Electrospinning Fabrication of Poly(vinyl alcohol)/Coptis chinensis Extract Nanofibers for Antimicrobial Exploits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Coptis chinensis (CC) Extract
2.3. Preparation of the PVA/CC Extract Solution for Spinning and Tests
2.4. Preparation of the PVA/CC Extract Nanofibers by Electrospinning
2.5. Characterization of the PVA/CC Extract Nanofibers
2.6. Evaluating the Antimicrobial Activity by the Disc Diffusion Method
2.7. Evaluating the Cytotoxicity of PVA/CC Extract Nanofiber
2.8. Evaluating the Antifungal Activity of the PVA/CC Extract Nanofibers
3. Results and Discussion
3.1. Property of the PVA/CC Extract Solution for Electrospinning
3.2. Morphology
3.3. Electrospinnability
3.4. Fourier Transform Infrared Analysis
3.5. XRD Data
3.6. Thermal Stability
3.7. Antimicrobial Activity
3.8. Cytotoxicity Effect
3.9. Antifungal Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Zhang, S.; Chen, L.; Huang, X.; Zhang, Q.; Jiang, R.; Yao, F.; Ye, W. New enantiomeric isoquinoline alkaloids from Coptis chinensis. Phytochem. Lett. 2014, 7, 89–92. [Google Scholar] [CrossRef]
- Chen, H.; Ye, X.; Cui, X.; He, K.; Jin, Y.; Chen, Z.; Li, X. Cytotoxicity and antihyperglycemic effect of minor constituents from Rhizoma Coptis in HepG2 cells. Fitoterapia 2012, 83, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.; Li, Y.; Han, J.; Wang, G.; Zhang, Y.; Bian, Z. Antibacterial and synergy of berberines with antibacterial agents against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules 2012, 17, 10322–10330. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V. Health Effects of Alkaloids from African Medicinal Plants. Toxicol. Surv. Afr. Med. Plants 2014, 611–633. [Google Scholar] [CrossRef]
- Bao, S.; Geng, P.; Wang, S.; Zhou, Y.; Hu, L.; Yang, X. Pharmacokinetics in rats and tissue distribution in mouse of magnoflorine by ultra performance liquid chromatography-tandem mass spectrometry. Int. J. Clin. Exp. Med. 2015, 8, 20168–20177. [Google Scholar] [PubMed]
- Tang, J.; Feng, Y.; Tsao, S.; Wang, N.; Curtain, R.; Wang, Y. Berberine and Coptidis Rhizoma as novel antineoplastic agents: A review of traditional use and biomedical investigations. J. Ethnopharmacol. 2009, 126, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, H.; Choi, Y. Optimization of extraction of total alkaloid content from rhizome coptidis (Coptis chinensis Franch) using response surface methodology. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 303–309. [Google Scholar] [CrossRef]
- Liu, B.; Li, W.; Chang, Y.; Dong, W.; Ni, L. Extraction of berberine from rhizome of Coptis chinensis Franch using supercritical fluid extraction. J. Pharm. Biomed. Anal. 2006, 41, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, F.; Liu, J.; Lee, F.; Wang, X.; Yang, H. Analysis of alkaloids in Coptis chinensis Franch by accelerated solvent extraction combined with ultra-performance liquid chromatographic analysis with photodiode array and tandem mass spectrometry detections. Anal. Chim. Acta 2008, 613, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Yeum, J.; Das, A. Effect of pullulan/poly(vinyl alcohol) blend system on the montmorillonite structure with property characterization of electrospun pullulan/poly(vinyl alcohol)/montmorillonite nanofibers. J. Colloid Interface Sci. 2012, 368, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Krumova, M.; López, D.; Benavente, R.; Mijangos, C.; Pereña, J. Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer 2000, 41, 9265–9272. [Google Scholar] [CrossRef]
- Koski, A.; Yim, K.; Shivkumar, S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 2004, 58, 493–497. [Google Scholar] [CrossRef]
- Lee, H.; Karim, M.; Park, J.; Bae, D.; Oh, W.; Cheong, I.; Yeum, J. Electrospinning and Characterisation of Poly(vinyl alcohol) Blend Submicron Fibres in Aqueous Solutions. Polym. Polym. Compos. 2009, 17, 47–54. [Google Scholar] [CrossRef]
- Queen, H. Electrospinning Chitosan-Based Nanofibers for Biomedical Applicatons. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2006. [Google Scholar]
- Hashemi, S.; Madani, S.; Abediankenari, S. The review on properties of aloe vera in healing of cutaneous wounds. BioMed Res. Int. 2015, 2015, 714216. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Li, Z. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym. Lett. 2011, 5, 342–361. [Google Scholar] [CrossRef] [Green Version]
- Pillai, C.; Sharma, C. Electrospinning of chitin and chitosan nanofibres. Trends Biomater. Artif. Organs 2009, 22, 179–201. [Google Scholar]
- Venugopal, J.; Sridhar, S.; Ramakrishn, S. Electrospun plant-derived natural biomaterials for tissue engineering. Plant Sci. Today 2014, 1, 151–154. [Google Scholar] [CrossRef]
- Maleki, H.; Gharehaghaji, A.; Dijkstra, P. A novel honey-based nanofibrous scaffold for wound dressing application. J. Appl. Polym. Sci. 2013, 127, 4086–4092. [Google Scholar] [CrossRef]
- James, O.; Mesubi, M.; Usman, L.; Yeye, S.; Ajanaku, K.; Ogunniran, K.; Ajani, O.; Siyanbola, T. Physical characterisation of some honey samples from North-Central Nigeria. Int. J. Phys. Sci. 2009, 4, 464–470. [Google Scholar]
- Wang, P.; He, J. Electrospun polyvinyl alcohol-honey nanofibers. Therm. Sci. 2013, 17, 1549–1550. [Google Scholar] [CrossRef]
- Ganesan, P.; Pradeepa, P. Development and characterization of nanofibrous mat from PVA/Tridax Procumbens (TP) leaves extracts. Wound Med. 2017, 19, 15–22. [Google Scholar] [CrossRef]
- Avci, H.; Monticello, R.; Kotek, R. Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts. J. Biomater. Sci. Polym. Ed. 2013, 24, 1815–1830. [Google Scholar] [CrossRef] [PubMed]
- Aruana, N.; Sriyantia, I.; Edikresnha, D.; Suciatic, T.; Munira, M.M. Polyvinyl Alcohol/Soursop Leaves Extract Composite Nanofibers Synthesized Using Electrospinning Technique and Their Potential as Antibacterial Wound Dressing. Procedia Eng. 2017, 170, 31–35. [Google Scholar] [CrossRef]
- Cui, E.; Zhi, X.; Chen, Y.; Gao, Y.; Fan, Y.; Zhang, W.; Ma, W.; Hou, W.; Guo, C.; Song, X. Coptis chinensis and Myrobalan (Terminalia chebula) Can Synergistically Inhibit Inflammatory Response In Vitro and In Vivo. Hindawi Publ. Corp. Evid.-Based Complement. Altern. Med. 2014, 2014, 510157. [Google Scholar]
- Liu, S.; Zhang, X.; Qiu, F.; Miao, P.; Shen, S.; Zhu, L.; Zeng, J.; Jiang, J. Metabolic Interaction of the Active Constituents of Coptis chinensis in Human Liver Microsomes. Hindawi Publ. Corp. Evid.-Based Complement. Altern. Med. 2014, 2015, 802903. [Google Scholar]
- Leach, F. Anti-microbial properties of Scutellaria baicalensis and Coptis chinensis, two traditional Chinese medicines. Biosci. Horizons 2011, 4, 119–127. [Google Scholar] [CrossRef]
- Lee, H.; Karim, M.; Ji, H.; Choi, J.; Ghim, H.; Park, S.; Oh, W.; Yeum, J. Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Montmorillonite Nanofiber Mats. J. Appl. Polym. Sci. 2009, 113, 1860–1867. [Google Scholar] [CrossRef]
- Lee, H.; Karim, M.; Park, J.; Ghim, H.; Choi, J.; Kim, K.; Deng, Y.; Yeum, J. Poly(vinyl alcohol)/Chitosan Oligosaccharide Blend Submicrometer Fibers Prepared from Aqueous Solutions by the Electrospinning Method. J. Appl. Polym. Sci. 2009, 111, 132–140. [Google Scholar] [CrossRef]
- Ji, H.; Lee, H.; Karim, M.; Cheong, I.; Bae, E.; Kim, T.; Islam, M.; Ji, B.; Yeum, J. Electrospinning and characterization of medium-molecular-weight poly(vinyl alcohol)/high-molecular-weight poly(vinyl alcohol)/montmorillonite nanofibers. Colloid Polym. Sci. 2009, 287, 751–758. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, D.; Nie, J. Electrospinning of Chitosan/Poly(vinyl alcohol)/Acrylic Acid Aqueous Solutions. J. Appl. Polym. Sci. 2006, 102, 5692–5697. [Google Scholar] [CrossRef]
- Park, J.; Ito, T.; Kim, K.; Kim, B.; Khil, M.; Kim, H.; Kim, I. Electrospun poly(vinyl alcohol) nanofibers: Effects of degree of hydrolysis and enhanced water stability. Polym. J. 2010, 42, 273–276. [Google Scholar] [CrossRef]
- Huan, S.; Liu, G.; Han, G.; Cheng, W.; Fu, Z.; Wu, Q.; Wang, Q. Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers. Materials 2015, 8, 2718–2734. [Google Scholar] [CrossRef] [Green Version]
- Shahidul, M.; Rahamana, M.; Yeum, J. Phosphine-functionalized electrospun poly(vinyl alcohol)/silica nanofibers as highly effective adsorbent for removal of aqueous manganese and nickel ions. Colloid Surf. A Physicochem. Eng. Asp. 2015, 484, 9–18. [Google Scholar]
- Lee, Y.; Hwang, E.; Kim, H. Colorimetric Assay and Antibacterial Activity of Cotton, Silk, and Wool Fabrics Dyed with Peony, Pomegranate, Clove, Coptischinenis and Gallnut Extracts. Materials 2009, 2, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, Y. Gas permeation properties of poly(amide-6-b-ethylene oxide)–silica hybrid membranes. J. Membr. Sci. 2001, 193, 209–225. [Google Scholar] [CrossRef]
- Shao, C.; Kim, H.; Gong, J.; Ding, B.; Lee, D.; Park, S. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater. Lett. 2003, 57, 1579–1584. [Google Scholar] [CrossRef]
Polymer | Concentration of CC Extract (% w/w) | Viscosity (mPa·s) | Spinnability | Surface Tension (mN/m) |
---|---|---|---|---|
PVA17 | 0% w/w | 930 | [++] | 58.3 ± 3.5 |
5% w/w | 1565 | [Δ] | 57.2 ± 3.8 | |
10% w/w | 1850 | [Δ] | 59.2 ± 4.8 | |
15% w/w | 2200 | [−] | 60.4 ± 4.2 | |
PVA26 | 0% w/w | 1000 | [++] | 58.5 ± 4.2 |
5% w/w | 2330 | [++] | 61.8 ± 3.2 | |
10% w/w | 2500 | [+] | 63.4 ± 4.5 | |
15% w/w | 2600 | [Δ] | 64.5 ± 3.8 |
Temperature (°C) | Diameters of Inhibition Zone (mm) | |
---|---|---|
Control | PVA26/CC 10% w/w | |
37 | 0 | 19 ± 0.5 |
70 | 0 | 18 ± 0.3 |
90 | 0 | 19 ± 0.4 |
180 | 0 | 18 ± 0.5 |
Concentration of CC Extract (% w/w) | Colony Diameter (mm) | |
---|---|---|
Aureobasidlum pullulans | Penicilium pinophilum | |
Blank | 36 ± 0.5 | 34 ± 0.5 |
5 | 14 ± 0.5 | 20 ± 0.4 |
10 | 0 | 14 ± 0.3 |
15 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.B.; Kim, E.H.; Kim, S.H.; Kim, Y.H.; Oh, W.; Lee, J.-T.; Jang, Y.-A.; Sabina, Y.; Ji, B.C.; Yeum, J.H. Electrospinning Fabrication of Poly(vinyl alcohol)/Coptis chinensis Extract Nanofibers for Antimicrobial Exploits. Nanomaterials 2018, 8, 734. https://doi.org/10.3390/nano8090734
Yang SB, Kim EH, Kim SH, Kim YH, Oh W, Lee J-T, Jang Y-A, Sabina Y, Ji BC, Yeum JH. Electrospinning Fabrication of Poly(vinyl alcohol)/Coptis chinensis Extract Nanofibers for Antimicrobial Exploits. Nanomaterials. 2018; 8(9):734. https://doi.org/10.3390/nano8090734
Chicago/Turabian StyleYang, Seong Baek, Eun Hee Kim, Seung Hee Kim, Young Hun Kim, Weontae Oh, Jin-Tae Lee, Young-Ah Jang, Yeasmin Sabina, Byung Chul Ji, and Jeong Hyun Yeum. 2018. "Electrospinning Fabrication of Poly(vinyl alcohol)/Coptis chinensis Extract Nanofibers for Antimicrobial Exploits" Nanomaterials 8, no. 9: 734. https://doi.org/10.3390/nano8090734
APA StyleYang, S. B., Kim, E. H., Kim, S. H., Kim, Y. H., Oh, W., Lee, J.-T., Jang, Y.-A., Sabina, Y., Ji, B. C., & Yeum, J. H. (2018). Electrospinning Fabrication of Poly(vinyl alcohol)/Coptis chinensis Extract Nanofibers for Antimicrobial Exploits. Nanomaterials, 8(9), 734. https://doi.org/10.3390/nano8090734