination due to oil back streaming, which may affect film purity and process stability. For systems with large reaction vacuum chambers, a rotary pump (with a pumping speed ranging from 0.5 to 325 L/s) combined with a Roots pump (capable of 50 to 35,000 L/s) is an effective solution for rapid gas evacuation, enhancing process efficiency and maintaining stable vacuum conditions [4].
2.6. Pump-Down in Vacuum Systems
2.7. Conductance in Vacuum Systems
2.8. Effective Pump Speed in Vacuum Systems
2.9. Flow Regimes in the Vacuum Systems
- (i)
- Molecular flow (Gas molecules move independently, with collisions occurring more frequently with chamber walls than with other molecules, typical in high and ultra-high vacuum and high mean free path.
- (ii)
- Viscous flow (): Gas molecules interact predominantly with each other, behaving like a continuous fluid, common at higher pressures and low mean free path.
- (iii)
- Transition flow (): Intermediate regime where both molecular and viscous flow characteristics are present, occurring in medium vacuum conditions.
3. Methods for the Fabrication of Conjugated Conducting and Semiconducting Polymers
4. Oxidative Chemical Vapor Deposition (oCVD) Method
4.1. Monomers Used in the oCVD Method
4.2. Oxidants Used in the oCVD Method
4.3. Step-Growth Polymerization Mechanism in the oCVD Method
- (1)
- (2)
- (3)
- (4)
- Propagation: The oxidizing agent continues to react with the stabilized dimer, producing additional radical cations. This process repeats continuously, allowing the polymer chains to grow in a controlled manner across the substrate surface.
- (5)
- Doping and Structural Stabilization: Some positively charged heterocyclic rings within the polymer backbone undergo stabilization through interactions with counter-ion dopants. This final step enhances the electrical conductivity and structural integrity of the polymer film, completing the polymerization process (Figure 6e) [12].
4.4. Precursor Flow Rates and Partial Pressure in the oCVD Method
4.5. Saturation Precursor of Reactant Species in the oCVD Method
4.6. Effect of Oxidant Saturation Ratio on Electrical Conductivity and Nanostructure in Conjugated Polymers
4.7. Effect of Deposition Temperature on Electrical Conductivity and Nanostructure in Conjugated Polymers
4.8. Effect of Deposition Temperature on Carrier Mobility, Carrier Density, and Seebeck Coefficient
5. Electrical Conductivity of Conjugated Conducting Polymers
6. Utilization of Conjugated Conducting Polymers on Flexible Optoelectronic Devices
7. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Gleason, K.K.; Gharahcheshmeh, M.H. Conjugated Polymers at Nanoscale: Engineering Orientation, Nanostructure, and Properties; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2021. [Google Scholar]
- Gharahcheshmeh, M.H.; Chowdhury, K. Fabrication methods, pseudocapacitance characteristics, and integration of conjugated conducting polymers in electrochemical energy storage devices. Energy Adv. 2024, 3, 2668–2703. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Gleason, K.K. Device fabrication based on oxidative chemical vapor deposition (oCVD) synthesis of conducting polymers and related conjugated organic materials. Adv. Mater. Interfaces 2019, 6, 1801564. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Gleason, K. Texture and nanostructural engineering of conjugated conducting and semiconducting polymers. Mater. Today Adv. 2020, 8, 100086. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Gleason, K.K. Recent Progress in Conjugated Conducting and Semiconducting Polymers for Energy Devices. Energies 2022, 15, 3661. [Google Scholar] [CrossRef]
- Gleason, K.K. Three-Dimensional (3D) Device Architectures Enabled by Oxidative Chemical Vapor Deposition (oCVD). Org. Mater. 2022, 4, 261–267. [Google Scholar] [CrossRef]
- Asatekin, A.; Barr, M.C.; Baxamusa, S.H.; Lau, K.K.; Tenhaeff, W.; Xu, J.; Gleason, K.K. Designing polymer surfaces via vapor deposition. Mater. Today 2010, 13, 26–33. [Google Scholar] [CrossRef]
- Gleason, K.K. Designing organic and hybrid surfaces and devices with initiated chemical vapor deposition (iCVD). Adv. Mater. 2023, 36, 2306665. [Google Scholar] [CrossRef]
- Robinson, M.T.; Tung, J.; Heydari Gharahcheshmeh, M.; Gleason, K.K. Humidity-Initiated Gas Sensors for Volatile Organic Compounds Sensing. Adv. Funct. Mater. 2021, 31, 2101310. [Google Scholar] [CrossRef]
- Gleason, K.K. CVD Polymers: Fabrication of Organic Surfaces and Devices; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Heydari Gharahcheshmeh, M. Advancements in oxidative chemical vapor deposition (oCVD) with liquid oxidant: A true dry vacuum manufacturing approach for optoelectronic devices. MRS Commun. 2024, 14, 785–804. [Google Scholar] [CrossRef]
- Gleason, K.K.; Brushett, F.; Wan, C.; Forner-Cuenca, A.; Gharahcheshmeh, M.H.; Gandomi, Y.A. Ultrathin Conformal oCVD PEDOT Coatings on Porous Electrodes and Applications Thereof. U.S. Patent 11677078B2, 13 June 2023. [Google Scholar]
- Sekkat, A.; El Housseiny, H.; Poupaki, E.; Breig, B.; Samélor, D.; Esvan, J.; Marsan, O.; Charvillat, C.; Pugliara, A.; Caussé, N. Single-Step PEDOT Deposition by oCVD for ITO-Free Deep Blue OLEDs. ACS Appl. Polym. Mater. 2023, 5, 10205–10216. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Gharahcheshmeh, M.H.; Moody, N.; Bawendi, M.G.; Gleason, K.K.; Kong, J. Efficient, Flexible, and Ultra-Lightweight Inverted PbS Quantum Dots Solar Cells on All-CVD-Growth of Parylene/Graphene/oCVD PEDOT Substrate with High Power-per-Weight. Adv. Mater. Interfaces 2020, 7, 2000498. [Google Scholar] [CrossRef]
- Krieg, L.; Meierhofer, F.; Gorny, S.; Leis, S.; Splith, D.; Zhang, Z.; von Wenckstern, H.; Grundmann, M.; Wang, X.; Hartmann, J. Toward three-dimensional hybrid inorganic/organic optoelectronics based on GaN/oCVD-PEDOT structures. Nat. Commun. 2020, 11, 5092. [Google Scholar] [CrossRef]
- Smolin, Y.Y.; Soroush, M.; Lau, K.K. Influence of oCVD polyaniline film chemistry in carbon-based supercapacitors. Ind. Eng. Chem. Res. 2017, 56, 6221–6228. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Yeom, H.-Y.; Jun, B.-H.; Baek, J.; No, K.; Song, H.; Lee, S. Enhanced doping and structure relaxation of unsubstituted polythiophene through oxidative chemical vapor deposition and mild plasma treatment. J. Phys. Mater. 2024, 7, 15011. [Google Scholar] [CrossRef]
- Charyton, M.K.; Reiker, T.; Kotwica, K.; Góra, M.; Zacharias, H.; Boscher, N.D. Unsubstituted thiophene–diketopyrrolopyrrole conjugated polymer thin films via oxidative chemical vapor deposition–electronic behavior. Mater. Adv. 2023, 4, 2625–2635. [Google Scholar] [CrossRef]
- Dianatdar, A.; Bose, R. Oxidative chemical vapor deposition for synthesis and processing of conjugated polymers: A critical review. J. Mater. Chem. C 2023, 11, 11776. [Google Scholar] [CrossRef]
- Baek, J.; Shan, Y.; Mylvaganan, M.; Zhang, Y.; Yang, X.; Qin, F.; Zhao, K.; Song, H.W.; Mao, H.; Lee, S. Mold-Free Manufacturing of Highly Sensitive and Fast-Response Pressure Sensors Through High-Resolution 3D Printing and Conformal Oxidative Chemical Vapor Deposition Polymers. Adv. Mater. 2023, 35, 2304070. [Google Scholar] [CrossRef]
- Muralter, F.; Coclite, A.M.; Lau, K.K. Oxidative chemical vapor deposition of conducting polymer films on nanostructured surfaces for piezoresistive sensor applications. Adv. Electron. Mater. 2021, 7, 2000871. [Google Scholar] [CrossRef]
- Abessolo Ondo, D.; Loyer, F.; Chemin, J.B.; Bulou, S.; Choquet, P.; Boscher, N.D. Atmospheric plasma oxidative polymerization of ethylene dioxythiophene (EDOT) for the large-scale preparation of highly transparent conducting thin films. Plasma Process. Polym. 2018, 15, 1700172. [Google Scholar] [CrossRef]
- Clevenger, M.; Kim, H.; Song, H.W.; No, K.; Lee, S. Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition. Sci. Adv. 2021, 7, eabj8958. [Google Scholar] [CrossRef] [PubMed]
- Drewelow, G.; Song, H.W.; Jiang, Z.-T.; Lee, S. Factors controlling conductivity of PEDOT deposited using oxidative chemical vapor deposition. Appl. Surf. Sci. 2020, 501, 144105. [Google Scholar] [CrossRef]
- Krieg, L.; Zhang, Z.; Splith, D.; von Wenckstern, H.; Grundmann, M.; Wang, X.; Gleason, K.K.; Voss, T. Controlled formation of Schottky diodes on n-doped ZnO layers by deposition of p-conductive polymer layers with oxidative chemical vapor deposition. Nano Express 2020, 1, 010013. [Google Scholar] [CrossRef]
- Karaman, M.; Cam, S.M.; Çelen, O.; Özbakış, M.; Yılmaz, K. Reel-to-Reel Coating of a Conductive Polymer on Synthetic Textile Yarns in a Semi-closed Batch Oxidative CVD System. Fibers Polym. 2024, 25, 2597–2603. [Google Scholar] [CrossRef]
- Bansal, D.; Ganesh Moorthy, S.; Bouvet, M.; Boscher, N.D. Engineering Nickel (II) Porphyrin-Conjugated Polymers with Different Aryl meso-Substituents for n-Type and p-Type Ammonia Sensors. ACS Appl. Mater. Interfaces 2024, 16, 68091–68102. [Google Scholar] [CrossRef]
- Smith, P.M.; Su, L.; Xu, Y.; Reeja-Jayan, B.; Shen, S. Morphological and molecular control of chemical vapor deposition (CVD) polymerized polythiophene thin films. RSC Adv. 2024, 14, 31723–31729. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Dautel, B.; Chowdhury, K. Enhanced Carrier Mobility and Thermoelectric Performance by Nanostructure Engineering of PEDOT Thin Films Fabricated via the OCVD Method Using SbCl5 Oxidant. Adv. Funct. Mater. 2024, 35, 2418331. [Google Scholar] [CrossRef]
- Li, X.; Rafie, A.; Kalra, V.; Lau, K.K. Deposition behavior of polyaniline on carbon nanofibers by oxidative chemical vapor deposition. Langmuir 2020, 36, 13079–13086. [Google Scholar] [CrossRef]
- Xu, G.-L.; Liu, Q.; Lau, K.K.; Liu, Y.; Liu, X.; Gao, H.; Zhou, X.; Zhuang, M.; Ren, Y.; Li, J. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484–494. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Robinson, M.T.; Gleason, E.F.; Gleason, K.K. Water-Assisted Growth: Optimizing the Optoelectronic Properties of Face-On Oriented Poly (3, 4-Ethylenedioxythiophene) via Water-Assisted Oxidative Chemical Vapor Deposition. Adv. Funct. Mater. 2021, 31, 2170097. [Google Scholar] [CrossRef]
- Chowdhury, K.; Behura, S.K.; Rahimi, M.; Heydari Gharahcheshmeh, M. oCVD PEDOT-Cl Thin Film Fabricated by SbCl5 Oxidant as the Hole Transport Layer to Enhance the Perovskite Solar Cell Device Stability. ACS Appl. Energy Mater. 2024, 7, 1068–1079. [Google Scholar] [CrossRef]
- Lee, S.; Song, H.W.; Cho, J.Y.; Radevski, N.; Truc, L.N.T.; Sung, T.H.; Jiang, Z.-T.; No, K. Mobility of air-stable p-type polythiophene field-effect transistors fabricated using oxidative chemical vapor deposition. J. Electron. Mater. 2020, 49, 3465–3471. [Google Scholar] [CrossRef]
- Goktas, H.; Wang, X.; Boscher, N.D.; Torosian, S.; Gleason, K.K. Functionalizable and electrically conductive thin films formed by oxidative chemical vapor deposition (oCVD) from mixtures of 3-thiopheneethanol (3TE) and ethylene dioxythiophene (EDOT). J. Mater. Chem. C 2016, 4, 3403–3414. [Google Scholar] [CrossRef]
- Su, L.; Kumar, S.S.; Manthiram, A.; Reeja-Jayan, B. A Review on Application of Poly (3, 4-ethylenedioxythiophene)(PEDOT) in Rechargeable Batteries. Org. Mater. 2022, 4, 292–300. [Google Scholar] [CrossRef]
- Cardenas-Morcoso, D.; Debard, J.; Farzin, F.; Boscher, N.D. Triflate Salts as Alternative Non-Chlorinated Oxidants for the Oxidative Chemical Vapor Deposition and Electronic Engineering of Conjugated Polymers. Macromolecules 2024, 57, 9627–9639. [Google Scholar] [CrossRef] [PubMed]
- Heydari Gharahcheshmeh, M.; Tavakoli, M.M.; Gleason, E.F.; Robinson, M.T.; Kong, J.; Gleason, K.K. Tuning, optimization, and perovskite solar cell device integration of ultrathin poly (3, 4-ethylene dioxythiophene) films via a single-step all-dry process. Sci. Adv. 2019, 5, eaay0414. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Robinson, M.T.; Gleason, E.F.; Gleason, K.K. Optimizing the optoelectronic properties of face-on oriented poly (3, 4-ethylenedioxythiophene) via water-assisted oxidative chemical vapor deposition. Adv. Funct. Mater. 2021, 31, 2008712. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Sun, L.; Lee, D.; Lee, S.; Wang, M.; Zhao, J.; Shao-Horn, Y.; Dincă, M.; Palacios, T. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Sci. Adv. 2018, 4, eaat5780. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Chowdhury, K. Enhancing Capacitance of Carbon Cloth Electrodes via Highly Conformal PEDOT Coating Fabricated by the OCVD Method Utilizing SbCl5 Oxidant. Adv. Mater. Interfaces 2024, 11, 2400118. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Wan, C.T.C.; Ashraf Gandomi, Y.; Greco, K.V.; Forner-Cuenca, A.; Chiang, Y.M.; Brushett, F.R.; Gleason, K.K. Ultrathin conformal oCVD PEDOT coatings on carbon electrodes enable improved performance of redox flow batteries. Adv. Mater. Interfaces 2020, 7, 2000855. [Google Scholar] [CrossRef]
- Lachman, N.; Xu, H.; Zhou, Y.; Ghaffari, M.; Lin, M.; Bhattacharyya, D.; Ugur, A.; Gleason, K.K.; Zhang, Q.; Wardle, B.L. Tailoring thickness of conformal conducting polymer decorated aligned carbon nanotube electrodes for energy storage. Adv. Mater. Interfaces 2014, 1, 1400076. [Google Scholar] [CrossRef]
- Khan, M.H.; Liu, H.K.; Sun, X.; Yamauchi, Y.; Bando, Y.; Golberg, D.; Huang, Z. Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Mater. Today 2017, 20, 611–628. [Google Scholar] [CrossRef]
- Song, Y.; Chang, S.; Gradecak, S.; Kong, J. Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes. Adv. Energy Mater. 2016, 6, 1600847. [Google Scholar] [CrossRef]
- Faggio, G.; Politano, G.; Lisi, N.; Capasso, A.; Messina, G. The structure of chemical vapor deposited graphene substrates for graphene-enhanced Raman spectroscopy. J. Phys. Condens. Matter 2024, 36, 195303. [Google Scholar] [CrossRef] [PubMed]
- Aras, F.G.; Yilmaz, A.; Tasdelen, H.G.; Ozden, A.; Ay, F.; Perkgoz, N.K.; Yeltik, A. A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX2: Mo, W; S, Se, Te). Mater. Sci. Semicond. Process. 2022, 148, 106829. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Two-dimensional inorganic nanosheets: Production and utility in the development of novel electrochemical (bio) sensors and gas-sensing applications. Microchim. Acta 2021, 188, 6. [Google Scholar] [CrossRef]
- Zeng, H.; Wen, Y.; Yin, L.; Cheng, R.; Wang, H.; Liu, C.; He, J. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys. 2023, 18, 53603. [Google Scholar] [CrossRef]
- Fang, L.; Su, L.; Guan, H.; Liu, Z.; Yu, Y.; Cao, D.; Chen, X.; Shu, H. Identification of Active Sites for Thermal Oxidation-Induced Doping and Etching in CVD-Grown Monolayer Transition Metal Dichalcogenides. ACS Appl. Nano Mater. 2024, 7, 5063–5073. [Google Scholar] [CrossRef]
- Zhao, B.; Shen, D.; Zhang, Z.; Lu, P.; Hossain, M.; Li, J.; Li, B.; Duan, X. 2D metallic transition-metal dichalcogenides: Structures, synthesis, properties, and applications. Adv. Funct. Mater. 2021, 31, 2105132. [Google Scholar] [CrossRef]
- Gleason, K.K. Nanoscale control by chemically vapour-deposited polymers. Nat. Rev. Phys. 2020, 2, 347–364. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Gleason, K.K. Hall of Fame Article: Device Fabrication Based on Oxidative Chemical Vapor Deposition (oCVD) Synthesis of Conducting Polymers and Related Conjugated Organic Materials. Adv. Mater. Interfaces 2019, 6, 1970016. [Google Scholar] [CrossRef]
- Tsang, W. Chemical beam epitaxy of InP and GaAs. Appl. Phys. Lett. 1984, 45, 1234–1236. [Google Scholar] [CrossRef]
- Minh, N.Q.; Van Nong, N.; Oda, O.; Ishikawa, K.; Hori, M. Low-temperature growth at 225 °C and characterization of carbon nanowalls synthesized by radical injection plasma-enhanced chemical vapor deposition. Vacuum 2024, 224, 113180. [Google Scholar] [CrossRef]
- Helmers, H.; Höhn, O.; Lackner, D.; Schygulla, P.; Klitzke, M.; Schön, J.; Pellegrino, C.; Oliva, E.; Schachtner, M.; Beutel, P. Advancing Solar Energy Conversion Efficiency to 47.6% and Exploring the Spectral Versatility of III-V Photonic Power Converters. In Proceedings of the Physics, Simulation, and Photonic Engineering of Photovoltaic Devices XIII, San Francisco, CA, USA, 29–30 January 2024; pp. 6–15. [Google Scholar]
- Mouloua, D.; Martin, M.; Beruete, M.; Jany, C.; Hassan, K.; Baron, T. Exploring Strategies for Performance Enhancement in Micro-LEDs: A Synoptic Review of III-V Semiconductor Technology. Adv. Opt. Mater. 2024, 13, 2402777. [Google Scholar] [CrossRef]
- Gharahcheshmeh, M.H.; Galstyan, E.; Kukunuru, J.; Katta, R.; Majkic, G.; Li, X.-F.; Selvamanickam, V. MOCVD of heavily-doped 25 mol.% Zr-added (Gd, Y) Ba2Cu3O7-δ coated conductors. IEEE Trans. Appl. Supercond. 2017, 27, 6602905. [Google Scholar] [CrossRef]
- Galstyan, E.; Gharahcheshmeh, M.H.; Delgado, L.; Xu, A.; Majkic, G.; Selvamanickam, V. Microstructure characteristics of high lift factor MOCVD REBCO coated conductors with high Zr content. IEEE Trans. Appl. Supercond. 2014, 25, 6604305. [Google Scholar] [CrossRef]
- Xu, A.; Zhang, Y.; Gharahcheshmeh, M.H.; Delgado, L.; Khatri, N.; Liu, Y.; Galstyan, E.; Selvamanickam, V. Relevant pinning for ab-plane Jc enhancement of MOCVD REBCO coated conductors. IEEE Trans. Appl. Supercond. 2017, 27, 4201005. [Google Scholar] [CrossRef]
- Gharahcheshmeh, M.H.; Majkic, G.; Galstyan, E.; Xu, A.; Zhang, Y.; Li, X.; Selvamanickam, V. Control of in-field performance of 25 mol.% Zr-added REBCO superconductor tapes. Phys. C Supercond. Its Appl. 2018, 553, 26–32. [Google Scholar] [CrossRef]
- Selvamanickam, V.; Heydari Gharahcheshmeh, M.; Xu, A.; Galstyan, E.; Delgado, L.; Cantoni, C. High critical currents in heavily doped (Gd, Y) Ba2Cu3Ox superconductor tapes. Appl. Phys. Lett. 2015, 106, 32601. [Google Scholar] [CrossRef]
- Park, K.W.; Gleason, K.K.; Yang, R. Advanced Morphological Control of Polymeric Surfaces Using Initiated Chemical Vapor Deposition (iCVD). Adv. Funct. Mater. 2024, 2417620. [Google Scholar] [CrossRef]
- Kwok, F.M.; Du, X.; Sun, Z.; Ng, M.C.; Liu, Q.; Fan, L.L.; Yip, W.S.; Kwok, D.K.Y.; To, S. Fabrication of diamond film under low methane concentration by hot filament chemical vapor deposition with magnetic field assistance. Surf. Coat. Technol. 2024, 483, 130802. [Google Scholar] [CrossRef]
- Nugera, F.A.; Devkota, D.; Anupam, K.; Ayala, A.; Aryal, G.; Engdahl, C.; Piner, E.L.; Holtz, M.W. Effect of CH4 concentration on the early growth stage of patterned diamond using high seeding density and hot filament chemical vapor deposition. J. Mater. Sci. 2024, 59, 6835–6848. [Google Scholar] [CrossRef]
- Matos, A.L.; Limbu, T.B.; Castillo, I.; Sultan, M.S.; Tripathi, B.; Katiyar, R.S.; Weiner, B.R.; Morell, G. Optimization of Graphene Layers Grown on Pt/Ti/SiO2 by Hot Filament Chemical Vapor Deposition. Macromol. Symp. 2024, 413, 2300040. [Google Scholar] [CrossRef]
- Shinde, D.B.; Chaturvedi, P.; Vlassiouk, I.V.; Smirnov, S.N. Unique role of dimeric carbon precursors in graphene growth by chemical vapor deposition. Carbon Trends 2021, 5, 100093. [Google Scholar] [CrossRef]
- Bilger, D.; Homayounfar, S.Z.; Andrew, T.L. A critical review of reactive vapor deposition for conjugated polymer synthesis. J. Mater. Chem. C 2019, 7, 7159–7174. [Google Scholar] [CrossRef]
- Yang, R.; Gleason, K.K. Ultrathin antifouling coatings with stable surface zwitterionic functionality by initiated chemical vapor deposition (iCVD). Langmuir 2012, 28, 12266–12274. [Google Scholar] [CrossRef] [PubMed]
- Gleason, K.K. Controlled release utilizing initiated chemical vapor deposited (iCVD) of polymeric nanolayers. Front. Bioeng. Biotechnol. 2021, 9, 632753. [Google Scholar] [CrossRef]
- Seryogin, G.; Alema, F.; Valente, N.; Fu, H.; Steinbrunner, E.; Neal, A.T.; Mou, S.; Fine, A.; Osinsky, A. MOCVD growth of high purity Ga2O3 epitaxial films using trimethylgallium precursor. Appl. Phys. Lett. 2020, 117, 262101. [Google Scholar] [CrossRef]
- Meng, L.; Feng, Z.; Bhuiyan, A.A.U.; Zhao, H. High-mobility MOCVD β-Ga2O3 epitaxy with fast growth rate using trimethylgallium. Cryst. Growth Des. 2022, 22, 3896–3904. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Chaurasia, H.; Mukhopadhyay, K.; Namburi, E.P. Precursor Materials for Semiconductor Thin Films. In Novel Defence Functional and Engineering Materials (NDFEM) Volume 1: Functional Materials for Defence Applications; Springer: Berlin, Germany, 2024; pp. 191–217. [Google Scholar]
- Zollner, C.J.; Yao, Y.; Wang, M.; Wu, F.; Iza, M.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Highly conductive n-Al0. 65Ga0. 35N grown by MOCVD using low V/III ratio. Crystals 2021, 11, 1006. [Google Scholar] [CrossRef]
- Gastellóu, E.; García, G.; Herrera, A.; Morales, C.; García, R.; Hirata, G.; Robles, M.; Rodríguez, J.; García, I. A brief review of growth techniques for obtaining of III-V semiconductor compounds. Eur. J. Eng. Technol. Res. 2019, 4, 17–21. [Google Scholar]
- Selvamanickam, V.; Mallick, R.; Tao, X.; Yao, Y.; Gharahcheshmeh, M.H.; Xu, A.; Zhang, Y.; Galstyan, E.; Majkic, G. Improved flux pinning by prefabricated SnO2 nanowires embedded in epitaxial YBa2Cu3Ox superconducting thin film tapes. Supercond. Sci. Technol. 2016, 29, 85016. [Google Scholar] [CrossRef]
- Gharahcheshmeh, M.H.; Galstyan, E.; Xu, A.; Kukunuru, J.; Katta, R.; Zhang, Y.; Majkic, G.; Li, X.; Selvamanickam, V. Superconducting transition width (ΔTc) characteristics of 25 mol% Zr-added (Gd, Y) Ba2Cu3O7− δ superconductor tapes with high in-field critical current density at 30 K. Supercond. Sci. Technol. 2016, 30, 15016. [Google Scholar] [CrossRef]
- Abessolo Ondo, D.; Loyer, F.; Boscher, N.D. Influence of double bonds and cyclic structure on the AP-PECVD of low-k organosilicon insulating layers. Plasma Process. Polym. 2021, 18, 2000222. [Google Scholar] [CrossRef]
- Rubeck, S.; Cartailler, V.; Coutellier, V.; Imbert, G.; Gallois-Garreignot, S.; Meille, S.; Steyer, P.; Chevalier, J. Effect of accelerated hydrothermal aging on the durability of Si-based dielectric thin films. Microelectron. Eng. 2022, 264, 111858. [Google Scholar] [CrossRef]
- Wu, J.; Tan, C.; Tan, Z.; Liu, Y.; Yin, J.; Dang, W.; Wang, M.; Peng, H. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 2017, 17, 3021–3026. [Google Scholar] [CrossRef]
- Yang, H.; Wu, S.; Ma, C.; Liu, Z.; Liu, L.; Zhang, Y.; Ma, Y.X.; Yi, X.; Wang, J.; Wang, Y. Sn-doped β-Ga2O3 thin films grown on off-axis sapphire substrates by LPCVD using Ga-Sn alloy solid source. Phys. Scr. 2024, 99, 65417. [Google Scholar] [CrossRef]
- Liu, Y.; Chai, N.; Liu, X.; Qin, H.; Yin, X.; Zhang, L.; Cheng, L. The microstructure and dielectric properties of SiBCN ceramics fabricated via LPCVD/CVI. J. Am. Ceram. Soc. 2015, 98, 2703–2706. [Google Scholar] [CrossRef]
- Shayapov, V.; Zakharchenko, K.; Kapustin, V.; Merenkov, I.; Khomyakov, M.; Maksimivskiy, E. Hardness and Strengthening Effect of Low-Pressure Chemical Vapor Deposition BC x N y Coatings Deposited on Ti-6Al-4V Alloy. J. Mater. Eng. Perform. 2022, 31, 3792–3798. [Google Scholar] [CrossRef]
- Brune, H. Epitaxial growth of thin films. Surf. Interface Sci. 2014, 4, 421–477. [Google Scholar]
- Kaiser, N. Review of the fundamentals of thin-film growth. Appl. Opt. 2002, 41, 3053–3060. [Google Scholar] [CrossRef]
- Alfonso, E.; Olaya, J.; Cubillos, G. Thin film growth through sputtering technique and its applications. Cryst. -Sci. Technol. 2012, 23, 11–12. [Google Scholar]
- Wang, M.; Wang, X.; Moni, P.; Liu, A.; Kim, D.H.; Jo, W.J.; Sojoudi, H.; Gleason, K.K. CVD polymers for devices and device fabrication. Adv. Mater. 2017, 29, 1604606. [Google Scholar] [CrossRef]
- Diels, K.; Jaeckel, R. Leybold Vacuum Handbook; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Hoffman, D.; Singh, B.; Thomas, J.H., III. Handbook of Vacuum Science and Technology; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Jiang, B.; Zhao, Q.; Zhang, Z.; Liu, B.; Shan, J.; Zhao, L.; Rümmeli, M.H.; Gao, X.; Zhang, Y.; Yu, T. Batch synthesis of transfer-free graphene with wafer-scale uniformity. Nano Res. 2020, 13, 1564–1570. [Google Scholar] [CrossRef]
- Li, Y.; Sun, L.; Chang, Z.; Liu, H.; Wang, Y.; Liang, Y.; Chen, B.; Ding, Q.; Zhao, Z.; Wang, R. Large single-crystal cu foils with high-index facets by strain-engineered anomalous grain growth. Adv. Mater. 2020, 32, 2002034. [Google Scholar] [CrossRef]
- Barua, H.; Povitsky, A. Numerical model of carbon chemical vapor deposition at internal surfaces. Vacuum 2020, 175, 109234. [Google Scholar] [CrossRef]
- Ryu, H.J.; Kim, S.H.; Hong, S.H. Effect of deposition pressure on bonding nature in hydrogenated amorphous carbon films processed by electron cyclotron resonance plasma enhanced chemical vapor deposition. Mater. Sci. Eng. A 2000, 277, 57–63. [Google Scholar] [CrossRef]
- Hucknall, D.J. Vacuum Technology and Applications; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Luo, Y.; Lin, W.-P.; Ren, P.-P.; Qu, G.-F.; Zhu, J.-J.; Liu, X.-Q.; Luo, X.-B.; An, Z.; Wada, R.; Zang, L.-G. A simulation study of a windowless gas-stripping room in an E//B neutral particle analyzer. Nucl. Sci. Tech. 2021, 32, 69. [Google Scholar] [CrossRef]
- Jansen, F.; Kuhman, D. Contamination effects in glow discharge deposition systems. J. Vac. Sci. Technol. A Vac. Surf. Film. 1988, 6, 13–18. [Google Scholar] [CrossRef]
- Friedli, V.; Utke, I. Optimized molecule supply from nozzle-based gas injection systems for focused electron-and ion-beam induced deposition and etching: Simulation and experiment. J. Phys. D Appl. Phys. 2009, 42, 125305. [Google Scholar] [CrossRef]
- Akhlaghi, H.; Roohi, E.; Stefanov, S. A comprehensive review on micro-and nano-scale gas flow effects: Slip-jump phenomena, Knudsen paradox, thermally-driven flows, and Knudsen pumps. Phys. Rep. 2023, 997, 1–60. [Google Scholar] [CrossRef]
- Mourkou, M.; Yu, H.; Baltussen, S.; Snead, N.; Kapil, N.; Coppens, M.-O. A novel ultra-high vacuum diffusion setup to study Knudsen diffusion. React. Chem. Eng. 2024, 9, 3047–3059. [Google Scholar] [CrossRef]
- Cowen, L.M.; Atoyo, J.; Carnie, M.J.; Baran, D.; Schroeder, B.C. Organic materials for thermoelectric energy generation. ECS J. Solid State Sci. Technol. 2017, 6, N3080. [Google Scholar] [CrossRef]
- Lüssem, B.; Riede, M.; Leo, K. Doping of organic semiconductors. Phys. Status Solidi (A) 2013, 210, 9–43. [Google Scholar] [CrossRef]
- Salzmann, I.; Heimel, G.; Oehzelt, M.; Winkler, S.; Koch, N. Molecular electrical doping of organic semiconductors: Fundamental mechanisms and emerging dopant design rules. Acc. Chem. Res. 2016, 49, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Bamola, P.; Rawat, S.; Dangwal, S.; Dwivedi, C.; Sharma, H. Efficiency assessment of perovskite solar cells: A focus on hole transporting layers. Sol. Energy 2024, 282, 112967. [Google Scholar]
- Sun, Y.; Yuan, M.; Tang, R.; Wang, Y.; Zhou, J.; Geng, Z.; Pei, W. Flexible neural microelectrodes utilizing pre-fabricated PEDOT: PSS films. Sens. Actuators A Phys. 2025, 382, 116137. [Google Scholar] [CrossRef]
- Matiur, R.M.; Yamamoto, Y.; Kishi, N. Improved mechanical stretchability and electrical conductivity based free-Standing PEDOT: PSS flexible film via an intermediate ethanol-treated gel formation stage. Mater. Today Commun. 2025, 43, 111687. [Google Scholar] [CrossRef]
- Li, X.; Rafie, A.; Smolin, Y.Y.; Simotwo, S.; Kalra, V.; Lau, K.K. Engineering conformal nanoporous polyaniline via oxidative chemical vapor deposition and its potential application in supercapacitors. Chem. Eng. Sci. 2019, 194, 156–164. [Google Scholar] [CrossRef]
- Butt, N.; Kubra, K.T.; Ali, G.; Butt, A.; Shahid, A.; Hayder, U.; Iqbal, F.; Salman, A. Electrochemical study of nanoneedle arrays of quaternary metal (Ni-Co-Cu-Ce)-based oxides composite hybridized with nitrogen-doped graphene oxide and polyaniline for supercapacitor applications. J. Alloys Compd. 2025, 1013, 178549. [Google Scholar] [CrossRef]
- Fauzi, F.; Bose, R.K. Mechanistic study of oxidative chemical vapor deposition of polypyrrole: Effects of the inert gas and deposition time. Appl. Surf. Sci. Adv. 2025, 25, 100673. [Google Scholar] [CrossRef]
- Azani, M.-R.; Hassanpour, A. Electronic textiles (E-Textiles): Types, fabrication methods, and recent strategies to overcome durability challenges (washability & flexibility). J. Mater. Sci. Mater. Electron. 2024, 35, 1897. [Google Scholar]
- Borrelli, D.C.; Lee, S.; Gleason, K.K. Optoelectronic properties of polythiophene thin films and organic TFTs fabricated by oxidative chemical vapor deposition. J. Mater. Chem. C 2014, 2, 7223–7231. [Google Scholar] [CrossRef]
- Kovacik, P.; del Hierro, G.; Livernois, W.; Gleason, K.K. Scale-up of oCVD: Large-area conductive polymer thin films for next-generation electronics. Mater. Horiz. 2015, 2, 221–227. [Google Scholar] [CrossRef]
- Park, K.-W.; Christina, H.Y.; Fu, S.; Yang, R. Ion-conducting polymer thin films via chemical vapor deposition polymerization. Soft Matter 2025, 21, 1813–1834. [Google Scholar] [CrossRef]
- Song, Q.; Gao, H.; Cheng, L.; Xiao, Z.; Li, D.; Wang, Y.; Xie, M.; Fuller, N.A.; Zhu, M. Surface Nanostructure Fabrication by Initiated Chemical Vapor Deposition and Its Combined Technologies. ACS Macro Lett. 2025, 14, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, K.; Chen, A.X.; Pitch, G.M.; Runser, R.; Urbina, A.; Dunn, T.J.; Kodur, M.; Kleinschmidt, A.T.; Wang, B.G.; Bunch, J.A.; et al. Comparison of the Mechanical Properties of a Conjugated Polymer Deposited Using Spin Coating, Interfacial Spreading, Solution Shearing, and Spray Coating. ACS Appl. Mater. Interfaces 2021, 13, 51436–51446. [Google Scholar] [CrossRef]
- Mustafa, H.A.M.; Jameel, D.A. Modeling and the main stages of spin coating process: A review. J. Appl. Sci. Technol. Trends 2021, 2, 91–95. [Google Scholar] [CrossRef]
- Thines, K.R.; Abdullah, E.C.; Mubarak, N.M.; Ruthiraan, M. In-situ polymerization of magnetic biochar—Polypyrrole composite: A novel application in supercapacitor. Biomass Bioenergy 2017, 98, 95–111. [Google Scholar] [CrossRef]
- Yan, Y.; Ju, J.; Dong, S.; Wang, Y.; Huang, L.; Cui, L.; Jiang, F.; Wang, Q.; Zhang, Y.; Cui, G. In Situ Polymerization Permeated Three-Dimensional Li+-Percolated Porous Oxide Ceramic Framework Boosting All Solid-State Lithium Metal Battery. Adv. Sci. 2021, 8, 2003887. [Google Scholar] [CrossRef]
- Yang, Z.; Ding, L.; Wu, P.; Liu, Y.; Nie, F.; Huang, F. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity. Chem. Eng. J. 2015, 268, 60–66. [Google Scholar] [CrossRef]
- Cosnier, S.; Karyakin, A. Electropolymerization: Concepts, Materials and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Zhao, C.; Chen, Z.; Wang, W.; Xiong, P.; Li, B.; Li, M.; Yang, J.; Xu, Y. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries. Angew. Chem. (Int. Ed.) 2020, 59, 11992–11998. [Google Scholar] [CrossRef]
- Fabretto, M.; Autere, J.-P.; Hoglinger, D.; Field, S.; Murphy, P. Vacuum vapour phase polymerised poly(3,4-ethyelendioxythiophene) thin films for use in large-scale electrochromic devices. Thin Solid Film. 2011, 519, 2544–2549. [Google Scholar] [CrossRef]
- Fabretto, M.; Zuber, K.; Hall, C.; Murphy, P. High conductivity PEDOT using humidity facilitated vacuum vapour phase polymerisation. Macromol. Rapid Commun. 2008, 29, 1403–1409. [Google Scholar] [CrossRef]
- Lawal, A.T.; Wallace, G.G. Vapour phase polymerisation of conducting and non-conducting polymers: A review. Talanta 2014, 119, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, D.; Howden, R.M.; Borrelli, D.C.; Gleason, K.K. Vapor phase oxidative synthesis of conjugated polymers and applications. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 1329–1351. [Google Scholar] [CrossRef]
- Bashir, T.; Ali, M.; Cho, S.-W.; Persson, N.-K.; Skrifvars, M. OCVD polymerization of PEDOT: Effect of pre-treatment steps on PEDOT-coated conductive fibers and a morphological study of PEDOT distribution on textile yarns. Polym. Adv. Technol. 2013, 24, 210–219. [Google Scholar] [CrossRef]
- Bashir, T.; Skrifvars, M.; Persson, N.-K. Synthesis of high performance, conductive PEDOT-coated polyester yarns by OCVD technique. Polym. Adv. Technol. 2012, 23, 611–617. [Google Scholar] [CrossRef]
- Lee, S.; Paine, D.C.; Gleason, K.K. Heavily Doped poly(3,4-ethylenedioxythiophene) Thin Films with High Carrier Mobility Deposited Using Oxidative CVD: Conductivity Stability and Carrier Transport. Adv. Funct. Mater. 2014, 24, 7187–7196. [Google Scholar] [CrossRef]
- Vella, J.H.; Nikodemski, S.; Benasco, A.R.; Prusnick, T.A.; Vasiliyev, V. Multilevel view of charge transport in ocvd polymers. Synth. Met. 2023, 293, 117277. [Google Scholar] [CrossRef]
- Im, S.G.; Kusters, D.; Choi, W.; Baxamusa, S.H.; Van de Sanden, M.; Gleason, K.K. Conformal coverage of poly (3, 4-ethylenedioxythiophene) films with tunable nanoporosity via oxidative chemical vapor deposition. Acs Nano 2008, 2, 1959–1967. [Google Scholar] [CrossRef]
- Rajesh, M.; Raj, C.J.; Manikandan, R.; Kim, B.C.; Park, S.Y.; Yu, K.H. A high performance PEDOT/PEDOT symmetric supercapacitor by facile in-situ hydrothermal polymerization of PEDOT nanostructures on flexible carbon fibre cloth electrodes. Mater. Today Energy 2017, 6, 96–104. [Google Scholar] [CrossRef]
- MacDiarmid, A.G.; Jones, W.E., Jr.; Norris, I.D.; Gao, J.; Johnson, A.T., Jr.; Pinto, N.J.; Hone, J.; Han, B.; Ko, F.K.; Okuzaki, H. Electrostatically-generated nanofibers of electronic polymers. Synth. Met. 2001, 119, 27–30. [Google Scholar] [CrossRef]
- Tang, Q.; Wu, J.; Sun, X.; Li, Q.; Lin, J. Shape and Size Control of Oriented Polyaniline Microstructure by a Self-Assembly Method. Langmuir 2009, 25, 5253–5257. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Fan, J.-B.; Wang, S. Recent progress in interfacial polymerization. Mater. Chem. Front. 2017, 1, 1028–1040. [Google Scholar] [CrossRef]
- Park, C.-S.; Kim, D.H.; Shin, B.J.; Kim, D.Y.; Lee, H.-K.; Tae, H.-S. Conductive polymer synthesis with single-crystallinity via a novel plasma polymerization technique for gas sensor applications. Materials 2016, 9, 812. [Google Scholar] [CrossRef]
- Das, R.; Chanda, A. Fabrication and properties of spin-coated polymer films. In Nano-Size Polymers: Preparation, Properties, Applications; Springer: Cham, Switzerland, 2016; pp. 283–306. [Google Scholar]
- Gong, C.; Yang, H.B.; Song, Q.L.; Lu, Z.S.; Li, C.M. Mechanism for dimethylformamide-treatment of poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) layer to enhance short circuit current of polymer solar cells. Sol. Energy Mater. Sol. Cells 2012, 100, 115–119. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, T.; Zhou, Y. Recent Advances of Synthesis, Properties, Film Fabrication Methods, Modifications of Poly(3,4-ethylenedioxythiophene), and Applications in Solution-Processed Photovoltaics. Adv. Funct. Mater. 2020, 30, 2006213. [Google Scholar] [CrossRef]
- Friebe, C.; Hager, M.D.; Winter, A.; Schubert, U.S. Metal-containing Polymers via Electropolymerization. Adv. Mater. 2012, 24, 332–345. [Google Scholar] [CrossRef]
- Seki, Y.; Takahashi, M.; Takashiri, M. Effects of different electrolytes and film thicknesses on structural and thermoelectric properties of electropolymerized poly (3, 4-ethylenedioxythiophene) films. RSC Adv. 2019, 9, 15957–15965. [Google Scholar] [CrossRef]
- Yazdanpanah, A.; Ramedani, A.; Abrishamkar, A.; Milan, P.B.; Moghadan, Z.S.; Chauhan, N.P.S.; Sefat, F.; Mozafari, M. Synthetic route of PANI (V): Electrochemical polymerization. In Fundamentals and Emerging Applications of Polyaniline; Elsevier: Amsterdam, The Netherlands, 2019; pp. 105–119. [Google Scholar]
- Evans, D.; Fabretto, M.; Mueller, M.; Zuber, K.; Short, R.; Murphy, P. Structure-directed growth of high conductivity PEDOT from liquid-like oxidant layers during vacuum vapor phase polymerization. J. Mater. Chem. 2012, 22, 14889–14895. [Google Scholar] [CrossRef]
- Yılmaz, K.; Hussaini, A.A.; Yıldırım, M.; Karaman, M. Vapor phase polymerization of PEDOT on ITO/glass surfaces for nonenzymatic detection of dopamine. Synth. Met. 2024, 307, 117691. [Google Scholar] [CrossRef]
- Hojati-Talemi, P.; Bächler, C.; Fabretto, M.; Murphy, P.; Evans, D. Ultrathin Polymer Films for Transparent Electrode Applications Prepared by Controlled Nucleation. ACS Appl. Mater. Interfaces 2013, 5, 11654–11660. [Google Scholar] [CrossRef]
- Winther-Jensen, B.; West, K. Vapor-Phase Polymerization of 3,4-Ethylenedioxythiophene: A Route to Highly Conducting Polymer Surface Layers. Macromolecules 2004, 37, 4538–4543. [Google Scholar] [CrossRef]
- Levermore, P.A.; Chen, L.; Wang, X.; Das, R.; Bradley, D.D.C. Fabrication of Highly Conductive Poly(3,4-ethylenedioxythiophene) Films by Vapor Phase Polymerization and Their Application in Efficient Organic Light-Emitting Diodes. Adv. Mater. 2007, 19, 2379–2385. [Google Scholar] [CrossRef]
- Li, B.; Ni, D.; Fan, J.; Zhou, J. Vapor phase polymerized high-performance Poly (3, 4-ethylenedioxythiophene) using polyethyleneimine (PEI) as the base inhibitor and grafting agent for electrochromic medical face shields. Chem. Eng. J. 2022, 445, 136818. [Google Scholar] [CrossRef]
- Fabretto, M.; Müller, M.; Zuber, K.; Murphy, P. Influence of PEG-ran-PPG Surfactant on Vapour Phase Polymerised PEDOT Thin Films. Macromol. Rapid Commun. 2009, 30, 1846–1851. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Dautel, B.; Chowdhury, K. Enhanced Carrier Mobility and Thermoelectric Performance by Nanostructure Engineering of PEDOT Thin Films Fabricated via the OCVD Method Using SbCl5 Oxidant. Adv. Funct. Mater. 2025, 35, 2570056. [Google Scholar] [CrossRef]
- Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293. [Google Scholar]
- Tyona, M.D. A theoritical study on spin coating technique. Adv. Mater. Res. 2013, 2, 195. [Google Scholar] [CrossRef]
- Boudrioua, A.; Chakaroun, M.; Fischer, A. An Introduction to Organic Lasers; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Novak, T.G.; Blake Nuwayhid, R.; Jugdersuren, B.; Liu, X.; DeSario, P.A.; Rolison, D.R. Effect of organic solvent treatments on oCVD-deposited PEDOT thin films. J. Vac. Sci. Technol. A 2025, 43, 22801. [Google Scholar] [CrossRef]
- Kim, J.J.; Allison, L.K.; Andrew, T.L. Vapor-printed polymer electrodes for long-term, on-demand health monitoring. Sci. Adv. 2019, 5, eaaw0463. [Google Scholar] [CrossRef] [PubMed]
- Barr, M.C.; Rowehl, J.A.; Lunt, R.R.; Xu, J.; Wang, A.; Boyce, C.M.; Im, S.G.; Bulović, V.; Gleason, K.K. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv. Mater. 2011, 23, 3500–3505. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Kovacik, P.; Peard, N.; Tian, W.; Goktas, H.; Lau, J.; Dunn, B.; Gleason, K.K. Monolithic flexible supercapacitors integrated into single sheets of paper and membrane via vapor printing. Adv. Mater. 2017, 29, 1606091. [Google Scholar] [CrossRef] [PubMed]
- Zardetto, V.; Brown, T.M.; Reale, A.; Di Carlo, A. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 638–648. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Gleason, K.K. Low band gap conformal polyselenophene thin films by oxidative chemical vapor deposition. J. Mater. Chem. 2012, 22, 405–410. [Google Scholar] [CrossRef]
- Lock, J.P.; Im, S.G.; Gleason, K.K. Oxidative chemical vapor deposition of electrically conducting poly (3, 4-ethylenedioxythiophene) films. Macromolecules 2006, 39, 5326–5329. [Google Scholar] [CrossRef]
- Cheng, N.; Zhang, L.; Kim, J.J.; Andrew, T.L. Vapor phase organic chemistry to deposit conjugated polymer films on arbitrary substrates. J. Mater. Chem. C 2017, 5, 5787–5796. [Google Scholar] [CrossRef]
- Mirabedin, M.; Vergnes, H.; Caussé, N.; Vahlas, C.; Caussat, B. An out of the box vision over oxidative chemical vapor deposition of PEDOT involving sublimed iron trichloride. Synth. Met. 2020, 266, 116419. [Google Scholar] [CrossRef]
- Brooke, R.; Cottis, P.; Talemi, P.; Fabretto, M.; Murphy, P.; Evans, D. Recent advances in the synthesis of conducting polymers from the vapour phase. Prog. Mater. Sci. 2017, 86, 127–146. [Google Scholar] [CrossRef]
- Charyton, M.K.; Crêpellière, J.; Kotwica, K.; Gora, M.; Le, W.; Frache, G.; Grysan, P.; Guillot, J.; Baba, K.; Boscher, N.D. Chemical vapor deposition of high charge carrier mobility benzothiadiazole-based conjugated polymer thin films. J. Mater. Chem. C 2024, 12, 11368–11377. [Google Scholar] [CrossRef]
- Tenhaeff, W.E.; Gleason, K.K. Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD. Adv. Funct. Mater. 2008, 18, 979–992. [Google Scholar] [CrossRef]
- Gharahcheshmeh, M.H.; Gleason, K.K. Conjugated polymers for flexible energy harvesting and storage devices. In Conjugated Polymers for Next-Generation Applications; Elsevier: Amsterdam, The Netherlands, 2022; Volume 2, pp. 283–311. [Google Scholar]
- Shao, S.; Liu, J.; Bergqvist, J.; Shi, S.; Veit, C.; Würfel, U.; Xie, Z.; Zhang, F. In situ formation of MoO3 in PEDOT: PSS matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojunction solar cells. Adv. Energy Mater. 2013, 3, 349–355. [Google Scholar] [CrossRef]
- Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F.P.; Stingelin, N.; Smith, P.; Toney, M.F.; Salleo, A. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 2013, 12, 1038–1044. [Google Scholar] [CrossRef]
- van der Pauw, L.J. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech. Rev. 1958, 20, 220–224. [Google Scholar]
- Sirringhaus, H.; Brown, P.; Friend, R.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.; Spiering, A.; Janssen, R.A.; Meijer, E.; Herwig, P. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688. [Google Scholar] [CrossRef]
- Kim, N.; Lee, B.H.; Choi, D.; Kim, G.; Kim, H.; Kim, J.-R.; Lee, J.; Kahng, Y.H.; Lee, K. Role of interchain coupling in the metallic state of conducting polymers. Phys. Rev. Lett. 2012, 109, 106405. [Google Scholar] [CrossRef]
- Farka, D.; Coskun, H.; Gasiorowski, J.; Cobet, C.; Hingerl, K.; Uiberlacker, L.M.; Hild, S.; Greunz, T.; Stifter, D.; Sariciftci, N.S. Anderson-Localization and the Mott–Ioffe–Regel Limit in Glassy-Metallic PEDOT. Adv. Electron. Mater. 2017, 3, 1700050. [Google Scholar] [CrossRef]
- Kang, S.D.; Snyder, G.J. Charge-transport model for conducting polymers. Nat. Mater. 2017, 16, 252–257. [Google Scholar] [CrossRef]
- Antia, H. Rational function approximations for Fermi-Dirac integrals. Astrophys. J. Suppl. 1993, 84, 101. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, G.; Luo, T.; She, X.; Li, H.; Tang, X. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance. J. Phys. D Appl. Phys. 2011, 44, 475304. [Google Scholar] [CrossRef]
- Levin, E. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and Te 125 NMR measurements in complex tellurides. Phys. Rev. B 2016, 93, 245202. [Google Scholar] [CrossRef]
- Toshima, N. Recent progress of organic and hybrid thermoelectric materials. Synth. Met. 2017, 225, 3–21. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Massonnet, N.; Yvenou, E.; Brenet, S.; Faure-Vincent, J.; Pouget, S.; Rieutord, F.; Okuno, H.; Benayad, A. Structure and dopant engineering in PEDOT thin films: Practical tools for a dramatic conductivity enhancement. Chem. Mater. 2016, 28, 3462–3468. [Google Scholar] [CrossRef]
- Kim, N.; Kee, S.; Lee, S.H.; Lee, B.H.; Kahng, Y.H.; Jo, Y.R.; Kim, B.J.; Lee, K. Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 2014, 26, 2268–2272. [Google Scholar] [CrossRef]
- Worfolk, B.J.; Andrews, S.C.; Park, S.; Reinspach, J.; Liu, N.; Toney, M.F.; Mannsfeld, S.C.; Bao, Z. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl. Acad. Sci. USA 2015, 112, 14138–14143. [Google Scholar] [CrossRef]
- Kivelson, S.; Heeger, A. Intrinsic conductivity of conducting polymers. Synth. Met. 1988, 22, 371–384. [Google Scholar] [CrossRef]
- Clark, J.; Silva, C.; Friend, R.H.; Spano, F.C. Role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 2007, 98, 206406. [Google Scholar] [CrossRef]
- Xie, Y.; Feng, J.; Chen, M.; Zhu, X.; Zhou, Y.; Li, Z.; Yang, D.; Frank Liu, S. Balanced-Strength Additive for High-Efficiency Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 8034–8041. [Google Scholar] [CrossRef]
- Madhavan, V.E.; Zimmermann, I.; Baloch, A.A.B.; Manekkathodi, A.; Belaidi, A.; Tabet, N.; Nazeeruddin, M.K. CuSCN as Hole Transport Material with 3D/2D Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 114–121. [Google Scholar] [CrossRef]
- Jiang, Z.; Du, T.; Lin, C.T.; Macdonald, T.J.; Chen, J.; Chin, Y.C.; Xu, W.; Ding, B.; Kim, J.S.; Durrant, J.R. Deciphering the Role of Hole Transport Layer HOMO Level on the Open Circuit Voltage of Perovskite Solar Cells. Adv. Mater. Interfaces 2022, 10, 2201737. [Google Scholar] [CrossRef]
- Im, S.G.; Gleason, K.K.; Olivetti, E.A. Doping level and work function control in oxidative chemical vapor deposited poly (3, 4-ethylenedioxythiophene). Appl. Phys. Lett. 2007, 90, 152112. [Google Scholar] [CrossRef]
CVD Method | Typical Reactants | Common Materials Fabricated |
---|---|---|
CVD for 2D Materials | Hydrocarbon Gases (Methane, Acetylene, Ethylene, Propane) + Hydrogen | Graphene Films (Monolayer and Multilayer) [4,47,68] |
Transition Metal Dichalcogenides (TMDs) Growth via CVD | Metal Precursors (e.g., MoO3, WO3, Nb2O5, MoCl5, WCl6) + Chalcogen Precursors (S, Se, H2S, H2Se) | TMDs [4,48,49,50,51,52] |
Oxidative CVD (oCVD) | Oxidant (e.g., FeCl3, VOCl3, SbCl5) + Monomer(s) (e.g., EDOT, pyrrole, aniline) | Conducting Polymers [3,12,30,40,53,69], Semiconducting Polymers [3,7,53] |
Initiated CVD (iCVD) | Radical Initiator (e.g., TBPO) + Monomer(s) (e.g., acrylate, methacrylate) | Functional Polymers [9,10,64,70,71] |
Metal-Organic CVD (MOCVD) | Metal-Organic Precursors (e.g., TMGa, TEGa, TMA, TMIn, Y(thd)3) + Reactant Gases (O2, NH3, NH3, PH3, AsH3) | Metal oxides [4,72,73], III-V Compound Semiconductors [4,58,74,75,76], High Temperature Superconductors [59,62,63,77,78] |
Plasma-Enhanced CVD (PECVD) | Volatile precursor (s) (e.g., SiH4, CH4, CF4, TEOS) + Plasma Activation | Dielectric Thin Films [79,80] |
Low-Pressure CVD (LPCVD) | Gaseous precursors (e.g., SiH4, NH3, SiCl2H2, B2H6, PH3) + Reactant Gases (O2, N2O) | Semiconductors [4,81,82], Dielectric [4,83], Protective Coatings [4,84] |
Method | Deposition Type | Conformality | Substrate-Independent | Key Advantages | Key Disadvantages |
---|---|---|---|---|---|
Spin-coating | Solution-Based | Poor | Highly Dependent | Simple, Cost-Effective, | Limited to Soluble Polymers, Lacks Conformal Coating, Incompatible with Solution-Sensitive Substrates, Substrate-Dependence; Restricted to Planar Substrates; Ineffective for Complex Surfaces, Low Material Utilization (Only 2–5% of Polymer Solution), Low-Quality Thin Films with Contaminants |
In Situ Chemical Polymerization (ICP) | Solution-Based | Low | Highly Dependent | Simple, Cost-Effective, Well-Dispersed Nanoparticles; Ideal for Composites | Lacks Conformal Coating, Unsuitability for Solvent-Sensitive Substrates, Potential for Flocculant Formation |
Electrochemical Polymerization | Solution-Based | Moderate | Highly Dependent | Simple, Cost-Effective, Excellent Substrate Adhesion | Substrate-Dependence; Requires Conductive Substrates, Incompatible with Solution-Sensitive Substrates, |
Vapor Phase Polymerization (VPP) | Mixed of Solution- and Vapor-Based | Moderate | Moderate Dependent | Operation in a Moderate Vacuum Environment, Fabrication of Smooth Thin Films, Good Quality of Thin Films, Excellent Substrate Adhesion | Process Complexity, Incompatible with Solution-Sensitive Substrates; Requires Oxidant Pre-Coating, Limited Scalability, High Cost for Batch Reactor |
Oxidative Chemical Vapor Deposition (oCVD) | Vapor-Based | High | Largely Independent | Highly Conformal Coating, Substrate Independent, High Quality Thin Films, High Control Over Thin Film Properties, Ability to Create Ultrathin Films (<10 nm), Low to Moderate Deposition Temperature, Excellent Substrate Adhesion, Low-Cost in R2R Process, and Compatibility with Large-Scale Production, Industrial Method | Process Complexity, High Cost for Batch Reactor |
Fabrication Method | Explored Oxidants |
---|---|
Spin-coating | Polymer is typically dissolved in a solution, with FeCl3 occasionally added as oxidant |
Electropolymerization | Oxidation of a monomer is induced by voltage or current |
In Situ Chemical Polymerization (ICP) | FeCl3, CuCl2, Cu(ClO4)2, Fe(pTS), Fe(Tos)3, Ammonium peroxydisulfate (APS) |
Vapor Phase Polymerization (VPP) | FeCl3, CuCl2, Fe(OTs)3, Fe(OTf)3 |
Oxidative Chemical Vapor Deposition (oCVD) | FeCl3, CuCl2, Br, VOCl3, SbCl5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heydari Gharahcheshmeh, M. Fabrication of Conjugated Conducting Polymers by Chemical Vapor Deposition (CVD) Method. Nanomaterials 2025, 15, 452. https://doi.org/10.3390/nano15060452
Heydari Gharahcheshmeh M. Fabrication of Conjugated Conducting Polymers by Chemical Vapor Deposition (CVD) Method. Nanomaterials. 2025; 15(6):452. https://doi.org/10.3390/nano15060452
Chicago/Turabian StyleHeydari Gharahcheshmeh, Meysam. 2025. "Fabrication of Conjugated Conducting Polymers by Chemical Vapor Deposition (CVD) Method" Nanomaterials 15, no. 6: 452. https://doi.org/10.3390/nano15060452
APA StyleHeydari Gharahcheshmeh, M. (2025). Fabrication of Conjugated Conducting Polymers by Chemical Vapor Deposition (CVD) Method. Nanomaterials, 15(6), 452. https://doi.org/10.3390/nano15060452