RETRACTED: Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors
Abstract
:1. Introduction
2. Materials Methods
2.1. Materials and Physical Measurements
2.2. Synthesis of Copper (II) Dithiocarbamate Complexes
2.3. Synthesis of HDA-Capped CuS Nanoparticles
3. Results and Discussion
3.1. Optical Properties of the CuS Nanoparticles
3.2. Powder X-Ray Diffraction Analysis of the CuS Nanoparticles
3.3. Morphology of the CuS Nanocrystals
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Antoniadou, M.; Daskalaki, V.M.; Balis, N.; Kondarides, D.I.; Kordulis, C.; Lianos, P. Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts. Appl. Catal. 2011, 107, 188–196. [Google Scholar] [CrossRef]
- Lai, C.H.; Lu, M.Y.; Chen, L.J. Metal sulfide nanostructures: Synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 2012, 22, 19–30. [Google Scholar] [CrossRef]
- Kosyachenko, L.; Toyana, T. Current–voltage characteristics and quantum efficiency spectra of efficient thin-film CdS/CdTe solar cells. Sol. Energy Mater. Sol. Cells 2014, 120, 512–520. [Google Scholar] [CrossRef]
- Wand, Z.H.; Geng, D.Y.; Zhang, Y.J.; Zhang, Z.D. CuS:Ni flowerlike morphologies synthesized by the solvothermal route. Mater. Chem. Phys. 2010, 222, 241–245. [Google Scholar]
- Milliron, D.J.; Hughes, S.M.; Cui, Y.; Manna, L.; Li, J.B.; Wand, L.W.; Alivisatos, A.P. Colloidal nanocrystal heterostructures with linear and branched topology. J. Nat. 2004, 430, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Z.; Xu, S.; Geng, J.; Li, G.X.; Zhu, J.J. The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-β-cyclodextrin as a template under sonication. Ultrason. Sonochem. 2006, 13, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.L.; Tamargo, I.A.; Kim, H.; Johnson, B.N.; Gupta, M.K.; Koh, T.W.; Chin, H.A.; Steingart, D.A.; Rand, B.P.; McAlpine, M.C. 3D printed quantum dot light-emitting diodes. Nano Lett. 2014, 14, 7017–7023. [Google Scholar] [CrossRef] [PubMed]
- Alberto, J.; Cllifford, J.N.; Palomares, E. Quantum dot based molecular solar cells. Coord. Chem. Rev. 2014, 263–264, 53–64. [Google Scholar] [CrossRef]
- Gao, M.R.; Xu, Y.F.; Jiang, J.; Yu, S.H. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986–3017. [Google Scholar] [CrossRef] [PubMed]
- Couvreur, P. Nanoparticles in drug delivery: Past, present and future. Adv. Drug Deliv. Rev. 2013, 65, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Arias, J.L.; Reddy, L.H.; Othman, M.; Gillet, B.; Desmaele, D.; Zouhiri, F.; Dosio, F.; Gref, R.; Couvreur, P. Squalene based nanocomposites: A new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano 2011, 22, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef]
- Wadia, C.; Alivisatos, A.P.; Kammen, D.M. Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 2009, 15–43, 2072–2077. [Google Scholar] [CrossRef]
- Xie, Y.L. Enhanced photovoltaic performance of hybrid solar cell using highly oriented CdS/CdSe-modified TiO2 nanorods. Electrochim. Acta 2013, 105, 137–141. [Google Scholar] [CrossRef]
- Safrani, T.; Jopp, J.; Golan, Y. A comparative study of the structure and optical properties of copper sulfide thin films chemically deposited on various substrates. RSC Adv. 2013, 3, 23066–23074. [Google Scholar] [CrossRef]
- Nath, S.K.; Kalita, P.K. Chemical synthesis of copper sulfide nanoparticles embedded in PVA matrix. Nanosci. Nanotechnol. Inter. J. 2012, 2, 8–12. [Google Scholar]
- Rao, B.S.; Kumar, B.R.; Reddy, V.R.; Rao, T.S. Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique. Chalco. Lett. 2011, 8, 177–185. [Google Scholar]
- Singh, V.; Chauhan, P. Synthesis and structural properties of wurtzite type CdS nanoparticles. Chalco. Lett. 2009, 6, 421–426. [Google Scholar]
- Srinivasan, N.; Thirumaran, S.; Ciattini, S. Synthesis and crystal structures of diimine adducts of Cd(II) tetrahydroquinolinedithiocarbamate and use of (1,10-phenanthroline)bis(1,2,3,4-tetrahydroquinolinecarbodithioato-S,S’)-cadmium(II) for the preparation of CdS nanorods. J. Mol. Struct. 2012, 1026, 102–107. [Google Scholar] [CrossRef]
- Mondal, G.; Bera, P.; Santra, A.; Jana, S.; Mandal, T.N.; Mondal, A.; Seok, S.; Bera, P. Precursor-driven selective synthesis of hexagonal chalcocite (Cu2S) nanocrystals: Structural, optical, electrical and photocatalytic properties. New J. Chem. 2014, 38, 4774–4782. [Google Scholar] [CrossRef]
- Soomro, R.A.; Sherazi, S.T.H.; Memon, S.N.; Shah, M.R.; Kalwar, N.H.; Hallam, K.R.; Shah, A. Synthesis of air stable copper nanoparticles and their use in catalysis. Adv. Mater. Lett. 2014, 5, 191–198. [Google Scholar] [CrossRef]
- Kanhed, P.; Birla, S.; Gaikwad, S.; Gade, A.; Seabra, A.B.; Rubilar, O.; Duran, N.; Rai, M. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater. Lett. 2014, 115, 13–17. [Google Scholar] [CrossRef]
- Guo, L.; Panderi, I.; Yan, D.D.; Szulak, K.; Li, Y.; Chen, Y.; Ma, H.; Niesen, D.B.; Seeram, N.; Ahmed, A.; et al. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. Chem. Soc. 2013, 7, 8780–8793. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.K.; Das, S.; Samanta, S.; Partha, K.S.; Adhikary, B.; Biswas, P. CuS nanoparticles as amimic peroxidase for colorimetric estimation of human blood glucose level. Talanta 2013, 107, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Abdullaeva, Z.; Omurzak, E.; Mashimo, T. Synthesis of copper sulfide nanoparticles by pulsed plasma in liquid method. World Acad. Int. Sch. Sci. Res. Innov. 2013, 7, 422–425. [Google Scholar]
- Kundu, J.; Pradhan, D. Influence of precursor concentration, surfactant and temperature on the hydrothermal synthesis of CuS: Structural, thermal and optical properties. New J. Chem. 2013, 37, 1470–1478. [Google Scholar] [CrossRef]
- Pathana, H.M.; Desain, J.D.; Lokhande, C.D. Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films. Appl. Surf. Sci. 2002, 202, 47–56. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, L. Copper sulfide flakes and nanodisks. J. Mater. Chem. 2003, 13, 2007–2010. [Google Scholar] [CrossRef]
- Tan, C.; Zhu, Y.; Lu, R.; Xue, P.; Bao, C.; Liu, X.; Fei, Z.; Zhao, Y. Synthesis of copper sulfide nanotube in the hydrogel system. Mater. Chem. Phys. 2005, 91, 44–47. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, X.; Yang, S. Synthesis and characterization of uniform arrays of copper sulfide nanorods coated with nanolayers of polypyrrole. Langmuir 2003, 19, 4420–4426. [Google Scholar] [CrossRef]
- Ghahremaninezhad, A.; Asselin, E.; Dixon, D.G. Electrodeposition and growth mechanism of copper sulfide nanowires. J. Phys. Chem. 2011, 115, 9320–9334. [Google Scholar] [CrossRef]
- Park, J.; Joo, J.; Kwon, S.G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Kuramoto, H.; Anand, J.; Kitamura, T.; Sakata, T.; Mori, H.; Yanagida, S. Microwave-assisted size control of CdS nanocrystallites. J. Mater. Chem. 2001, 11, 1936–1940. [Google Scholar] [CrossRef]
- Ghows, N.; Entezari, M.H. A novel method for the synthesis of CdS nanoparticles without surfactant. Ultrason. Sonochem. 2011, 18, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Sohrabnezhad, S.H.; Pourahmad, A. CdS semiconductor nanoparticles embedded in AlMCM-41 by solid-state reaction. J. Alloys Compd. 2010, 505, 324–327. [Google Scholar] [CrossRef]
- Nirmal, R.M.; Pandian, K.; Sivakumur, K. Cadmium (II) pyrrolidine dithiocarbamate complex as single source precursor for the preparation of CdS nanocrystals by microwave irradiation and conventional heating process. Appl. Surf. Sci. 2011, 257, 2745–2751. [Google Scholar] [CrossRef]
- Trindade, T.; O’Brien, P. Synthesis of CdS and CdSe Nanocrystallites Using a Novel Single-Molecule Precursors Approach. Chem. Mater. 1997, 9, 523–530. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Wang, G.Y.; Hu, X.Y. Solvothermal synthesis of hexagonal CdS nanostructures from a single-source molecular precursor. J. Alloys Compd. 2007, 437, 47–52. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, H.; Chen, S.; Wang, C. Preparation and characterization of CuS hollow spheres. Cer Inter 2009, 35, 905–907. [Google Scholar] [CrossRef]
- Dhassade, S.S.; Patil, J.S.; Han, S.H.; Rath, M.C.; Fulari, V.J. Copper sulfide nanorods grown at room temperature for photovoltaic application. Mater. Lett. 2013, 90, 138–141. [Google Scholar] [CrossRef]
- Maji, S.K.; Mukherjee, N.; Dutta, A.K.; Srivastaca, D.N.; Paul, P.; Karmakar, B.; Mondal, A.; Adhikary, B. Deposition of nanocrystalline CuS thin film from a single precursor: Structural, optical and electrical properties. Mater. Chem. Phys. 2011, 130, 392–397. [Google Scholar] [CrossRef]
- Ma, G.; Zhou, Y.; Li, X.; Sun, K.; Liu, S.; Hu, J.; Kotov, N.A. Self-assembly of copper sulfide nanoparticles into nanoribbons with continuous crystallinity. ACS Nano 2013, 7, 9010–9018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.T.; Wu, G.; Chen, X.H. Controlled synthesis and characterization of covellite (CuS) nanoflakes. Mater. Chem. Phys. 2006, 98, 293–303. [Google Scholar]
- Wu, C.; Shi, J.B.; Chen, C.J.; Chen, Y.C.; Lin, Y.T.; Wu, P.F.; Wei, S.Y. Synthesis and optical properties of CuS nanowires fabricated by electrodeposition with anodic alumina membrane. Mater. Lett. 2008, 62, 1074–1077. [Google Scholar] [CrossRef]
- Liu, J.; Xue, D.F. Solvothermal synthesis of CuS semiconductor hollow spheres based on a bubble template route. J. Cryst. Growth 2009, 311, 500–503. [Google Scholar] [CrossRef]
- Thongtem, T.; Phuruangrat, A.; Thongstem, S. Formation of CuS with flower-like, hollow spherical, and tubular structures using the solvothermal-microwave process. Curr. Appl. Phys. 2009, 9, 195–200. [Google Scholar] [CrossRef]
- Tan, C.H.; Lu, R.; Xue, P.C.; Bao, C.Y.; Zhao, Y.Y. Synthesis of CuS nanoribbons templated by hydrogel. Mater. Chem. Phys. 2008, 112, 500–503. [Google Scholar] [CrossRef]
- Pradhan, N.; Katz, B.; Efrima, S. Synthesis of High-Quality Metal Sulfide Nanoparticles from Alkyl Xanthate Single Precursors in Alkylamine Solvents. J. Phys. Chem. B 2003, 107, 13843–13854. [Google Scholar] [CrossRef]
- Mondal, G.; Acharjya, M.; Santra, A.; Bera, P.; Jana, S.; Pramanik, N.C.; Mondal, A.; Bera, P. A new pyrazolyl dithioate function in the precursor for the shape controlled growth of CdS nanocrystals: Optical and photocatalytic activities. New J. Chem. 2015, 39, 9487–9497. [Google Scholar] [CrossRef]
- Flor, J.; Marques de Lima, S.A.; Davalos, M.R. Effect of reaction time on the particle size of ZnO and ZnO:Ce obtained by a sol-gel method. Prog. Colloid Polym. Sci. 2004, 128, 239–243. [Google Scholar]
- Sharma, K.N.; Joshi, H.; Prakash, O.; Sharma, A.K.; Bhaskar, R.; Singh, A.K. Pyrazole-Stabilized Dinuclear Palladium (II) Chalcogenolates Formed by Oxidative Addition of Bis [2-(4-bromopyrazol-1-yl) ethyl] Dichalcogenides to Palladium (II)–Tailoring of Pd–S/Se Nanoparticles. Eur. J. Inorg. Chem. 2015, 29, 4829–4838. [Google Scholar] [CrossRef]
- Deori, K.; Ujjain, S.K.; Sharma, R.K.; Deka, S. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 10665–10672. [Google Scholar] [CrossRef] [PubMed]
- Coe, S.; Woo, W.K.; Bawendi, M.; Bulovic, Y. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803. [Google Scholar] [CrossRef] [PubMed]
- Bera, P.; Kim, C.H.; Seok, S.I. Synthesis of nanocrystalline CdS from cadmium (II) complex of S-benzyl dithiocarbazate as a precursor. Solid State Sci. 2010, 12, 1741–1747. [Google Scholar] [CrossRef]
- Kuo, C.H.; Chu, Y.T.; Song, Y.F.; Huang, M.H. Cu2O nanocrystal-templated growth of Cu2S nanocages with encapsulated Au nanoparticles and in-situ transmission X-ray microscopy study. Adv. Funct. Mater. 2011, 21, 792–797. [Google Scholar] [CrossRef]
- Ajibade, P.A.; Benjamin, C.E. Group 12 dithiocarbamate complexes: Synthesis, spectral studies and their use as precursors for metal sulfides nanoparticles and nanocomposites. Spectrochim. Acta A 2013, 113, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Mthethwa, T.; Pullabhotla, V.S.R.; Mdluli, P.S.; Wesley-Smith, J.; Revaprasadu, N. Synthesis of hexadecylamine capped CdS nanoparticles using heterocyclic cadmium dithiocarbamates as single source precursors. Polyhedron 2009, 28, 2977–2982. [Google Scholar] [CrossRef]
- Efros, A.L.; Rosen, M. Electronic structure of semiconductor nanocrystals. Ann. Rev. Mater. Sci. 2000, 30, 475–521. [Google Scholar] [CrossRef]
- Donega, C.D.M. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011, 40, 1512–1546. [Google Scholar] [CrossRef] [PubMed]
- Kvitek, O.; Siegel, J.; Hnatowicz, V.; SvorIik, V. Noble metal nanostructures influence of structure and environment on their optical properties. J. Nanomater. 2003, 2013, 1–15. [Google Scholar] [CrossRef]
- Gupta, P.; Ramrakhiani, M. Influence of the particle size on the optical properties of CdSe nanoparticles. Open Nanosci. J. 2009, 3, 15–19. [Google Scholar] [CrossRef]
- Chandran, A.; Francis, N.; Jose, T.; George, K.C. Synthesis, structural characterization and optical band gap determination of ZnS nanoparticles. SB Acad. Rev. 2010, XVII, 17–21. [Google Scholar]
- Alivisatos, A.P. Perspectives on the physical chemistry of semiconductor. Nanocryst. J. Phys. Chem. 1996, 100, 13226–13239. [Google Scholar] [CrossRef]
- Mercy, A.; Selvaraj, R.S.; Boaz, B.M.; Anandhi, A.; Kanagadurai, R. Synthesis, structural and optical characterization of cadmium sulphide nanoparticles. Indian J. Pure Appl. Phys. 2013, 51, 448–452. [Google Scholar]
- Botha, N.L.; Ajibade, P.A. Effects of temperature on crystallite sizes of copper sulfide nanocrystals prepared from copper(II) dithiocarbamate single source precursors. Mater. Sci. Semicond. Process. 2016, 43, 149–154. [Google Scholar] [CrossRef]
- Nabiyounil, G.; Sahraei, R.; Toghiany, M.; Mayles, M.; Hedayali, K. Preparation and characterization of nanostructured ZnS thin films grown on glass and N-type Si substrates using a new chemical bath deposition technique. Rev. Adv. Mater. Sci. 2011, 27, 52–57. [Google Scholar]
- Al-Rasoul, K.T.; Abbas, N.K.; Shanam, S.J. Structural and optical characterization of Cu and Ni doped ZnS nanoparticles. Int. J. Electorchem. Sci. 2013, 8, 5594–5604. [Google Scholar]
- Martinez, M.A.; Guillen, C.; Herrero, J. Morphological and structural studies of CBD-CdS thin films by microscopy and diffraction techniques. Appl. Surf. Sci. 1998, 136, 8–16. [Google Scholar] [CrossRef]
- Martinez, M.A.; Guillen, C.; Herrero, J. Cadmium sulphide growth investigations on different SnO2 substrates. Appl. Surf. Sci. 1999, 140, 182–189. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajibade, P.A.; Botha, N.L. RETRACTED: Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors. Nanomaterials 2017, 7, 32. https://doi.org/10.3390/nano7020032
Ajibade PA, Botha NL. RETRACTED: Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors. Nanomaterials. 2017; 7(2):32. https://doi.org/10.3390/nano7020032
Chicago/Turabian StyleAjibade, Peter A., and Nandipha L. Botha. 2017. "RETRACTED: Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors" Nanomaterials 7, no. 2: 32. https://doi.org/10.3390/nano7020032
APA StyleAjibade, P. A., & Botha, N. L. (2017). RETRACTED: Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors. Nanomaterials, 7(2), 32. https://doi.org/10.3390/nano7020032