Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Polymer Synthesis
3. Polymer Characterisation
3.1. Chemical Properties
3.2. Optical Properties
3.3. Surface Topography and Mechanical Properties
3.4. Contact Angle, Surface Tension, and Solubility
3.5. Bacterial Studies
3.5.1. Cell Cultures
3.5.2. Incubation
3.5.3. Visualisation
4. Results and Discussion
4.1. Polymer Synthesis
4.2. Chemical Properties
4.3. Optical Properties
4.4. Surface Topography
4.5. Mechanical Properties
4.6. Contact Angle and Wettability
4.7. Surface Tension Parameters and Solubility
4.8. Cell Attachment
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tamayo, L.; Azócar, M.; Kogan, M.; Riveros, A.; Páez, M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater. Sci. Eng. C 2016, 69, 1391–1409. [Google Scholar] [CrossRef] [PubMed]
- Knetsch, M.L.W.; Koole, L.H. New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers 2011, 3, 340–366. [Google Scholar] [CrossRef]
- Wu, S.; Liu, X.; Yeung, A.; Yeung, K.W.; Kao, R.Y.; Wu, G.; Hu, T.; Xu, Z.; Chu, P.K. Plasma-modified biomaterials for self-antimicrobial applications. ACS Appl. Mater. Interfaces 2011, 3, 2851–2860. [Google Scholar] [CrossRef] [PubMed]
- Lichter, J.A.; Van Vliet, K.J.; Rubner, M.F. Design of antibacterial surfaces and interfaces: Polyelectrolyte multilayers as a multifunctional platform. Macromolecules 2009, 42, 8573–8586. [Google Scholar] [CrossRef]
- Edmiston, C.E., Jr.; McBain, A.J.; Roberts, C.; Leaper, D. Clinical and microbiological aspects of biofilm-associated surgical site infections. In Biofilm-Based Healthcare-Associated Infections, 1st ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 47–67. [Google Scholar]
- Pradeep, K.S.; Easwer, H.; Maya, N.A. Multiple drug resistant bacterial biofilms on implanted catheters—A reservoir of infection. J. Assoc. Phys. India 2013, 61, 702–707. [Google Scholar]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef]
- Hasan, J.; Crawford, R.J.; Ivanova, E.P. Antibacterial surfaces: The quest for a new generation of biomaterials. Trends Biotechnol. 2013, 31, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M. Review on the antimicrobial properties of carbon nanostructures. Materials 2017, 10, 1066. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V.; Crawford, R.J.; Ivanova, E.P. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011, 7, 2015–2028. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.; Chrzanowski, W.; Ostrikov, K. Anti-bacterial surfaces: Natural agents, mechanisms of action, and plasma surface modification. RSC Adv. 2015, 5, 48739–48759. [Google Scholar] [CrossRef]
- Castro, D.; Tabary, N.; Martel, B.; Gandini, A.; Belgacem, N.; Bras, J. Effect of different carboxylic acids in cyclodextrin functionalization of cellulose nanocrystals for prolonged release of carvacrol. Mater. Sci. Eng. C 2016, 69, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Hammami, I.; Triki, M.A.; Rebai, A. Chemical compositions, antibacterial and antioxidant activities of essential oil and various extracts of Geranium sanguineum L. Flowers. Sch. Res. Libr. 2011, 3, 135–144. [Google Scholar]
- Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 2006, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Ghannadi, A.; Bagherinejad, M.; Abedi, D.; Jalali, M.; Absalan, B.; Sadeghi, N. Antibacterial activity and composition of essential oils from Pelargonium graveolens L’Her and Vitex agnus-castus L. Iran. J. Microbiol. 2012, 4, 171–176. [Google Scholar] [PubMed]
- Rosato, A.; Vitali, C.; De Laurentis, N.; Armenise, D.; Milillo, M.A. Antibacterial effect of some essential oils administered alone or in combination with norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Carmen, G.; Hancu, G. Antimicrobial and antifungal activity of pelargonium roseum essential oils. Adv. Pharm. Bull. 2014, 4, 511–514. [Google Scholar] [PubMed]
- Bazaka, K.; Bazaka, O.; Levchenko, I.; Xu, S.; Ivanova, E.; Keidar, M.; Ostrikov, K.K. Plasma-potentiated small molecules–possible alternative to antibiotics? Nano Futures 2017. [Google Scholar] [CrossRef]
- Vasilev, K.; Griesser, S.S.; Griesser, H.J. Antibacterial surfaces and coatings produced by plasma techniques. Plasma Process. Polym. 2011, 8, 1010–1023. [Google Scholar] [CrossRef]
- Lischer, S.; Körner, E.; Balazs, D.J.; Shen, D.; Wick, P.; Grieder, K.; Haas, D.; Heuberger, M.; Hegemann, D. Antibacterial burst-release from minimal ag-containing plasma polymer coatings. J. R. Soc. Interface 2011, 8, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V.; Ostrikov, K. Sustainable life cycles of natural-precursor-derived nanocarbons. Chem. Rev. 2015, 116, 163–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards-Jones, V.; Buck, R.; Shawcross, S.G.; Dawson, M.M.; Dunn, K. The effect of essential oils on methicillin-resistant staphylococcus aureus using a dressing model. Burns 2004, 30, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Hierro, I.; Valero, A.; Perez, P.; Gonzalez, P.; Cabo, M.; Montilla, M.; Navarro, M. Action of different monoterpenic compounds against Anisakis simplex sl L3 larvae. Phytomedicine 2004, 11, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Bigos, M.; Wasiela, M.; Kalemba, D.; Sienkiewicz, M. Antimicrobial activity of geranium oil against clinical strains of Staphylococcus aureus. Molecules 2012, 17, 10276–10291. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Henika, P.R.; Levin, C.E.; Mandrell, R.E. Antibacterial activities of plant essential oils and their components against Escherichia coli o157: H7 and salmonella enterica in apple juice. J. Agric. Food Chem. 2004, 52, 6042–6048. [Google Scholar] [CrossRef] [PubMed]
- Jacob, M.V.; Olsen, N.S.; Anderson, L.J.; Bazaka, K.; Shanks, R.A. Plasma polymerised thin films for flexible electronic applications. Thin Solid Films 2013, 546, 167–170. [Google Scholar] [CrossRef]
- Ahmad, J.; Bazaka, K.; Oelgemöller, M.; Jacob, M.V. Wetting, solubility and chemical characteristics of plasma-polymerized 1-isopropyl-4-methyl-1, 4-cyclohexadiene thin films. Coatings 2014, 4, 527–552. [Google Scholar] [CrossRef] [Green Version]
- Bazaka, K.; Jacob, M.V. Solubility and surface interactions of rf plasma polymerized polyterpenol thin films. Mater. Express 2012, 2, 285–293. [Google Scholar] [CrossRef]
- Ivanova, E.P.; Truong, V.K.; Webb, H.K.; Baulin, V.A.; Wang, J.Y.; Mohammodi, N.; Wang, F.; Fluke, C.; Crawford, R.J. Differential attraction and repulsion of staphylococcus aureus and pseudomonas aeruginosa on molecularly smooth titanium films. Sci. Rep. 2011, 1, 165. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V.; Ivanova, E.P. A Study of a Retention of Antimicrobial Activity by Plasma Polymerized Terpinen-4-ol Thin Films; Materials Science Forum; Trans Tech Publications: Zurich, Switzerland, 2010; Volume 654, pp. 2261–2264. ISBN 978-3-319-11037-0. [Google Scholar]
- Lis-Balchin, M. Geranium and Pelargonium: History of Nomenclature, Usage and Cultivation; CRC Press: London, UK, 2003. [Google Scholar]
- Fox, A.M. Optical Properties of Solids; Oxford University Press: New York, NY, USA, 2001; Volume 3. [Google Scholar]
- Ahmad, J.; Bazaka, K.; Whittle, J.D.; Michelmore, A.; Jacob, M.V. Structural characterization of γ-terpinene thin films using mass spectroscopy and x-ray photoelectron spectroscopy. Plasma Process. Polym. 2015, 12, 1085–1094. [Google Scholar] [CrossRef]
- Matin, R.; Bhuiyan, A. Infrared and ultraviolet–visible spectroscopic analyses of plasma polymerized 2, 6 diethylaniline thin films. Thin Solid Films 2013, 534, 100–106. [Google Scholar] [CrossRef]
- Zhao, X.-Y.; Wang, M.-Z.; Xiao, J. Deposition of plasma conjugated polynitrile thin films and their optical properties. Eur. Polym. J. 2006, 42, 2161–2167. [Google Scholar] [CrossRef]
- Alias, A.; Zabidi, Z.; Ali, A.; Harun, M.; Yahya, M. Optical characterization and properties of polymeric materials for optoelectronic and photonic applications. Int. J. Appl. Sci. Technol. 2013, 3. Available online: http://ijastnet.com/journals/Vol_3_No_5_May_2013/3.pdf (accessed on 13 September 2017).
- Ahmad, J.; Bazaka, K.; Jacob, M.V. Optical and surface characterization of radio frequency plasma polymerized 1-isopropyl-4-methyl-1, 4-cyclohexadiene thin films. Electronics 2014, 3, 266–281. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.; Jacob, M. Effect of RF power on the optical and morphological properties of RF plasma polymerised linalyl acetate thin films. Appl. Surf. Sci. 2010, 256, 3293–3298. [Google Scholar] [CrossRef]
- Cho, S.-H.; Park, Z.-T.; Kim, J.-G.; Boo, J.-H. Physical and optical properties of plasma polymerized thin films deposited by pecvd method. Surf. Coat. Technol. 2003, 174, 1111–1115. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M. Synthesis of radio frequency plasma polymerized non-synthetic Terpinen-4-ol thin films. Mater. Lett. 2009, 63, 1594–1597. [Google Scholar] [CrossRef]
- Easton, C.; Jacob, M. Optical characterisation of radio frequency plasma polymerised lavandula angustifolia essential oil thin films. Thin Solid Films 2009, 517, 4402–4407. [Google Scholar] [CrossRef]
- Kabir, H.; Rahman, M.M.; Roy, T.S.; Bhuiyan, A. Structural and optical properties of plasma polymerized pyromucic aldehyde thin films. Int. J. Mech. Mechatron. Eng. 2012, 12, 30–34. [Google Scholar]
- Nechache, R.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.; Chakrabartty, J.; Rosei, F. Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 2015, 9, 61–67. [Google Scholar] [CrossRef]
- Kim, M.; Cho, S.; Han, J.; Hong, B.; Kim, Y.; Yang, S.; Boo, J.-H. High-rate deposition of plasma polymerized thin films using pecvd method and characterization of their optical properties. Surf. Coat. Technol. 2003, 169, 595–599. [Google Scholar] [CrossRef]
- Vassallo, E.; Cremona, A.; Ghezzi, F.; Dellera, F.; Laguardia, L.; Ambrosone, G.; Coscia, U. Structural and optical properties of amorphous hydrogenated silicon carbonitride films produced by PECVD. Appl. Surf. Sci. 2006, 252, 7993–8000. [Google Scholar] [CrossRef]
- Araújo, E.A.; de Andrade, N.J.; da Silva, L.H.M.; de Carvalho, A.F.; de Sá Silva, C.A.; Ramos, A.M. Control of microbial adhesion as a strategy for food and bioprocess technology. Food Bioprocess Technol. 2010, 3, 321–332. [Google Scholar] [CrossRef]
- Whitehead, K.A.; Colligon, J.; Verran, J. Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloids Surf. B Biointerfaces 2005, 41, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.-Y.; Liu, K.-C.; Lai, F.-I.; Yang, J.-F.; Chen, W.-C.; Hsieh, M.-Y.; Lin, H.-I.; Lin, W.-T. Effects of RF power on the structural, optical and electrical properties of Al-doped zinc oxide films. Microelectron. Reliab. 2010, 50, 730–733. [Google Scholar] [CrossRef]
- Thirumoorthi, M.; Prakash, J.T.J. Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. J. Asian Ceram. Soc. 2016, 4, 124–132. [Google Scholar] [CrossRef]
- Gadelmawla, E.; Koura, M.; Maksoud, T.; Elewa, I.; Soliman, H. Roughness parameters. J. Mater. Process. Technol. 2002, 123, 133–145. [Google Scholar] [CrossRef]
- Kim, H.-Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V.; Bowden, B.F. Optical and chemical properties of polyterpenol thin films deposited via plasma-enhanced chemical vapor deposition. J. Mater. Res. 2011, 26, 1018–1025. [Google Scholar] [CrossRef] [Green Version]
- Tien, C.-L.; Lyu, Y.-R.; Jyu, S.-S. Surface flatness of optical thin films evaluated by gray level co-occurrence matrix and entropy. Appl. Surf. Sci. 2008, 254, 4762–4767. [Google Scholar] [CrossRef]
- Volinsky, A.A.; Moody, N.R.; Gerberich, W.W. Nanoindentation of au and Pt/Cu thin films at elevated temperatures. J. Mater. Res. 2004, 19, 2650–2657. [Google Scholar] [CrossRef]
- Jacob, M.V.; Bazaka, K.; Taguchi, D.; Manaka, T.; Iwamoto, M. Electron-blocking hole-transport polyterpenol thin films. Chem. Phys. Lett. 2012, 528, 26–28. [Google Scholar] [CrossRef] [Green Version]
- Bazaka, K.; Jacob, M.V.; Taguchi, D.; Manaka, T.; Iwamoto, M. Investigation of interfacial charging and discharging in double-layer pentacene-based metal-insulator-metal device with polyterpenol blocking layer using electric field induced second harmonic generation. Chem. Phys. Lett. 2011, 503, 105–111. [Google Scholar] [CrossRef]
- Liu, M.; Lu, C.; Tieu, K.; Yu, H. Numerical comparison between berkovich and conical nano-indentations: Mechanical behaviour and micro-texture evolution. Mater. Sci. Eng. A 2014, 619, 57–65. [Google Scholar] [CrossRef]
- Zhao, M.; Xiang, Y.; Xu, J.; Ogasawara, N.; Chiba, N.; Chen, X. Determining mechanical properties of thin films from the loading curve of nanoindentation testing. Thin Solid Films 2008, 516, 7571–7580. [Google Scholar] [CrossRef]
- Srinivasan, S.; McKinley, G.H.; Cohen, R.E. Assessing the accuracy of contact angle measurements for sessile drops on liquid-repellent surfaces. Langmuir 2011, 27, 13582–13589. [Google Scholar] [CrossRef] [PubMed]
- Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D.; Blu, T.; Unser, M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 2010, 364, 72–81. [Google Scholar] [CrossRef]
- Rupp, F.; Gittens, R.A.; Scheideler, L.; Marmur, A.; Boyan, B.D.; Schwartz, Z.; Geis-Gerstorfer, J. A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomater. 2014, 10, 2894–2906. [Google Scholar] [CrossRef] [PubMed]
- Tandjaoui, A.; Cherif, M.; Carroz, L.; Sanchez, J.; Reboud, R.; Garnier, C.; Duffar, T. Investigation of liquid oxide interactions with refractory substrates via sessile drop method. J. Mater. Sci. 2016, 51, 1701–1712. [Google Scholar] [CrossRef]
- De Souza, E.; Brinkmann, M.; Mohrdieck, C.; Crosby, A.; Arzt, E. Capillary forces between chemically different substrates. Langmuir 2008, 24, 10161–10168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sang, D.K.; Du, Z.; Zhang, C.; Tian, M.; Mi, J. Interfacial structures, surface tensions, and contact angles of diiodomethane on fluorinated polymers. J. Phys. Chem. C 2014, 118, 10143–10152. [Google Scholar] [CrossRef]
- Belibel, R.; Avramoglou, T.; Garcia, A.; Barbaud, C.; Mora, L. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films. Mater. Sci. Eng. C 2016, 59, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, A.; Mix, R.; Schönhals, A.; Friedrich, J. Surface and bulk structure of thin spin coated and plasma-polymerized polystyrene films. Plasma Chem. Plasma Process. 2012, 32, 767–780. [Google Scholar] [CrossRef]
- Easton, C.D.; Jacob, M.V. Solubility and adhesion characteristics of plasma polymerized thin films derived from lavandula angustifolia essential oil. J. Appl. Polym. Sci. 2010, 115, 404–415. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Xu, H.; Deshmukh, R.R.; Timmons, R.B.; Nguyen, K.T. Surface chemistry and polymer film thickness effects on endothelial cell adhesion and proliferation. J. Biomed. Mater. Res. Part A 2010, 94, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V.; Truong, V.K.; Crawford, R.J.; Ivanova, E.P. The effect of polyterpenol thin film surfaces on bacterial viability and adhesion. Polymers 2011, 3, 388–404. [Google Scholar] [CrossRef] [Green Version]
- Arima, Y.; Iwata, H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007, 28, 3074–3082. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Y.; Abidi, N.; Cabrales, L. Wettability and surface free energy of graphene films. Langmuir 2009, 25, 11078–11081. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Shanks, R. Solubility study of polyacrylamide in polar solvents. J. Appl. Polym. Sci. 2004, 93, 1493–1499. [Google Scholar] [CrossRef]
- Weng, M.; Shen, Q. Solid surface tension components and their error limits induced by contact angle measurement in application of the van Oss–Chaudhury–Good approach. J. Adhes. Sci. Technol. 2013, 27, 2571–2591. [Google Scholar] [CrossRef]
- Crawford, R.J.; Ivanova, E.P. Superhydrophobic Surfaces. Elsevier: Amsterdam, The Netherlands, 2015; ISBN 978-0-12-801109-6. [Google Scholar]
- Tegoulia, V.A.; Cooper, S.L. Staphylococcus aureus adhesion to self-assembled monolayers: Effect of surface chemistry and fibrinogen presence. Colloids Surf. B Biointerfaces 2002, 24, 217–228. [Google Scholar] [CrossRef]
Solvent | Surface Tension Parameters, mJ/m2 | ||||
---|---|---|---|---|---|
γ | γLW | γAB | γ+ | γ− | |
Water | 72.8 | 21.8 | 51.0 | 25.5 | 25.5 |
DIM | 50.8 | 50.8 | 0.0 | 0.0 | 0.0 |
Glycerol | 64.0 | 34.0 | 30.0 | 3.9 | 57.4 |
Assignment | Group Frequency, cm−1 | |
---|---|---|
Precursor | Polymer | |
Stretching (OH) | 3367 | 3436 |
Asymmetric stretching, methyl (–CH2) | 2962 | 2961 |
Symmetric stretching, methylene (–CH3) | 2926 | 2933 |
Asymmetric Stretching methyl (–CH3) | 2872 | 2875 |
Stretching aldehyde (C=O) | 2728 | - |
Stretching (C=O), aldehyde | 1730 | 1708 |
Stretching (C=O) carbonyl | 1713 | - |
Alkenyl (C=C) | 1671 | 1625 |
Asymmetric bend methyl (C–H) | 1452 | 1453 |
Symmetric bend methyl (C–H) | 1377 | 1376 |
In-plane bending (O–H) | 1267 | Merged in broad band |
Skeletal (C=C) | 1174 | |
Stretching, alcohol (C–O) | 1058 and 1008 |
Sample | 10 W | 25 W | 50 W | 75 W | 100 W | |||||
---|---|---|---|---|---|---|---|---|---|---|
Scanning area (µm) | 3 × 3 | 10 × 10 | 3 × 3 | 10 × 10 | 3 × 3 | 10 × 10 | 3 × 3 | 10 × 10 | 3 × 3 | 10 × 10 |
Max, Smax (nm) | 1.93 | 3.75 | 2.39 | 4.21 | 3.07 | 3.52 | 6.59 | 6.02 | 8.07 | 8.30 |
Average roughness, Sa (nm) | 0.18 | 0.23 | 0.21 | 0.23 | 0.29 | 0.30 | 0.63 | 0.58 | 0.69 | 0.60 |
Root mean square, Sq (nm) | 0.23 | 0.30 | 0.27 | 0.30 | 0.36 | 0.38 | 0.81 | 0.74 | 0.89 | 0.77 |
Surface skewness, Ssk | 0.02 | 0.08 | 0.17 | 0.03 | 0.04 | 0.04 | 0.56 | 0.75 | 0.59 | 0.67 |
Coefficient of kurtosis, Ska | 0.06 | 0.55 | 0.05 | 0.81 | 0.01 | 0.03 | 0.54 | 1.37 | 0.69 | 1.07 |
Entropy | 3.09 | 3.45 | 3.28 | 3.44 | 3.72 | 3.80 | 4.84 | 4.70 | 4.98 | 4.75 |
Power Deposition (W) | Hardness (GPa) | Elastic Modulus (GPa) | Contact Depth (nm) | Contact Stiffness (µN/nm) | Final Depth (nm) | Contact Area (nm2) × 105 |
---|---|---|---|---|---|---|
10 | 0.63 | 9.39 | 141.88 | 10.44 | 179.87 | 8.24 |
25 | 0.74 | 11.55 | 123.72 | 12.18 | 156.81 | 8.02 |
50 | 0.74 | 12.51 | 127.03 | 12.79 | 154.28 | 7.29 |
75 | 0.81 | 16.78 | 105.25 | 16.21 | 127.74 | 6.21 |
100 | 0.85 | 20.61 | 103.78 | 18.28 | 124.08 | 6.16 |
Solvent | Contact Angle | ||||
---|---|---|---|---|---|
10 W | 25 W | 50 W | 75 W | 100 W | |
Water | 54.0 | 59.8 | 61.7 | 64.1 | 65.6 |
DIM | 38.0 | 34.6 | 34.2 | 33.0 | 32.4 |
Glycerol | 35.6 | 54.1 | 57.2 | 56.7 | 57.2 |
Sample | Surface Parameters | Interfacial Surface Tension Between Solute and Solvent | Surface/Liquid Solubility | |||||||
---|---|---|---|---|---|---|---|---|---|---|
γLW | γ+ | γ− | γ | γSL water | γSL(DIM) | γSL,Gycerol | ΔGwater | ΔGDIM | ΔGGlycerol | |
10 W | 40.6 | 5.88 | 29.82 | 67.08 | 0.75 | 27.05 | −1.61 | −1.5 | −54.10 | 3.22 |
25 W | 42.21 | 1.21 | 22.06 | 52.54 | 6.134 | 10.72 | 5.48 | −12.26 | −21.45 | −10.96 |
50 W | 42.39 | 0.87 | 20.33 | 50.80 | 7.84 | 8.79 | 6.85 | −15.68 | −17.58 | −13.70 |
75 W | 42.93 | 1.07 | 17.33 | 51.54 | 10.67 | 8.94 | 6.94 | −21.34 | −17.88 | −13.88 |
100 W | 43.19 | 1.03 | 15.85 | 51.27 | 12.24 | 8.38 | 7.45 | −24.49 | −16.76 | −14.90 |
Quantification | S. aureus | P. aeruginosa | E. coli |
---|---|---|---|
Initial cell density × 106, cfu mm−2 | 19.6 ± 2.1 | 15.0 ± 0.9 | 9.2 ± 1.7 |
Zeta potential, mV | −33.1 ± 2.0 | −15.1 ± 1.1 | −39.5 ± 0.6 |
Cell dimensions, µm | |||
Control | 0.9 × 0.5 × 0.3 | 2.2 × 1.2 × 0.4 | 2.7 × 1.2 × 0.3 |
10 W | 0.8 × 0.4 × 0.2 | 1.7 × 1.1 × 0.3 | 2.3 × 1.1 × 0.2 |
50 W | 0.9 × 0.6 × 0.4 | 2.1 × 1.1 × 0.4 | 2.6 × 1.4 × 0.2 |
Percentage of attached cells, % | |||
Control | 0.39 ± 0.15 | 0.42 ± 0.11 | 0.49 ± 0.19 |
10 W | 0.040 ± 0.002 | 0.070 ± 0.003 | 0.030 ± 0.001 |
50 W | 0.33 ± 0.09 | 0.41 ± 0.15 | 0.35 ± 0.18 |
Retained cells 105, number of cells per mm2 | |||
Control | 7.64 ± 1.32 | 6.3 ± 1.62 | 4.51 ± 1.29 |
10 W | 0.78 ± 0.02 | 1.05 ± 0.03 | 0.28 ± 0.02 |
50 W | 6.45 ± 1.45 | 6.15 ± 1.38 | 3.22 ± 1.15 |
Biovolume, µm3/µm2 | |||
Control | 8.92 ± 0.79 | 7.39 ± 0.62 | 8.01 ± 0.97 |
10 W | 0.28 ± 0.03 | 0.23 ± 0.03 | 0.27 ± 0.01 |
50 W | 7.63 ± 1.13 | 7.08 ± 1.02 | 6.03 ± 0.95 |
Average biofilm thickness, µm | |||
Control | 17.19 ± 2.05 | 13.2 ± 1.62 | 11.5 ± 1.62 |
10 W | 0.35 ± 0.03 | 0.42 ± 0.01 | 0.28 ± 0.02 |
50 W | 15.32 ± 1.05 | 6.15 ± 1.38 | 9.22 ± 1.08 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Jumaili, A.; Bazaka, K.; Jacob, M.V. Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films. Nanomaterials 2017, 7, 270. https://doi.org/10.3390/nano7090270
Al-Jumaili A, Bazaka K, Jacob MV. Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films. Nanomaterials. 2017; 7(9):270. https://doi.org/10.3390/nano7090270
Chicago/Turabian StyleAl-Jumaili, Ahmed, Kateryna Bazaka, and Mohan V. Jacob. 2017. "Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films" Nanomaterials 7, no. 9: 270. https://doi.org/10.3390/nano7090270
APA StyleAl-Jumaili, A., Bazaka, K., & Jacob, M. V. (2017). Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films. Nanomaterials, 7(9), 270. https://doi.org/10.3390/nano7090270