Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk
Abstract
:1. Introduction
2. Potential Toxicity of IONPs Based on Human Studies
2.1. Mining/Industrial Applications—Fine/Unknown-Sized Iron Oxide
2.2. Ultrafine and Nano-Sized Iron Oxide
3. Toxicity of IONPs—In Vivo Studies
3.1. Inflammation
3.2. Pulmonary Fibrosis
3.3. Genotoxicity and Carcinogenic Potential
3.4. Extra-Pulmonary Effects
4. Toxicity of IONPs—In Vitro Studies
4.1. Issues with In Vitro Model Systems
4.1.1. Particle Dose
4.1.2. Particle Aggregation, Agglomeration, and Assay Interference
4.1.3. Relevant Cell Type
4.2. Underlying Mechanisms of IONP-Induced Adverse Effects
5. “Safe by Design” IONPs Hazard Reduction Strategies
5.1. Alterations in IONPs Physicochemical Properties May Reduce Hazard
5.1.1. Particle Surface Coating and Functionalization
6. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Peng, X.-H.; Qian, X.; Mao, H.; Wang, A.Y.; Chen, Z.G.; Nie, S.; Shin, D.M. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int. J. Nanomed. 2008, 3, 311–321. [Google Scholar]
- Sotiriou, G.A.; Singh, D.; Zhang, F.; Chalbot, M.-C.G.; Spielman-Sun, E.; Hoering, L.; Kavouras, I.G.; Lowry, G.V.; Wohlleben, W.; Demokritou, P. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications. J. Hazard. Mater. 2016, 305, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Zhang, Y.; Zou, H.; Quan, C.; Chang, B.; Tang, S.; Zhang, M. Exposure characteristics of ferric oxide nanoparticles released during activities for manufacturing ferric oxide nanomaterials. Inhal. Toxicol. 2015, 27, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Pelclova, D.; Zdimal, V.; Kacer, P.; Fenclova, Z.; Vlckova, S.; Syslova, K.; Navratil, T.; Schwarz, J.; Zikova, N.; Barosova, H.; et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J. Breath Res. 2016, 10, 16004. [Google Scholar] [CrossRef] [PubMed]
- New Jersey Department of Health. Hazardous Substance Fact Sheet—Iron Oxide; NJ Department of Health: Trenton, NJ, USA, 2007. [Google Scholar]
- Boyd, J.T.; Doll, R.; Faulds, J.S.; Leiper, J. Cancer of the lung in iron ore (haematite) miners. Br. J. Ind Med. 1970, 27, 97–105. [Google Scholar] [PubMed]
- Doll, R. Occupational lung cancer: A review. Br. J. Ind Med. 1959, 16, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Kennaway, E.L.; Kennaway, N.M. A Further Study of the Incidence of Cancer of the Lung and Larynx. Br. J. Cancer 1947, 1, 260–298. [Google Scholar] [CrossRef] [PubMed]
- Moulin, J.J.; Clavel, T.; Roy, D.; Dananche, B.; Marquis, N.; Fevotte, J.; Fontana, J.M. Risk of lung cancer in workers producing stainless steel and metallic alloys. Int. Arch. Occup. Environ. Heal. 2000, 73, 171–180. [Google Scholar] [CrossRef]
- Faulds, J.S.; Stewart, M.J. Carcinoma of the lung in hæmatite miners. J. Pathol. Bacteriol. 1956, 72, 353–366. [Google Scholar] [CrossRef]
- Bourgkard, E.; Wild, P.; Courcot, B.; Diss, M.; Ettlinger, J.; Goutet, P.; Hemon, D.; Marquis, N.; Mur, J.M.; Rigal, C.; et al. Lung cancer mortality and iron oxide exposure in a French steel-producing factory. Occup. Environ. Med. 2009, 66, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Teculescu, D.; Albu, A. Pulmonary function in workers inhaling iron oxide dust. Int. Arch. Arbeitsmed. 1973, 31, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.M.; Grace, H.G. An investigation into cancer mortality among males in certain Sheffield trades. J. Hyg. (Lond.) 1938, 38, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Cohen, R.E.; Hirose, K.; Haule, K.; Shimizu, K.; Ohishi, Y. Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure. Phys. Rev. Lett. 2012, 108, 26403. [Google Scholar] [CrossRef] [PubMed]
- Helmenstine, A.M. Tattoo Ink Chemistry. Available online: https://www.thoughtco.com/tattoo-ink-chemistry-606170 (accessed on 28 July 2017).
- Hematite: A Primary Ore of Iron and a Pigment Mineral. Available online: http://geology.com/minerals/hematite.shtml (accessed on 28 July 2017).
- University of Minnesota Magnetite: Ferric and Ferrous Oxides, Oxide Mineral Class. Available online: https://www.esci.umn.edu/courses/1001/minerals/magnetite.shtml (accessed on 28 July 2017).
- Centers for Medicare & Medicaid Services. RTI Contract Report; CMS: Baltimore, MD, USA, 2014. [Google Scholar]
- Billings, C.G.; Howard, P. Occupational siderosis and welders’ lung: A review. Monaldi Arch. Chest Dis. 1993, 48, 304–314. [Google Scholar]
- Siew, S.S.; Kauppinen, T.; Kyyronen, P.; Heikkila, P.; Pukkala, E. Exposure to iron and welding fumes and the risk of lung cancer. Scand. J. Work Environ. Heal. 2008, 34, 444–450. [Google Scholar] [CrossRef]
- Chen, S.Y.; Hayes, R.B.; Liang, S.R.; Li, Q.G.; Stewart, P.A.; Blair, A. Mortality experience of haematite mine workers in China. Br. J. Ind Med. 1990, 47, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Naya, M.; Endoh, S.; Maru, J.; Yamamoto, K.; Nakanishi, J. Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: Different short- and long-term post-instillation results. Toxicology 2009, 264, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Duffin, R.; Tran, L.; Brown, D.; Stone, V.; Donaldson, K. Proinflammogenic Effects of Low-Toxicity and Metal Nanoparticles In vivo and In vitro: Highlighting the Role of Particle Surface Area and Surface Reactivity. Inhal. Toxicol. 2008, 19, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Andujar, P.; Simon-Deckers, A.; Galateau-Sallé, F.; Fayard, B.; Beaune, G.; Clin, B.; Billon-Galland, M.-A.; Durupthy, O.; Pairon, J.-C.; Doucet, J.; et al. Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. Part. Fibre Toxicol. 2014, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Kim, H.; Kim, Y.; Yi, J.; Choi, K.; Park, K. Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 2010, 275, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Oh, S.Y.; Lee, S.J.; Lee, K.; Kim, Y.; Lee, B.S.; Kim, J.S. Chronic pulmonary accumulation of iron oxide nanoparticles induced Th1-type immune response stimulating the function of antigen-presenting cells. Environ. Res. 2015, 143, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, L.; Yousefi Babadi, V.; Espanani, H.R. Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratisl. Lekárske List. 2015, 116, 373–378. [Google Scholar] [CrossRef]
- Srinivas, A.; Rao, P.J.; Selvam, G.; Goparaju, A.; Murthy, P.B.; Reddy, P.N. Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum. Exp. Toxicol. 2012, 31, 1113–1131. [Google Scholar] [CrossRef] [PubMed]
- Ban, M.; Langonne, I.; Huguet, N.; Guichard, Y.; Goutet, M. Iron oxide particles modulate the ovalbumin-induced Th2 immune response in mice. Toxicol. Lett. 2013, 216, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, A.; Bergstrom, U.; Agren, L.; Osterlund, L.; Sandstrom, T.; Bucht, A. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles. Toxicol. Appl. Pharmacol. 2015, 288, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.T.; Feng, W.Y.; Wang, B.; Wang, T.C.; Gu, Y.Q.; Wang, M.; Wang, Y.; Ouyang, H.; Zhao, Y.L.; Chai, Z.F. Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 2008, 247, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Szalay, B.; Tatrai, E.; Nyiro, G.; Vezer, T.; Dura, G. Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J. Appl. Toxicol. 2012, 32, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Totsuka, Y.; Ishino, K.; Kato, T.; Goto, S.; Tada, Y.; Nakae, D.; Watanabe, M.; Wakabayashi, K. Magnetite Nanoparticles Induce Genotoxicity in the Lungs of Mice via Inflammatory Response. Nanomaterials 2014, 4, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Ishino, K.; Kato, T.; Kato, M.; Shibata, T.; Watanabe, M.; Wakabayashi, K.; Nakagama, H.; Totsuka, Y. Comprehensive DNA adduct analysis reveals pulmonary inflammatory response contributes to genotoxic action of magnetite nanoparticles. Int. J. Mol. Sci. 2015, 16, 3474–3492. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.-T.; Feng, W.-Y.; Wang, Y.; Wang, B.; Wang, M.; Ouyang, H.; Zhao, Y.-L.; Chai, Z.-F. Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol. Sci. 2009, 107, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Al Faraj, A.; Shaik, A.P.; Shaik, A.S. Effect of surface coating on the biocompatibility and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology 2015, 9, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, L.; Ding, W.; Zhang, F. Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J. Nanosci. Nanotechnol. 2010, 10, 8617–8624. [Google Scholar] [CrossRef] [PubMed]
- Beaver, L.M.; Stemmy, E.J.; Schwartz, A.M.; Damsker, J.M.; Constant, S.L.; Ceryak, S.M.; Patierno, S.R. Lung inflammation, injury, and proliferative response after repetitive particulate hexavalent chromium exposure. Environ. Health Perspect. 2009, 117, 1896–1902. [Google Scholar] [CrossRef] [PubMed]
- Sayers, B.C.; Germolec, D.R.; Walker, N.J.; Shipkowski, K.A.; Stout, M.D.; Cesta, M.F.; Roycroft, J.H.; White, K.L.; Baker, G.L.; Dill, J.A.; et al. Respiratory toxicity and immunotoxicity evaluations of microparticle and nanoparticle C60 fullerene aggregates in mice and rats following nose-only inhalation for 13 weeks. Nanotoxicology 2016, 10, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.Y.; Mercer, R.R.; Barger, M.; Schwegler-Berry, D.; Scabilloni, J.; Ma, J.K.; Castranova, V. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol. Appl. Pharmacol. 2012, 262, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Valdiglesias, V.; Fernandez-Bertolez, N.; Kilic, G.; Costa, C.; Costa, S.; Fraga, S.; Bessa, M.J.; Pasaro, E.; Teixeira, J.P.; Laffon, B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J. Trace Elem. Med. Biol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Manshian, B.; Jenkins, G.J.S.; Griffiths, S.M.; Williams, P.M.; Maffeis, T.G.G.; Wright, C.J.; Doak, S.H. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30, 3891–3914. [Google Scholar] [CrossRef] [PubMed]
- Pease, C.; Rucker, T.; Birk, T. Review of the Evidence from Epidemiology, Toxicology, and Lung Bioavailability on the Carcinogenicity of Inhaled Iron Oxide Particulates. Chem. Res. Toxicol. 2016, 29, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Toyokuni, S. Role of iron in carcinogenesis: Cancer as a ferrotoxic disease. Cancer Sci. 2009, 100, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.A. Effects of Precipitated Silica and of Iron Oxide on the Incidence of Primary Lung Tumours in Mice. Br. Med. J. 1940, 2, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Nemmar, A.; Beegam, S.; Yuvaraju, P.; Yasin, J.; Tariq, S.; Attoub, S.; Ali, B.H. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Part. Fibre Toxicol. 2016, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Coricovac, D.-E.; Moacă, E.-A.; Pinzaru, I.; Cîtu, C.; Soica, C.; Mihali, C.-V.; Păcurariu, C.; Tutelyan, V.A.; Tsatsakis, A.; Dehelean, C.-A. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile. Front. Pharmacol. 2017, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, H.L.; Gustafsson, J.; Cronholm, P.; Moller, L. Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicol. Lett. 2009, 188, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Freyria, F.S.; Bonelli, B.; Tomatis, M.; Ghiazza, M.; Gazzano, E.; Ghigo, D.; Garrone, E.; Fubini, B. Hematite nanoparticles larger than 90 nm show no sign of toxicity in terms of lactate dehydrogenase release, nitric oxide generation, apoptosis, and comet assay in murine alveolar macrophages and human lung epithelial cells. Chem. Res. Toxicol. 2012, 25, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Kodali, V.; Littke, M.H.; Tilton, S.C.; Teeguarden, J.G.; Shi, L.; Frevert, C.W.; Wang, W.; Pounds, J.G.; Thrall, B.D. Dysregulation of macrophage activation profiles by engineered nanoparticles. ACS Nano 2013, 7, 6997–7010. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.; Siddiqui, M.A.; Farshori, N.N.; Ahamed, M.; Musarrat, J.; Al-Khedhairy, A.A. Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells. Colloids Surf. B Biointerfaces 2014, 122, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, K.; Davoren, M.; Boertz, J.; Schins, R.P.; Hoffmann, E.; Dopp, E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part. Fibre Toxicol. 2009, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Kain, J.; Karlsson, H.L.; Moller, L. DNA damage induced by micro- and nanoparticles--interaction with FPG influences the detection of DNA oxidation in the comet assay. Mutagenesis 2012, 27, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Sighinolfi, G.L.; Artoni, E.; Gatti, A.M.; Corsi, L. Carcinogenic potential of metal nanoparticles in BALB/3T3 cell transformation assay. Environ. Toxicol. 2016, 31, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Teeguarden, J.G.; Mikheev, V.B.; Minard, K.R.; Forsythe, W.C.; Wang, W.; Sharma, G.; Karin, N.; Tilton, S.C.; Waters, K.M.; Asgharian, B.; et al. Comparative iron oxide nanoparticle cellular dosimetry and response in mice by the inhalation and liquid cell culture exposure routes. Part. Fibre Toxicol. 2014, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- DeLoid, G.M.; Cohen, J.M.; Pyrgiotakis, G.; Pirela, S.V.; Pal, A.; Liu, J.; Srebric, J.; Demokritou, P. Advanced computational modeling for in vitro nanomaterial dosimetry. Part. Fibre Toxicol. 2015, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Yoneda, M.; Morohashi, A.; Hori, Y.; Okamoto, D.; Sato, A.; Kurioka, D.; Nittami, T.; Hirokawa, Y.; Shiraishi, T.; et al. Effects of Fe3O4 Magnetic Nanoparticles on A549 Cells. Int. J. Mol. Sci. 2013, 14, 15546–15560. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yin, J.-J.; Zhou, Y.-T.; Zhang, Y.; Song, L.; Song, M.; Hu, S.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012. [Google Scholar] [CrossRef] [PubMed]
- Soenen, S.J.; De Cuyper, M. Assessing cytotoxicity of (iron oxide-based) nanoparticles: An overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol. Imaging 2009, 4, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Veranth, J.M.; Kaser, E.G.; Veranth, M.M.; Koch, M.; Yost, G.S. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part. Fibre Toxicol. 2007, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Umh, H.N.; Choi, D.H.; Cho, M.H.; Choi, W.; Kim, S.W.; Kim, Y.; Kim, J.H. Magnetite- and maghemite-induced different toxicity in murine alveolar macrophage cells. Arch. Toxicol. 2014, 88, 1607–1618. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Umh, H.N.; Kim, S.W.; Cho, M.H.; Kim, J.H.; Kim, Y. ERK pathway is activated in bare-FeNPs-induced autophagy. Arch. Toxicol. 2014, 88, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.; Ge, J.; Cohen, J.; Pyrgiotakis, G.; Engelward, B.P.; Demokritou, P. High-Throughput Screening Platform for Engineered Nanoparticle-Mediated Genotoxicity Using CometChip Technology. ACS Nano 2014, 8, 2118–2133. [Google Scholar] [CrossRef] [PubMed]
- Stueckle, T.A.; Davidson, D.C.; Derk, R.; Kornberg, T.G.; Schwegler-Berry, D.; Pirela, S.V.; Deloid, G.; Demokritou, P.; Luanpitpong, S.; Rojanasakul, Y.; et al. Evaluation of tumorigenic potential of CeO2 and Fe2O3 engineered nanoparticles by a human cell in vitro screening model. NanoImpact 2017, 6, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Schinwald, A.; Murphy, F.; Cho, W.S.; Duffin, R.; Tran, L.; Poland, C. The biologically effective dose in inhalation nanotoxicology. Acc. Chem. Res. 2013, 46, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Tenopoulou, M.; Doulias, P.T.; Barbouti, A.; Brunk, U.; Galaris, D. Role of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis. Biochem. J. 2005, 387, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Galaris, D.; Pantopoulos, K. Oxidative stress and iron homeostasis: Mechanistic and health aspects. Crit. Rev. Clin. Lab. Sci. 2008, 45, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Malvindi, M.A.; De Matteis, V.; Galeone, A.; Brunetti, V.; Anyfantis, G.C.; Athanassiou, A.; Cingolani, R.; Pompa, P.P. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS ONE 2014, 9, e85835. [Google Scholar] [CrossRef] [PubMed]
- Ghio, A.J.; Soukup, J.M.; Dailey, L.A.; Richards, J.H.; Turi, J.L.; Pavlisko, E.N.; Roggli, V.L. Disruption of Iron Homeostasis in Mesothelial Cells after Talc Pleurodesis. Am. J. Respir. Cell. Mol. Biol. 2012, 46, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Ghio, A.J.; Turi, J.L.; Yang, F.; Garrick, L.M.; Garrick, M.D. Iron homeostasis in the lung. Biol. Res. 2006, 39, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, G.; D’Anna, M.C.; Roque, M.E. Iron homeostasis and its disruption in mouse lung in iron deficiency and overload. Exp. Physiol. 2015, 100, 1199–1216. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ghio, A.J.; Yang, F.; Dolan, K.G.; Garrick, M.D.; Piantadosi, C.A. Iron uptake and Nramp2/DMT1/DCT1 in human bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 282, L987–L995. [Google Scholar] [CrossRef] [PubMed]
- Kartikasari, A.E.; Georgiou, N.A.; Visseren, F.L.; van Kats-Renaud, H.; van Asbeck, B.S.; Marx, J.J. Intracellular labile iron modulates adhesion of human monocytes to human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 2257–2262. [Google Scholar] [CrossRef] [PubMed]
- Ghio, A.J. Disruption of iron homeostasis and lung disease. Biochim. Biophys. Acta 2009, 1790, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, H.; Liang, X.; Zhang, J.; Tao, W.; Zhu, X.; Chang, D.; Zeng, X.; Liu, G.; Mei, L. Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms: Lysosome Impairment, Mitochondrial Damage, and ER Stress. Mol. Pharm. 2016, 13, 2578–2587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, X.; Miao, Y.; Chen, Z.; Qiang, P.; Cui, L.; Jing, H.; Guo, Y. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy. J. Hazard. Mater. 2016, 304, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Kou, X.; Geng, H.; Xie, J.; Yang, Z.; Zhang, Y.; Cai, Z.; Dong, C. Effect of ambient PM 2.5 on lung mitochondrial damage and fusion/fission gene expression in rats. Chem. Res. Toxicol. 2015, 28, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Schumacker, P.T.; Gillespie, M.N.; Nakahira, K.; Choi, A.M.K.; Crouser, E.D.; Piantadosi, C.A.; Bhattacharya, J. Mitochondria in lung biology and pathology: More than just a powerhouse. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306, L962–L974. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Naregalkar, R.R.; Vaidya, V.D.; Gupta, M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2007, 2, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Bekaroğlu, M.G.; İşçi, Y.; İşçi, S. Colloidal properties and in vitro evaluation of Hydroxy ethyl cellulose coated iron oxide particles for targeted drug delivery. Mater. Sci. Eng. C 2017, 78, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Truzzi, E.; Bongio, C.; Sacchetti, F.; Maretti, E.; Montanari, M.; Iannuccelli, V.; Vismara, E.; Leo, E. Self-Assembled Lipid Nanoparticles for Oral Delivery of Heparin-Coated Iron Oxide Nanoparticles for Theranostic Purposes. Molecules 2017, 22, 963. [Google Scholar] [CrossRef] [PubMed]
- Elmaci, G.; Frey, C.E.; Kurz, P.; Zümreoğlu-Karan, B. Water Oxidation Catalysis by Birnessite@Iron Oxide Core–Shell Nanocomposites. Inorg. Chem. 2015, 54, 2734–2741. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, M.; Dalle Carbonare, N.; Caramori, S.; Bignozzi, C.A.; Berardi, S.; Mazzi, A.; El Koura, Z.; Bazzanella, N.; Patel, N.; Miotello, A. Porous versus Compact Nanosized Fe(III)-Based Water Oxidation Catalyst for Photoanodes Functionalization. ACS Appl. Mater. Interfaces 2016, 8, 20003–20011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajesmaeelzadeh, F.; Shanehsazzadeh, S.; Gruttner, C.; Daha, F.J.; Oghabian, M.A. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI. Iran. J. Basic Med. Sci. 2016, 19, 166–171. [Google Scholar] [PubMed]
- Tian, F.; Chen, G.; Yi, P.; Zhang, J.; Li, A.; Zhang, J.; Zheng, L.; Deng, Z.; Shi, Q.; Peng, R.; et al. Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques. Biomaterials 2014, 35, 6412–6421. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Lagarde, F.; Maraloiu, V.A.; Blanchin, M.G.; Gendron, F.; Wilhelm, C.; Gazeau, F. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 2010, 21, 395103. [Google Scholar] [CrossRef] [PubMed]
- Chusuei, C.C.; Wu, C.H.; Mallavarapu, S.; Hou, F.Y.; Hsu, C.M.; Winiarz, J.G.; Aronstam, R.S.; Huang, Y.W. Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties. Chem. Biol. Interact. 2013, 206, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Guldris, N.; Argibay, B.; Kolen’ko, Y.V.; Carbo-Argibay, E.; Sobrino, T.; Campos, F.; Salonen, L. M.; Banobre-Lopez, M.; Castillo, J.; Rivas, J. Influence of the separation procedure on the properties of magnetic nanoparticles: Gaining in vitro stability and T1-T2 magnetic resonance imaging performance. J. Colloid Interface Sci. 2016, 472, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Jadaun, A.; Arora, V.; Sinha, R.K.; Biyani, N.; Jain, V.K. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicol. Rep. 2015, 2, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Cochran, D.B.; Wattamwar, P.P.; Wydra, R.; Hilt, J.Z.; Anderson, K.W.; Eitel, R.E.; Dziubla, T.D. Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles. Biomaterials 2013, 34, 9615–9622. [Google Scholar] [CrossRef] [PubMed]
Reference | Cohort | Exposure Particulates | Size | Adverse Outcomes |
---|---|---|---|---|
[6] Boyd | 6000 underground and surface hematite iron ore miners (UK) | Iron oxide dust with 10–12% silica content, radon | Unknown | 70% increased lung cancer mortality rate |
[20] Siew | Employed males 1906–1945 (Finland) | Iron fumes/dust, welding fumes | Unknown | Increased risk of lung cancer following exposure to one or both types of particulates |
[21] Chen | Underground iron ore miners and surface workers (Longyan and Taochong, China) | 3.8 mg/m3 total airborne dust, 28% iron content | Unknown | Increased incidences of non-malignant respiratory disease and lung cancer |
[10] Faulds & Stewart | Hematite miners decreased 1932–1953 (West Cumberland, UK) | Ferric oxide with 10–12% silica content | Unknown | Almost 5 fold increased incidences of lung carcinomas at time of death (attributed to silica content) |
Reference | Cohort | Exposure Particulates | Size | Adverse Outcomes |
---|---|---|---|---|
[24] Andujar | 21 welders, average 27 years exposure | Iron oxide, manganese oxide, chromium oxide | Unknown/not-reported | Fibrotic lesions, elevated iron load. In vitro treatment with representative nanoparticles caused increased secretion of pro-inflammatory cytokines. |
[4] Pelclova | 14 workers in iron oxide pigment production facility, average 10 years exposure | Iron oxide (primarily α-Fe2O3) | 80% measured particles less than 100 nm in diameter | Elevated oxidative stress and inflammatory biomarkers in exhaled breath condensate and urine. |
Study | Animal | Particle | Primary Particle Size | Dose | Mode/Duration of Exposure | Time Points | Adverse Outcomes |
---|---|---|---|---|---|---|---|
[25] Park | ICR mice | Fe3O4 | 5.3 nm | 0.25, 0.5, 1 mg/kg body weight | Intratracheal instillation | 1, 7, 14, 28 days | Inflammation |
[26] Park | ICR mice | Fe2O3 | 10 nm (209.4 nm agglomerate) | 0.5, 1, 2 mg/kg body weight | Intratracheal instillation | 90 days | Inflammation, Th1 polarized immune response |
[27] Sadeghi | Wistar rats | Fe2O3 | 20 nm | 20 or 40 mg/kg body weight | Intratracheal instillation (7 or 14 times, once every other day) | 1 day post exposure set completion | Inflammation, liver damage |
[28] Srinivas | Wistar rats | Fe3O4 | 15–20 nm | 640 mg/m3 | Inhalation, 4 h continuous | 1, 2, 14 days | Inflammation |
[31] Zhu | Sprague Dawley rats | Fe2O3 | 22 or 280 nm | 0.8 or 20 mg/kg body weight | Intratracheal instillation | 1, 30 days | Inflammation, pro-fibrosis, longer prothrombin and activated partial thromboplastin times |
[32] Szalay | Wistar rats | Fe3O4 | <50 nm | 1 or 5 mg/kg body weight | Intratracheal instillation | 1, 3, 7, 14, 30 days | Weak fibrosis |
[33] Totsuka | ICR or gpt delta mice | Fe3O4 | 10–100 nm | 0.05 or 0.2 mg/animal | Intratracheal instillation | 3 h, 8 weeks | DNA damage in lungs, DNA adduct formation, inflammation, focal granuloma formation |
[34] Ishino | ICR mice | Fe3O4 | 10–100 nm | 0.2 mg/animal | Intratracheal instillation | 1 day | DNA adducts (elevated ϵdC) |
[45] Campbell | Mice (strain unknown) | Fe2O3·H2O | Unknown | 0.5 g for 8–12 animals | Inhalation, 6 h/day continuous, 5 days/week, 1 year | Up to 800 days (or death of animal) | Primary lung tumors |
[35] Zhu | Sprague Dawley rats | 59Fe2O3 | 22 nm | 4 mg/animal | Intratracheal instillation | Daily, up to 50 days | IONPs can pass into systemic circulation, and is distributed to mononuclear phagocyte rich organs |
[36] Al Faraj | Balb/c mice | Fe2O3 | 129.3 nm | 0.8 mmol iron/kg body weight | Intrapulmonary administration (once or three times on consecutive days) | 2 h, 1 or 2 days, 1 or 2 weeks, 1 month | Particle translocation to liver, lipid peroxidation, DNA damage, inflammation biomarkers |
[37] Wang | Wistar rats | Fe2O3 | 30 nm | 8.5 mg/kg body weight | Dry powder nasal spray, twice daily for three days | Up to 36 h | Severe lung and liver tissue damage |
[29] Ban | Balb/c mice | Fe2O3 | 35 or 147 nm | 100, 250, or 500 μg/mouse | Intratracheal administration (four times) with or without OVA sensitization | 24, 48 h after completion of exposure set | Inhibition of OVA-induced allergic response at high dose, enhancement with low dose |
[30] Gustafsson | Balb/c mice | Fe2O3 | 30 nm | 2.5 mg/kg body weight | Intratracheal instillation with or without OVA sensitization | 1, 2, 7 days post exposure | Decreased inflammation with IONP and OVA attributed to excessive cell death in inflamed airways and lung draining lymph nodes |
[55] Teeguarden | Balb/c mice | Super-paramagnetic IONPs | 12.8 nm | 19.9 mg/m3 | Inhalation, four hour continuous | Up to 7 days | Particle deposition, interstitial inflammation, macrophage infiltration |
Study | Cell Type | Particle Type | Primary Particle Size | Agglomerate Size in Dosing Media | Particle Dose (μg/cm2) | Adverse Outcomes |
---|---|---|---|---|---|---|
[57] Watanabe | A549 | Magnetic Fe3O4 | 10 nm | 197 nm | 0.303–30.3 μg/cm2 | Cell membrane damage, increased ROS and oxidative DNA damage, decreased GSH, increased CD44+ fraction and HO-1 expression |
[48] Karlsson | A549 | Fe2O3, Fe3O4 | Fe2O3: 29 nm, <1 μm Fe3O4: 20–30 nm, 0.5 μm | Fe2O3: 1600 nm, 150–1000 nm Fe3O4: >200 nm, 100–500 nm Fe2O3: 102 nm Fe3O4: 26 nm | 40 μg/cm2 | Cytotoxicity, mitochondrial damage, DNA damage |
[62] Park | Murine peritoneal macrophages | Fe2O3 | NR | 102 nm | 1.95–15 μg/cm2 | Cytotoxicity, decreased ATP production, increased ROS, nitric oxide, TNF-α secretion |
[53] Kain | Beas2B | Fe3O4 | 20–40 nm | <200 nm | 20 μg/cm2 | DNA damage |
[52] Bhattacharya | IMR-90, Beas2B | Fe2O3 | NR | 50 nm | 2–50 μg/cm2 | Cytotoxicity, DNA damage, increased ROS |
[51] Dwivedi | A549 | Fe3O4 | 36 nm | 174 nm | 3.03–15 μg/cm2 | Cytotoxicity, increased ROS, decreased GSH and mitochondrial membrane potential |
[54] Sighinolfi | Mouse fibroblasts | Fe3O4 | 20–50 nm | 161 nm | 2.76 μg/cm2 | Promote tumoral foci, scaffold for foci engraftment |
[64] Stueckle | pSAEC | Fe2O3 | 19 nm | 341.56 nm | 0.6 μg/cm2 | Increased formation of attachment independent colonies |
[68] Malvindi | A549 | Fe3O4 | 32 nm | 107 nm | 3 μg/cm2 | Cytotoxicity, increased LDH, ROS, DNA damage |
[49] Freyria | A549, murine alveolar macrophages | Fe2O3 | 87, 238, 1100 nm | 69, 357, 888 nm | 1–100 μg/cm2 | No effect on LDH, DNA damage, apoptosis/necrosis, extracellular nitrite |
[89] Shukla | A549 | Fe3O4, chitosan oligosaccharide coating | 6 nm | NR | 156–1250 μg/cm2 | With coating: reduced cytotoxicity, decreased deformation of mitochondrial membranes, ROS production, decreased particle degradation and more controlled release of iron ions |
[85] Tian | Human mesenchymal stem cells | Fe3O4, silica coating | 8 nm | NR | 100 μg Fe/mL (unable to determine equivalent μg/cm2 dose) | With coating: slower metabolism/particle excretion, less iron ion release in acidic environment |
[88] Guldris | Rat mesenchymal stem cells | Super-paramagnetic IONPs, PAA coating | 7 nm | 18, 35 nm | Up to 62.5 μg/cm2 | No effect on cell viability, cell injury/damage |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kornberg, T.G.; Stueckle, T.A.; Antonini, J.A.; Rojanasakul, Y.; Castranova, V.; Yang, Y.; Wang, L. Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk. Nanomaterials 2017, 7, 307. https://doi.org/10.3390/nano7100307
Kornberg TG, Stueckle TA, Antonini JA, Rojanasakul Y, Castranova V, Yang Y, Wang L. Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk. Nanomaterials. 2017; 7(10):307. https://doi.org/10.3390/nano7100307
Chicago/Turabian StyleKornberg, Tiffany G., Todd A. Stueckle, James A. Antonini, Yon Rojanasakul, Vincent Castranova, Yong Yang, and Liying Wang. 2017. "Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk" Nanomaterials 7, no. 10: 307. https://doi.org/10.3390/nano7100307
APA StyleKornberg, T. G., Stueckle, T. A., Antonini, J. A., Rojanasakul, Y., Castranova, V., Yang, Y., & Wang, L. (2017). Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk. Nanomaterials, 7(10), 307. https://doi.org/10.3390/nano7100307