Preharvest and Postharvest Applications of Fe-Based Nanomaterials: A Potent Strategy for Improving Pepper Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Reagents
2.2. Synthesis and Characterization
2.3. Plant Cultivation, NM Exposure, and Fruit Storage
2.4. Determination of Plant Growth Parameters
2.5. Determination of Total Phenolics and Lignin
2.6. Quantitative Real-Time PCR (qRT–PCR)
2.7. Element Content, Single Particle Concentration, and Antioxidant Enzyme Activity
2.8. Metabolomic Analysis
2.9. Microbial Community Methodology
2.10. Statistical Analysis
3. Results and Discussion
3.1. NM Characterization
3.2. Effect of Foliar Applied Fe-P NMs on Pepper Growth and Fruit Quality
3.3. Preharvest Application of Fe-P NMs Improves Capsaicin Synthesis Pathway and Levels of Plant Hormone in Pepper Fruits
3.4. Molecular Regulation of Fe-P NM Preharvest Application on the Expression of Genes Involved in Fruit Preservation
3.5. Microbial Community on the Pepper Fruits During Storage After Fe-P NM Preharvest Application
3.6. Pepper Preservation After Postharvest Application of the Fe-P NM Suspensions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Lu, L.; Wang, A.; Zhang, H.; Huang, M.; Wu, H.; Xing, B.; Wang, Z.; Ji, R. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. J. Agric. Food Chem. 2020, 68, 1935–1947. [Google Scholar] [PubMed]
- Rodríguez-Félix, F.; Graciano-Verdugo, A.Z.; Moreno-Vásquez, M.J.; Lagarda-Díaz, I.; Barreras-Urbina, C.G.; Armenta-Villegas, L.; Olguín-Moreno, A.; Tapia-Hernández, J.A. Trends in Sustainable Green Synthesis of Silver Nanoparticles Using Agri-Food Waste Extracts and Their Applications in Health. J. Nanomater. 2022, 2022, 8874003. [Google Scholar]
- Sinha, S.; Tripathi, P. Trends and Challenges in Valorisation of Food Waste in Developing Economies: A Case Study of India. Case Stud. Chem. Environ. Eng. 2021, 4, 100162. [Google Scholar]
- Tomaszewska, M.; Bilska, B.; Kołożyn-Krajewska, D. The Influence of Selected Food Safety Practices of Consumers on Food Waste Due to Its Spoilage. Int. J. Environ. Res. Public Health 2022, 19, 8144. [Google Scholar] [CrossRef]
- Arce-Rodríguez, M.L.; Ochoa-Alejo, N. Biochemistry and Molecular Biology of Capsaicinoid Biosynthesis: Recent Advances and Perspectives. Plant Cell Rep. 2019, 38, 1017–1030. [Google Scholar]
- Kim, D.S.; Hwang, B.K. An Important Role of the Pepper Phenylalanine Ammonia-Lyase Gene (PAL1) in Salicylic Acid-Dependent Signalling of the Defence Response to Microbial Pathogens. J. Exp. Bot. 2014, 65, 2295–2306. [Google Scholar]
- Anaya-Esparza, L.M.; la Mora, Z.V.; Vázquez-Paulino, O.; Ascencio, F.; Villarruel-López, A. Bell Peppers (Capsicum annum L.) Losses and Wastes: Source for Food and Pharmaceutical Applications. Molecules 2021, 26, 5341. [Google Scholar] [CrossRef]
- Ge, W.; Zhao, Y.; Kong, X.; Sun, H.; Luo, M.; Yao, M.; Wei, B.; Ji, S. Combining Salicylic Acid and Trisodium Phosphate Alleviates Chilling Injury in Bell Pepper (Capsicum annuum L.) Through Enhancing Fatty-Acid Desaturation Efficiency and Water Retention. Food Chem. 2020, 327, 127057. [Google Scholar]
- Ziv, C.; Lers, A.; Fallik, E.; Paran, I. Genetic and Biotechnological Tools to Identify Breeding Targets for Improving Postharvest Quality and Extending Shelf Life of Peppers. Curr. Opin. Biotechnol. 2022, 78, 102794. [Google Scholar]
- Ali, A.; Bordoh, P.K.; Singh, A.; Siddiqui, Y.; Droby, S. Post-Harvest Development of Anthracnose in Pepper (Capsicum spp): Etiology and Management Strategies. Crop Prot. 2016, 90, 132–141. [Google Scholar]
- Frans, M.; Aerts, R.; Ceusters, N.; Luca, S.; Ceusters, J. Possibilities of Modified Atmosphere Packaging to Prevent the Occurrence of Internal Fruit Rot in Bell Pepper Fruit (Capsicum annuum) Caused by Fusarium spp. Postharvest Biol. Technol. 2021, 178, 111545. [Google Scholar]
- Yan, W.-Q.; Zhang, M.; Huang, L.-L.; Tang, J.; Mujumdar, A.S.; Sun, J.-C. Studies on Different Combined Microwave Drying of Carrot Pieces. Int. J. Food Sci. Technol. 2010, 45, 2141–2148. [Google Scholar] [CrossRef]
- Liu, W.-C.; Zhang, M.; Bhandari, B. Nanotechnology—A Shelf Life Extension Strategy for Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2020, 60, 1706–1721. [Google Scholar] [CrossRef]
- Hofmann, T.; Lowry, G.V.; Ghoshal, S.; Tufenkji, N.; Brambilla, D.; Dutcher, J.R.; Gilbertson, L.M.; Giraldo, J.P.; Kinsella, J.M.; Landry, M.P.; et al. Technology Readiness and Overcoming Barriers to Sustainably Implement Nanotechnology-Enabled Plant Agriculture. Nat. Food 2020, 1, 416–425. [Google Scholar]
- Ashraf, S.A.; Siddiqui, A.J.; Elkhalifa, A.E.O.; Khan, M.I.; Patel, M.; Alreshidi, M.; Moin, A.; Singh, R.; Snoussi, M.; Adnan, M. Innovations in Nanoscience for the Sustainable Development of Food and Agriculture with Implications on Health and Environment. Sci. Total Environ. 2021, 768, 144990. [Google Scholar]
- Jafarzadeh, S.; Mohammadi Nafchi, A.; Salehabadi, A.; Oladzad-abbasabadi, N.; Jafari, S.M. Application of Bio-Nanocomposite Films and Edible Coatings for Extending the Shelf Life of Fresh Fruits and Vegetables. Adv. Colloid Interface Sci. 2021, 291, 102405. [Google Scholar]
- Feng, Y.; Wang, C.; Chen, F.; Cao, X.; Wang, J.; Yue, L.; Wang, Z. Molecular Mechanisms of CeO2 Nanomaterials Improving Tomato Yield, Fruit Quality, and Postharvest Storage Performance. Environ. Sci. Nano 2022, 9, 4382–4392. [Google Scholar]
- Sega, D.; Ciuffreda, G.; Mariotto, G.; Baldan, B.; Zamboni, A.; Varanini, Z. FePO4 Nanoparticles Produced by an Industrially Scalable Continuous-Flow Method Are an Available Form of P and Fe for Cucumber and Maize Plants. Sci. Rep. 2019, 9, 11252. [Google Scholar]
- Wang, Z.; Le, X.; Cao, X.; Wang, C.; Chen, F.; Wang, J.; Feng, Y.; Yue, L.; Xing, B. Triiron Tetrairon Phosphate (Fe7(PO4)6) Nanomaterials Enhanced Flavonoid Accumulation in Tomato Fruits. Nanomaterials 2022, 12, 1341. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Wang, C.; Wagner, D.C.; Gardea-Torresdey, J.L.; He, F.; Rico, C.M. Foliar Application of Nanoparticles: Mechanisms of Absorption, Transfer, and Multiple Impacts. Environ. Sci. Nano 2021, 8, 1196–1210. [Google Scholar]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar]
- Fukuda, H.; Komamine, A. Lignin Synthesis and Its Related Enzymes as Markers of Tracheary-Element Differentiation in Single Cells Isolated from the Mesophyll of Zinnia elegans. Planta 1982, 155, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Cao, X.; Wang, C.; Yue, L.; Chen, X.; Yang, H.; Le, X.; Zhao, X.; Wu, F.; Wang, Z.; et al. Nitrogen-Doped Carbon Dots Alleviate the Damage from Tomato Bacterial Wilt Syndrome: Systemic Acquired Resistance Activation and Reactive Oxygen Species Scavenging. Environ. Sci. Nano 2021, 8, 3806–3819. [Google Scholar]
- Gutierrez, F.V.; Lima, I.S.; De Falco, A.; Ereias, B.M.; Baffa, O.; de Abreu Lima, C.D.; Sinimbu, L.I.M.; de la Presa, P.; Luz-Lima, C.; Araujo, J.F.D.F. The Effect of Temperature on the Synthesis of Magnetite Nanoparticles by the Coprecipitation Method. Heliyon 2024, 10, e25781. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Yue, L.; Wang, C.; Luo, X.; Zhang, C.; Zhao, X.; Wu, F.; White, J.C.; Wang, Z.; Xing, B. Foliar Application with Iron Oxide Nanomaterials Stimulate Nitrogen Fixation, Yield, and Nutritional Quality of Soybean. ACS Nano 2022, 16, 1170–1181. [Google Scholar]
- Zhang, M.-X.; Zhao, L.-Y.; He, Y.-Y.; Hu, J.-P.; Hu, G.-W.; Zhu, Y.; Khan, A.; Xiong, Y.-C.; Zhang, J.-L. Potential Roles of Iron Nanomaterials in Enhancing Growth and Nitrogen Fixation and Modulating Rhizomicrobiome in Alfalfa (Medicago sativa L.). Bioresour. Technol. 2024, 391, 129987. [Google Scholar]
- Tombuloglu, H.; Slimani, Y.; Tombuloglu, G.; Almessiere, M.; Baykal, A. Uptake and Translocation of Magnetite (Fe3O4) Nanoparticles and Its Impact on Photosynthetic Genes in Barley (Hordeum vulgare L.). Chemosphere 2019, 226, 110–122. [Google Scholar]
- Malhotra, H.; Vandana; Sharma, S.; Pandey, R. Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer: Singapore, 2018; pp. 171–190. ISBN 978-981-10-9044-8. [Google Scholar]
- Romanazzi, G.; Feliziani, E.; Baños, S.B.; Sivakumar, D. Shelf Life Extension of Fresh Fruit and Vegetables by Chitosan Treatment. Crit. Rev. Food Sci. Nutr. 2017, 57, 579–601. [Google Scholar] [CrossRef]
- Reimers, P.J.; Leach, J.E. Race-Specific Resistance to Xanthomonas oryzae pv. oryzae Conferred by Bacterial Blight Resistance Gene Xa-10 in Rice (Oryza sativa) Involves Accumulation of a Lignin-like Substance in Host Tissues. Physiol. Mol. Plant Pathol. 1991, 38, 39–55. [Google Scholar]
- Dixon, R.A.; Lamb, C.J.; Masoud, S.; Sewalt, V.J.H.; Paiva, N.L. Metabolic Engineering: Prospects for Crop Improvement Through the Genetic Manipulation of Phenylpropanoid Biosynthesis and Defense Responses—A Review. Gene 1996, 179, 61–71. [Google Scholar]
- Yonekura-Sakakibara, K.; Higashi, Y.; Nakabayashi, R. The Origin and Evolution of Plant Flavonoid Metabolism. Front. Plant Sci. 2019, 10, 943. [Google Scholar]
- Chaman, M.E.; Copaja, S.V.; Argandoña, V.H. Relationships Between Salicylic Acid Content, Phenylalanine Ammonia-Lyase (PAL) Activity, and Resistance of Barley to Aphid Infestation. J. Agric. Food Chem. 2003, 51, 2227–2231. [Google Scholar] [CrossRef] [PubMed]
- Asghari, M.; Aghdam, M.S. Impact of Salicylic Acid on Post-Harvest Physiology of Horticultural Crops. Trends Food Sci. Technol. 2010, 21, 502–509. [Google Scholar]
- Srivastava, M.K.; Dwivedi, U.N. Delayed Ripening of Banana Fruit by Salicylic Acid. Plant Sci. 2000, 158, 87–96. [Google Scholar]
- Hachiya, T.; Inaba, J.; Wakazaki, M.; Sato, M.; Toyooka, K.; Miyagi, A.; Kawai-Yamada, M.; Sugiura, D.; Nakagawa, T.; Kiba, T.; et al. Excessive Ammonium Assimilation by Plastidic Glutamine Synthetase Causes Ammonium Toxicity in Arabidopsis thaliana. Nat. Commun. 2021, 12, 4944. [Google Scholar]
- Yoon, J.; Choi, H.; An, G. Roles of Lignin Biosynthesis and Regulatory Genes in Plant Development. J. Integr. Plant Biol. 2015, 57, 902–912. [Google Scholar]
- Chen, Q.; Man, C.; Li, D.; Tan, H.; Xie, Y.; Huang, J. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana. Mol. Plant 2016, 9, 1609–1619. [Google Scholar]
- Wang, B.; Jia, J. Photoprotection Mechanisms of Nannochloropsis oceanica in Response to Light Stress. Algal Res. 2020, 46, 101784. [Google Scholar]
- Hou, B.-Z.; Li, C.-L.; Han, Y.-Y.; Shen, Y.-Y. Characterization of the Hot Pepper (Capsicum frutescens) Fruit Ripening Regulated by Ethylene and ABA. BMC Plant Biol. 2018, 18, 162. [Google Scholar]
- Borovsky, Y.; Paran, I. Chlorophyll Breakdown During Pepper Fruit Ripening in the Chlorophyll Retainer Mutation Is Impaired at the Homolog of the Senescence-Inducible Stay-Green Gene. Theor. Appl. Genet. 2008, 117, 235–240. [Google Scholar]
- Brand, A.; Borovsky, Y.; Meir, S.; Rogachev, I.; Aharoni, A.; Paran, I. Pc8.1, a Major QTL for Pigment Content in Pepper Fruit, Is Associated with Variation in Plastid Compartment Size. Planta 2012, 235, 579–588. [Google Scholar] [PubMed]
- Liu, Y. Anthocyanin Regulation in Bell Pepper Fruit. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2016. [Google Scholar]
- Giribaldi, M.; Gény, L.; Delrot, S.; Schubert, A. Proteomic Analysis of the Effects of ABA Treatments on Ripening Vitis vinifera Berries. J. Exp. Bot. 2010, 61, 2447–2458. [Google Scholar]
- Olivares, D.; Contreras, C.; Muñoz, V.; Rivera, S.; González-Agüero, M.; Retamales, J.; Defilippi, B.G. Relationship among Color Development, Anthocyanin and Pigment-Related Gene Expression in ‘Crimson Seedless’ Grapes Treated with Abscisic Acid and Sucrose. Plant Physiol. Biochem. 2017, 115, 286–297. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, Y.; Wang, Y.; Li, L.; Li, C.; Zhao, Y.; Yang, S. Contribution of Autochthonous Microbiota Succession to Flavor Formation During Chinese Fermented Mandarin Fish (Siniperca chuatsi). Food Chem. 2021, 348, 129107. [Google Scholar]
- Leff, J.W.; Fierer, N. Bacterial Communities Associated with the Surfaces of Fresh Fruits and Vegetables. PLoS ONE 2013, 8, e59310. [Google Scholar]
- Saminathan, T.; García, M.; Ghimire, B.; Lopez, C.; Bodunrin, A.; Nimmakayala, P.; Abburi, V.L.; Levi, A.; Balagurusamy, N.; Reddy, U.K. Metagenomic and metatranscriptomic analyses of diverse watermelon cultivars reveal the role of fruit associated microbiome in carbohydrate metabolism and ripening of mature fruits. Front. Plant Sci. 2018, 9, 4. [Google Scholar]
- Cai, J.; Lu, W.; Kan, Q.; Chen, X.; Cao, Y.; Xiao, J. Volatile Composition Changes of Fruits in a Biopolymer-Coated Polyethylene Active Packaging: Effects of Modified Atmosphere and Packaging-Shaped Bacterial Community. Food Res. Int. 2022, 152, 110843. [Google Scholar]
- Ahmad, T.; Ullah, S.; Moosa, A.; Liu, Y.; Nie, C.; Huang, S. First Report of Preharvest Soft Rot of Peach Fruit (Prunus persica) Caused by Enterobacter mori in China. Plant Dis. 2021, 105, 209. [Google Scholar]
- Din, B.N.M.; Kadir, J.; Hailmi, M.S.; Sijam, K.; Badaluddin, N.A.; Suhaili, Z. First Report of Chryseobacterium indologenes as Causal Agent for Crown Rot of Papaya (Carica papaya L.) in Peninsular Malaysia. J. Fundam. Appl. Sci. 2017, 9, 821–840. [Google Scholar] [CrossRef]
- Carmona-Hernandez, S.; Reyes-Pérez, J.J.; Chiquito-Contreras, R.G.; Rincon-Enriquez, G.; Cerdan-Cabrera, C.R.; Hernandez-Montiel, L.G. Biocontrol of Postharvest Fruit Fungal Diseases by Bacterial Antagonists: A Review. Agronomy 2019, 9, 121. [Google Scholar] [CrossRef]
- Wallace, R.L.; Hirkala, D.L.; Nelson, L.M. Efficacy of Pseudomonas Fluorescens for Control of Mucor Rot of Apple During Commercial Storage and Potential Modes of Action. Can. J. Microbiol. 2018, 64, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Prabhukarthikeyan, S.R.; Keerthana, U.; Raguchander, T. Antibiotic-Producing Pseudomonas fluorescens Mediates Rhizome Rot Disease Resistance and Promotes Plant Growth in Turmeric Plants. Microbiol. Res. 2018, 210, 65–73. [Google Scholar] [CrossRef]
- Devi, A.R.; Sharma, G.D.; Majumdar, P.B.; Pandey, P. A Multispecies Consortium of Bacteria Having Plant Growth Promotion and Antifungal Activities, for the Management of Fusarium Wilt Complex Disease in Potato (Solanum tuberosum L.). Biocatal. Agric. Biotechnol. 2018, 16, 614–624. [Google Scholar] [CrossRef]
- Xu, H.; Qiao, P.; Pan, J.; Qin, Z.; Li, X.; Khoo, H.E.; Dong, X. CaCl2 Treatment Effectively Delays Postharvest Senescence of Passion Fruit. Food Chem. 2023, 417, 135786. [Google Scholar] [CrossRef] [PubMed]
- Boukaew, S.; Petlamul, W.; Bunkrongcheap, R.; Chookaew, T.; Kabbua, T.; Thippated, A.; Prasertsan, P. Fumigant Activity of Volatile Compounds of Streptomyces philanthi RM-1-138 and Pure Chemicals (Acetophenone and Phenylethyl Alcohol) Against Anthracnose Pathogen in Postharvest Chili Fruit. Crop Prot. 2018, 103, 1–8. [Google Scholar] [CrossRef]
- Chang, X.; Hou, Y.; Liu, Q.; Hu, Z.; Xie, Q.; Shan, Y.; Li, G.; Ding, S. Physicochemical and antimicrobial properties of chitosan composite films incorporated with glycerol monolaurate and nano-TiO2. Food Hydrocoll. 2021, 119, 106846. [Google Scholar] [CrossRef]
- Lin, W.; Huang, G.; Yang, W.; Zeng, S.; Luo, X.; Huang, J.; Li, Z. A dual-function chitosan packaging film for simultaneously monitoring and maintaining pork freshness. Food Chem. 2022, 392, 133242. [Google Scholar] [CrossRef]
- Xu, H.; Quan, Q.; Chang, X.; Ge, S.; Xu, S.; Wang, R.; Xu, Y.; Luo, Z.; Shan, Y.; Ding, S. A new nanohybrid particle reinforced multifunctional active packaging film for efficiently preserving postharvest fruit. Food Hydrocoll. 2023, 144, 109017. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Z.; Yuan, X.; Cao, X.; Jia, Z.; Hao, F.; Chen, J.; Yue, L.; Wang, Z. Preharvest and Postharvest Applications of Fe-Based Nanomaterials: A Potent Strategy for Improving Pepper Storage. Nanomaterials 2025, 15, 497. https://doi.org/10.3390/nano15070497
Cheng Z, Yuan X, Cao X, Jia Z, Hao F, Chen J, Yue L, Wang Z. Preharvest and Postharvest Applications of Fe-Based Nanomaterials: A Potent Strategy for Improving Pepper Storage. Nanomaterials. 2025; 15(7):497. https://doi.org/10.3390/nano15070497
Chicago/Turabian StyleCheng, Zhuang, Xianzheng Yuan, Xuesong Cao, Zhemin Jia, Fang Hao, Jiayi Chen, Le Yue, and Zhenyu Wang. 2025. "Preharvest and Postharvest Applications of Fe-Based Nanomaterials: A Potent Strategy for Improving Pepper Storage" Nanomaterials 15, no. 7: 497. https://doi.org/10.3390/nano15070497
APA StyleCheng, Z., Yuan, X., Cao, X., Jia, Z., Hao, F., Chen, J., Yue, L., & Wang, Z. (2025). Preharvest and Postharvest Applications of Fe-Based Nanomaterials: A Potent Strategy for Improving Pepper Storage. Nanomaterials, 15(7), 497. https://doi.org/10.3390/nano15070497