Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Formate Esters
2.2. Synthesis of Formamides
3. Experimental Section
3.1. Catalysts
3.2. Catalytic Reactions
3.3. Characterization of Products
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References and Note
- Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309. [Google Scholar] [CrossRef]
- Ishida, T.; Koga, H.; Okumura, M.; Haruta, M. Advances in gold catalysis and understanding the catalytic mechanism. Chem. Rec. 2016, 16, 2278–2293. [Google Scholar] [CrossRef] [PubMed]
- Min, B.K.; Friend, C.M. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem. Rev. 2007, 107, 2709–2724. [Google Scholar] [CrossRef] [PubMed]
- Della Pina, C.; Falletta, E.; Rossik, M. Update on selective oxidation using gold. Chem. Soc. Rev. 2012, 41, 350–369. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. [Google Scholar] [CrossRef] [PubMed]
- Della Pina, C.; Falletta, E. Gold-catalyzed oxidation in organic synthesis: A promise kept. Catal. Sci. Technol. 2011, 1, 1564–1571. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Nano-gold catalysis in fine chemical synthesis. Chem. Rev. 2012, 112, 2467–2505. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.S.; Kaur, H.; Shah, D. Selective oxidation of alcohols by supported gold nanoparticles: Recent advances. RSC Adv. 2016, 6, 28688–28727. [Google Scholar] [CrossRef]
- Stratakis, M.; Garcia, H. Catalysis by supported gold nanoparticles: Beyond aerobic oxidative processes. Chem. Rev. 2012, 112, 4469–4506. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Brush, A.J.; Pozun, Z.D.; Ham, H.C.; Yu, W.-Y.; Henkelman, G.; Hwang, G.S.; Mullins, C.B. Model studies of heterogeneous catalytic hydrogenation reactions with gold. Chem. Soc. Rev. 2013, 42, 5002–5013. [Google Scholar] [CrossRef] [PubMed]
- Mitsudome, T.; Kaneda, K. Gold nanoparticle catalysts for selective hydrogenations. Green Chem. 2013, 15, 2636–2654. [Google Scholar] [CrossRef]
- Takale, B.S.; Bao, M.; Yamamoto, Y. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. Org. Biomol. Chem. 2014, 12, 2005–2027. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, L.; Liu, Y.-M.; Cao, Y. Supported gold catalysis: From small molecule activation to green chemical synthesis. Acc. Chem. Res. 2014, 47, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Vasilikogiannaki, E.; Louka, A.; Stratakis, M. Gold-nanoparticle-catalyzed silaboration of oxetanes and unactivated epoxides. Organometallics 2016, 35, 3895–3902. [Google Scholar] [CrossRef]
- Raptis, C.; Garcia, H.; Stratakis, M. Selective isomerization of epoxides to allylic alcohols catalyzed by TiO2-supported gold nanoparticles. Angew. Chem. Int. 2009, 48, 3133–3136. [Google Scholar] [CrossRef] [PubMed]
- Loksha, Y.M.; Pedersen, E.B.; Loddo, R.; Sanna, G.; Collu, G.; Giliberti, G.; La Colla, P. Synthesis of novel fluoro analogues of MKC442 as microbicides. J. Med. Chem. 2014, 57, 5169–5178. [Google Scholar] [CrossRef] [PubMed]
- The screened catalysts Au/TiO2, Au/Al2O3, and Au/ZnO (~1 wt % in Au) are commercially available by Strem Chemicals, and have an average gold crystallite size of ~2–3 nm.
- Abad, A.; Corma, A.; Garcia, H. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: The molecular reaction mechanism. Chem. Eur. J. 2008, 14, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Dai, W.-L.; Li, H.; Fan, K. Au/TiO2 as high efficient catalyst for the selective oxidative cyclization of 1,4-butanediol to γ-butyrolactone. J. Catal. 2007, 252, 69–76. [Google Scholar] [CrossRef]
- Fristrup, P.; Johansen, L.B.; Christensen, C.H. Mechanistic investigation of the gold-catalyzed aerobic oxidation of aldehydes: Added insight from Hammett studies and isotopic labelling experiments. Chem. Commun. 2008, 2750–2752. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.L.; Kiyohara, P.K.; Rossi, L.N. Clean preparation of methyl esters in one-step oxidative esterification of primary alcohols catalyzed by supported gold nanoparticles. Green Chem. 2009, 11, 1366–1370. [Google Scholar] [CrossRef]
- Li, G.; Enache, D.I.; Edwards, J.; Carley, A.F.; Knight, D.W.; Hutchings, G.J. Solvent-free oxidation of benzyl alcohol with oxygen using zeolite-supported Au and Au–Pd catalysts. Catal. Lett. 2006, 110, 7–13. [Google Scholar] [CrossRef]
- Niknam, K.; Saberi, D. Preparation of sulfuric acid ([3-(3-silicapropyl)sulfanyl]propyl)ester: A new and recyclable catalyst for the formylation and acetylation of alcohols under heterogeneous conditions. Appl. Catal. A Gen. 2009, 366, 220–225. [Google Scholar] [CrossRef]
- Fernando, J.E.M.; Levens, A.; Moock, D.; Lupton, D.W. N-Heterocyclic carbene catalyzed transformylation. Synthesis 2017, 49, 3505–3510. [Google Scholar]
- Hagiwara, H.; Morohashi, K.; Sakai, H.; Suzuki, T.; Ando, M. Acetylation and formylation of alcohols with triphenylphosphine and carbon tetrabromide in ethyl acetate or ethyl formate. Tetrahedron 1998, 54, 5845–5852. [Google Scholar] [CrossRef]
- Amin, R.; Ardeshir, K.; Heidar Ali, A.-N.; Zahra, T.-R. Formylation of alcohol with formic acid under solvent-free and neutral conditions catalyzed by free I2 or I2 generated in situ from Fe(NO3)3·9H2O/NaI. Chin. J. Catal. 2011, 32, 60–64. [Google Scholar] [CrossRef]
- Jiang, L.-B.; Li, R.; Li, H.-P.; Qi, X.; Wu, X.-F. Palladium-catalyzed carbonylative synthesis of aryl formates under mild conditions. ChemCatChem 2016, 8, 1788–1791. [Google Scholar] [CrossRef]
- Liang, S.; Monsen, P.; Hammond, G.B.; Xu, B. Au/TiO2 catalyzed reductive amination of aldehydes and ketones using formic acid as reductant. Org. Chem. Front. 2016, 3, 505–509. [Google Scholar] [CrossRef]
- Ke, Z.; Zhang, Y.; Cui, X.; Shi, F. Supported nano-gold-catalyzed N-formylation of amines with paraformaldehyde in water under ambient conditions. Green Chem. 2016, 18, 808–816. [Google Scholar] [CrossRef]
- Shah, N.; Gravel, E.; Jawale, D.V.; Doris, E.; Namboothiri, I.N.N. Carbon nanotube-gold nanohybrid catalyzed N-formylation of amines by using aqueous formaldehyde. ChemCatChem 2014, 6, 2201–2205. [Google Scholar] [CrossRef]
- Preedasuriyachai, P.; Kitahara, H.; Chavasiri, W.; Sakurai, H. N-Formylation of amines catalyzed by nanogold under aerobic oxidation conditions with MeOH or formalin. Chem. Lett. 2010, 39, 1174–1176. [Google Scholar] [CrossRef]
- Ishida, T.; Haruta, M. N-Formylation of amines via the aerobic oxidation of methanol over supported gold nanoparticles. ChemSusChem 2009, 2, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Minato, T.; Ito, E.; Hara, M.; Kim, Y.; Yamamoto, Y.; Asao, N. Selective aerobic oxidation of methanol in the coexistence of amines by nanoporous gold catalysts: Highly efficient synthesis of formamides. Chem. Eur. J. 2013, 19, 11832–11836. [Google Scholar] [CrossRef] [PubMed]
- Soule, J.-F.; Miyamura, H.; Kobayashi, S. Powerful amide synthesis from alcohols and amines under aerobic conditions catalyzed by gold or gold/iron, -nickel or -cobalt nanoparticles. J. Am. Chem. Soc. 2011, 133, 18550–18553. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, D.; Tang, L.; Wang, S.; Wang, Z. Highly efficient amide synthesis from alcohols and amines by virtue of a water-soluble gold/DNA catalyst. Angew. Chem. Int. Ed. 2011, 50, 8917–8921. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.B.; He, L.; Qian, Y.; Liu, Y.M.; Cao, Y.; Fan, K.N. Highly Chemo- and Regioselective Transfer Reduction of Aromatic Nitro Compounds using Ammonium Formate Catalyzed by Supported Gold Nanoparticles. Adv. Synth. Catal. 2011, 353, 281–286. [Google Scholar] [CrossRef]
- Mitsudome, T.; Urayama, T.; Fujita, S.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. A titanium dioxide-supported gold nanoparticle catalyst for the selective N-formylation of functionalized amines with CO2 and H2. ChemCatChem 2017, 9, 3632–3636. [Google Scholar] [CrossRef]
- El Dine, T.M.; Evans, D.; Rouden, J.; Blanchet, J. Formamide synthesis through borinic acid-catalysed transamidation under mild conditions. Chem. Eur. J. 2016, 22, 5894–5898. [Google Scholar] [CrossRef] [PubMed]
- Hulla, M.; Bobbink, F.D.; Das, S.; Dyson, P.J. CO2-based N-formylation of amines catalyzed by fluoride and hydroxide anions. ChemCatChem 2016, 8, 3338–3342. [Google Scholar] [CrossRef]
- Fang, C.; Lu, C.; Liu, M.; Zhu, Y.; Fu, Y.; Lin, B.-L. Selective formylation and methylation of amines using carbon dioxide and hydrosilane catalyzed by alkaline metal carbonates. ACS Catal. 2016, 6, 7876–7881. [Google Scholar] [CrossRef]
- Liu, H.; Mei, Q.; Xu, Q.; Song, J.; Liu, H.; Han, B. Synthesis of formamides containing unsaturated groups by N-formylation of amines using CO2 with H2. Green Chem. 2017, 19, 196–201. [Google Scholar] [CrossRef]
- Ortega, N.; Richter, C.; Glorius, F. N-Formylation of amines by methanol activation. Org. Lett. 2013, 15, 1776–1779. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Hong, S.H. Hydrogen acceptor- and base-free N-formylation of nitriles and amines using methanol as C1 source. Adv. Synth. Catal. 2015, 357, 834–840. [Google Scholar] [CrossRef]
- Li, W.; Wu, X.-F. A practical and general base-catalyzed carbonylation of amines for the synthesis of N-formamides. Chem. Eur. J. 2015, 21, 14943–14948. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst | Solvent | Conversion (%) | Selectivity (2a/2b) |
1 | Au/TiO2 | 1,2-Dichloroethane | 100 | 95/5 |
2 | Au/TiO2 | Ethyl acetate | 45 | 92/8 |
3 | Au/TiO2 | Tetrahydrofuran | 34 | 79/21 |
4 | Au/TiO2 | Toluene | 89 a,b | 98/2 |
5 | Au/TiO2 | Hexane | 34 | 97/3 |
6 | Au/Al2O3 | 1,2-Dichloroethane | 35 | 96/4 |
7 | Au/ZnO | 1,2-Dichloroethane | 50 | 98/2 |
8 | Au/Al2O3 | Toluene | 5 | Not Determined |
9 | Au/ZnO | Toluene | 61 | 99/1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metaxas, I.; Vasilikogiannaki, E.; Stratakis, M. Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde. Nanomaterials 2017, 7, 440. https://doi.org/10.3390/nano7120440
Metaxas I, Vasilikogiannaki E, Stratakis M. Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde. Nanomaterials. 2017; 7(12):440. https://doi.org/10.3390/nano7120440
Chicago/Turabian StyleMetaxas, Ioannis, Eleni Vasilikogiannaki, and Manolis Stratakis. 2017. "Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde" Nanomaterials 7, no. 12: 440. https://doi.org/10.3390/nano7120440