Ag Nanoparticles‐Modified 3D Graphene Foam for Binder‐Free Electrodes of Electrochemical Sensors
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Ag NPs/rGO Composite Foam
2.2. Characterization
2.3. Electrochemical Characterization
3. Result and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bai, X.Y.; Shiu, K.K. Investigation of the optimal weight contents of reduced graphene oxide–gold nanoparticles composites and theirs application in electrochemical biosensors. J. Electroanal. Chem. 2014, 720–721, 84–89. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Yang, B.H.; Guo, G.Z.; Shi, H.; Tian, Y.; He, M.H.; Chen, J.C.; Liu, Y.Q.; Zhao, G.Z.; Zhang, Q.J. The study of noble metal nanoparticles applied on third-order nonlinear optical nanocomposite materials. Eur. Phys. J. Appl. Phys. 2011, 56, 10402. [Google Scholar] [CrossRef]
- Hou, M.Q.; Mei, Q.Q.; Han, B.X. Solvent effects on geometrical structures and electronic properties of metal Au, Ag, and Cu nanoparticles of different sizes. J. Colloid Interface Sci. 2015, 449, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Ahmadia, F.; Raoofa, J.B.; Ojania, R. Synthesis of Ag nanoparticles for the electrochemical detection of anticancer drug flutamide. Chin. J. Catal. 2015, 36, 439–444. [Google Scholar] [CrossRef]
- Cui, K.; Song, Y.H.; Yao, Y.; Huang, Z.Z.; Wang, L. A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochem. Commun. 2008, 10, 663–667. [Google Scholar] [CrossRef]
- Azizia, S.N.; Ghasemib, S.; Maybodia, A.S.; Mohammad, R.A. A new modified electrode based on Ag-doped mesoporous SBA-16 nanoparticles as non-enzymatic sensor for hydrogen peroxide. Sens. Actuators B 2015, 216, 271–278. [Google Scholar] [CrossRef]
- Rameshkumar, P.; Viswanathan, P.; Ramaraj, R. Silicate sol–gel stabilized silver nanoparticles for sensor applications toward mercuric ions, hydrogen peroxide and nitrobenzene. Sens. Actuators B 2014, 202, 1070–1077. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, Q.L.; Yang, P.; Liu, J.S.; Xing, S.J.; Jin, L.T. Electrochemical synthesis of silver nanoparticles-coated gold nanoporous film electrode and its application to amperometric detection for trace Cr(VI). Sci. China Chem. 2011, 54, 1004–1010. [Google Scholar] [CrossRef]
- Xing, S.J.; Xu, H.; Chen, J.S.; Shi, G.Y.; Jin, L.T. Nafion stabilized silver nanoparticles modified electrode and its application to Cr(VI) detection. J. Electroanal. Chem. 2011, 652, 60–65. [Google Scholar] [CrossRef]
- Rumugam, M.; Sambandam, A. Silver nanoparticles embedded phosphomolybdate–polyaniline hybrid electrode for electrocatalytic reduction of H2O2. J. Solid State Electrochem. 2011, 15, 153–160. [Google Scholar]
- Li, Y.C.; Li, Y.J.; Yang, Y.Y. A new amperometric H2O2 biosensor based on nanocomposite films of chitosan–MWNTs, hemoglobin, and silver nanoparticles. J. Solid State Electrochem. 2012, 16, 1133–1140. [Google Scholar] [CrossRef]
- Chen, L.F.; Xie, H.Q.; Li, J. Electrochemical glucose biosensor based on silver nanoparticles/multiwalled carbon nanotubes modified electrode. J. Solid State Electrochem. 2012, 16, 3323–3329. [Google Scholar] [CrossRef]
- Ma, X.Y.; Wang, Z.X.; Wang, X.L.; Xu, L.P. Electrochemical determination of norepinephrine on the membrane of silver nanoparticles doped poly-glycine eliminating the interference of ascorbic acid. J. Solid State Electrochem. 2013, 17, 661–665. [Google Scholar] [CrossRef]
- Ojani, R.; Alinezhad, A.; Aghajani, M.J.; Safshekan, S. Silver nanoparticles/poly ortho-toluidine/modified carbon paste electrode as a stable anode for hydrazine oxidation in the alkaline media. J. Solid State Electrochem. 2015, 19, 2235–2244. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.Y.; Wang, Y.Y.; Zhao, C.M.; Zheng, W.T. Ni(OH)2 nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors. Mater. Res. Bull. 2014, 52, 89–95. [Google Scholar] [CrossRef]
- He, Y.Q.; Zhang, N.N.; Wu, F.; Xu, F.Q.; Liu, Y.; Gao, J.P. Graphene oxide foams and their excellent adsorption ability for acetone gas. Mater. Res. Bull. 2013, 48, 3553–3558. [Google Scholar] [CrossRef]
- Lu, X.M.; Wei, A.; Fan, Q.L.; Wang, L.H.; Chen, P.; Dong, X.C.; Huang, W. Macroporous foam of reduced graphene oxides prepared by lyophilization. Mater. Res. Bull. 2012, 47, 4335–4339. [Google Scholar] [CrossRef]
- Park, H.J.; Hwang, S.J.; Kim, K. An electrochemical detection of Hg2+ ion using graphene oxide as an electrochemically active indicator. Electrochem. Commun. 2012, 24, 100–103. [Google Scholar] [CrossRef]
- Ebdelli, R.; Rouisa, A.; Mlikaa, R.; Bonnamourc, I.; Jaffrezic-Renaultd, N.; Ouada, B.; Davenas, J. Electrochemical impedance detection of Hg2+, Ni2+ and Eu3+ ions by a new azo-calix[4]arene membrane. J. Electroanal. Chem. 2011, 661, 31–38. [Google Scholar] [CrossRef]
- Wu, Z.C.; Jiang, L.D.; Zhu, Y.N.; Xu, C.R.; Ye, Y.; Wang, X.H. Synthesis of mesoporous NiO nanosheet and its application on mercury (II) sensor. J. Solid State Electrochem. 2012, 16, 3171–3177. [Google Scholar] [CrossRef]
- Tehila, S.T.; Noam, T.; Daniel, M. The synthesis and characterization of thiol-based aryl diazonium modified glassy carbon electrode for the voltammetric determination of low levels of Hg(II). J. Solid State Electrochem. 2013, 17, 1543–1552. [Google Scholar]
- Alain, W.; JeÂroÃme, D.; Jacques, B. Silica-modified electrode for the selective detection of mercury. J. Solid State Electrochem. 2000, 4, 330–336. [Google Scholar]
- Sun, Y.Y.; Zhang, W.H.; Yu, H.L.; Hou, C.L.; Li, D.S.; Zhang, Y.H.; Liu, Y.Q. Controlled synthesis various shapes Fe3O4 decorated reduced graphene oxide applied in the electrochemical detection. J. Alloys Compd. 2015, 638, 182–187. [Google Scholar] [CrossRef]
- Golsheikh, A.M.; Huang, N.M.; Lim, H.N.; Zakaria, R.; Yin, C.Y. One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon 2013, 62, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, D.R.; Murali, S.; Zhu, Y.; Ruoff, R.S.; Bielawski, C.W. Reduction of graphite oxide using alcohols. J. Mater. Chem. 2011, 21, 3443–3447. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Chi, H.J.; Zhang, W.H.; Sun, Y.Y.; Liang, Q.; Gu, Y.; Jing, R.Y. Highly Efficient Adsorption of Copper Ions by a PVP-Reduced Graphene Oxide Based On a New Adsorptions mechanism. Nan-Micro Lett. 2014, 6, 80–87. [Google Scholar] [CrossRef]
- Wang, R.; Xu, Y.; Wang, C.Y.; Zhao, H.Z.; Wang, R.J.; Liao, X.; Chen, L.; Chen, G. Fabrication of ITO-rGO/Ag NPs nanocomposite by two-step chronoamperometry electrodeposition and its characterization as SERS substrate. Appl. Surf. Sci. 2015, 349, 805–810. [Google Scholar] [CrossRef]
- Du, R.K.; Tian, X.Y.; Yao, J.R.; Sun, Y.Y.; Jin, J.L.; Zhang, Y.H.; Liu, Y.Q. Controlled synthesis of three-dimensional reduced graphene oxide networks for application in electrode of supercapacitor. Diam. Relat. Mater. 2016, 70, 186–193. [Google Scholar] [CrossRef]
- Dong, X.C.; Xu, H.; Wang, X.W.; Huang, Y.X.; Mary, B.C.P.; Zhang, H.; Wang, L.H.; Huang, W.; Chen, P. 3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano 2012, 6, 3206–3213. [Google Scholar] [CrossRef] [PubMed]
- Momodu, D.Y.; Barzegar, F.; Bello, A.; Dangbegnon, J.; Masikhwa, T.; Madito, J.; Manyala, N. Simonkolleite-graphene foam composites and their superior electrochemical performance. Electrochim. Acta 2015, 151, 591–598. [Google Scholar] [CrossRef]
- Tsang, C.H.A.; Hui, K.N.; Hui, K.S.; Ren, L. Deposition of Pd/graphene aerogel on nickel foam as a binder-free electrode for direct electro-oxidation of methanol and ethanol. J. Mater. Chem. A 2014, 2, 17986–17993. [Google Scholar] [CrossRef]
- Zhan, B.B.; Liu, C.B.; Chen, H.P.; Shi, H.X.; Wang, L.H.; Chen, P.; Huang, W.; Dong, X.C. Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. Nanoscale 2014, 6, 7424–7429. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.C.; Ma, Y.W.; Zhu, G.Y.; Huang, Y.X.; Wang, J.; Mary, B.C.P.; Wang, L.H.; Huang, W.; Chen, P. Synthesis of graphene–carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. J. Mater. Chem. 2012, 22, 17044–17048. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, F.L.; Liu, Y.X.; Pang, F.; Zhang, X. Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim. Acta 2014, 146, 646–651. [Google Scholar] [CrossRef]
- Li, F.; Lai, G.S.; Jia, B.H.; Yu, A.M. Preparation and Electrocatalytic Properties of Polydopamine Functionalized Reduced Graphene Oxide-Silver Nanocomposites. Electrocatalysis 2015, 6, 72–77. [Google Scholar]
- Liu, X.X.; Xu, X.W.; Zh, H.; Yang, X.R. Synthesis of grapheme nanosheets with incorporated silver nanoparticles for enzymeless hydrogen peroxide detection. Anal. Methods 2013, 5, 2298–2302. [Google Scholar] [CrossRef]
Electrodes | Sensitivity (µA/µM) | LOD (µM) | Detection Materials | References |
---|---|---|---|---|
Pure reduced grpahene oxide (rGO) foam | 1.32 | 0.12 | Hg(II) | This work |
Ag NPs/rGO composite foam | 8.00 | 0.11 | Hg(II) | This work |
Ag NPs/rGO/Ni composite foam | 1.09 | 14.90 | H2O2 | [24] |
N-rGO/AgNPs/GCE | 3.12 × 10−3 | 1.20 | H2O2 | [34] |
AgNPs/PD-rGO/GCE | 0.01 | 2.07 | H2O2 | [35] |
PDDA-rGO/AgNPs/GCE | 9.17 × 10−3 | 35.00 | H2O2 | [36] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, T.; Jin, J.; Wang, C.; Sun, Y.; Zhang, Y.; Liu, Y. Ag Nanoparticles‐Modified 3D Graphene Foam for Binder‐Free Electrodes of Electrochemical Sensors. Nanomaterials 2017, 7, 40. https://doi.org/10.3390/nano7020040
Han T, Jin J, Wang C, Sun Y, Zhang Y, Liu Y. Ag Nanoparticles‐Modified 3D Graphene Foam for Binder‐Free Electrodes of Electrochemical Sensors. Nanomaterials. 2017; 7(2):40. https://doi.org/10.3390/nano7020040
Chicago/Turabian StyleHan, Tao, Jianli Jin, Congxu Wang, Youyi Sun, Yinghe Zhang, and Yaqing Liu. 2017. "Ag Nanoparticles‐Modified 3D Graphene Foam for Binder‐Free Electrodes of Electrochemical Sensors" Nanomaterials 7, no. 2: 40. https://doi.org/10.3390/nano7020040
APA StyleHan, T., Jin, J., Wang, C., Sun, Y., Zhang, Y., & Liu, Y. (2017). Ag Nanoparticles‐Modified 3D Graphene Foam for Binder‐Free Electrodes of Electrochemical Sensors. Nanomaterials, 7(2), 40. https://doi.org/10.3390/nano7020040