Bio-Preparation and Regulation of Pyrrole Structure Nano-Pigment Based on Biomimetic Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Stable Phospholipid Bilayers
2.3. Transmembrane Mass Transfer Experiment of Substances with Different Physicochemical Properties
2.4. Biomimetic Cell Membranes Response to System Environment
2.4.1. The Method of Adding Permeability Agents
2.4.2. Physical Processing Method
2.5. Preparation of Pyrrole Structure Nano-Pigment by Biosynthesis
3. Results and Discussion
3.1. Effect of Structure and Performance on the Transmembrane Transport of Substances
3.1.1. Effect of Substance Size on Transmembrane Mass Transfer
3.1.2. Effect of Substance Surface Electrical Properties on Transmembrane Mass Transfer
3.2. Transmembrane Mass Transfer Response to the Environment
3.2.1. Permeability Agents Regulate Transmembrane Mass Transfer
3.2.2. Physical Treatments Regulate Transmembrane Mass Transfer
3.3. Preparation and Regulation of Pyrrole Structure Nano-Pigment by Biosynthesis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Panesar, R.; Kaur, S.; Panesar, P.S. Production of microbial pigments utilizing agro-industrial waste: A review. Curr. Opin. Food Sci. 2015, 1, 70–76. [Google Scholar] [CrossRef]
- Kumar, A.; Vishwakarma, H.S.; Singh, J.; Dwivedi, S.; Kumar, M. Microbial Pigments: Production and Their Applications in Various Industries. Int. J. Pharm. Chem. Biol. Sci. 2015, 5, 203–212. [Google Scholar]
- Tuli, H.S.; Chaudhary, P.; Beniwal, V.; Sharma, A.K. Microbial pigments as natural color sources: Current trends and future perspectives. J. Food Sci. Technol.-Mysore 2015, 52, 4669–4678. [Google Scholar] [CrossRef] [PubMed]
- Nigam, P.S.; Luke, J.S. Food additives: Production of microbial pigments and their antioxidant properties. Curr. Opin. Food Sci. 2016, 7, 93–100. [Google Scholar] [CrossRef]
- Dufosse, L.; Fouillaud, M.; Caro, Y.; Mapari, S.A.; Sutthiwong, N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotechnol. 2014, 26, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Venil, C.K.; Aruldass, C.A.; Dufosse, L.; Zakaria, Z.A.; Ahmad, W.A. Current Perspective on Bacterial Pigments: Emerging Sustainable Compounds with Coloring and Biological Properties for the Industry—An Incisive Evaluation. RSC Adv. 2014, 4, 39523–39529. [Google Scholar] [CrossRef]
- Venil, C.K.; Zakaria, Z.A.; Ahmad, W.A. Bacterial pigments and their applications. Process Biochem. 2013, 48, 1065–1079. [Google Scholar] [CrossRef]
- Falklöf, O.; Durbeej, B. Steric Effects Govern the Photoactivation of Phytochromes. ChemPhysChem 2016, 17, 954–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Wang, Y.; Sun, S.; Zhu, C.; Xu, W.; Park, Y.; Zhou, H. Mutant breeding of Serratia marcescens strain for enhancing prodigiosin production and application to textiles. Prep. Biochem. Biotechnol. 2013, 43, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Alihosseini, F.; Ju, K.S.; Lango, J.; Hammock, B.D.; Sun, G. Antibacterial Colorants: Characterization of Prodiginines and Their Applications on Textile Materials. Biotechnol. Prog. 2010, 24, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Choi, J. Dyeing properties of microbial prodiginine from Zooshikella rubidus for silk fabrics. Fibers Polym. 2015, 16, 1981–1987. [Google Scholar] [CrossRef]
- Chen, K.; Jia, J.; Zhao, Y.; Lv, K.; Wang, C. Transparent smart surface with pH-induced wettability transition between superhydrophobicity and underwater superoleophobicity. Mater. Des. 2017, 135, 69–76. [Google Scholar] [CrossRef]
- Fu, Y.; Jin, B.; Zhang, Q.; Zhan, X.; Chen, F. pH-Induced Switchable Superwettability of Efficient Antibacterial Fabrics for Durable Selective Oil/Water Separation. ACS Appl. Mater. Interfaces 2017, 9, 30161–30170. [Google Scholar] [CrossRef] [PubMed]
- Min, S.U.; Lee, H.I. pH-induced reversible formation of core-crosslinked star polymers. Macromol. Res. 2017, 25, 542–545. [Google Scholar]
- Yu, N.; Zhang, J.; Ma, W.; Tang, B. Synthesis and Properties of Organosilicon Micro/Nanocolorants. Silicon 2015, 9, 519–524. [Google Scholar] [CrossRef]
- Hu, Z.; Xue, M.; Zhang, Q.; Sheng, Q.; Liu, Y. Nanocolorants: A novel class of colorants, the preparation and performance characterization. Dyes Pigment. 2008, 76, 173–178. [Google Scholar] [CrossRef]
- Luby, Š.; Lubyová, M.; Šiffalovič, P.; Jergel, M.; Majková, E. A Brief History of Nanoscience and Foresight in Nanotechnology. Nato Sci. Peace Secur. 2015, 139, 63–86. [Google Scholar]
- Pagliara, S.; Dettmer, S.L.; Keyser, U.F. Channel-Facilitated Diffusion Boosted by Particle Binding at the Channel Entrance. Phys. Rev. Lett. 2014, 113, 048102. [Google Scholar] [CrossRef]
- Cama, J.; Chimerel, C.; Pagliara, S.; Javer, A.; Keyser, U.F. A label-free microfluidic assay to quantitatively study antibiotic diffusion through lipid membranes. Lab Chip 2014, 14, 2303–2308. [Google Scholar] [CrossRef] [Green Version]
- Koyanagi, T.; Leriche, G.; Onofrei, D.; Holland, G.P.; Mayer, M.; Yang, J. Cyclohexane Rings Reduce Membrane Permeability to Small Ions in Archaea-Inspired Tetraether Lipids. Angew. Chem.-Int. Ed. 2016, 55, 1890–1893. [Google Scholar] [CrossRef]
- Pagliara, S.; Schwall, C.; Keyser, U.F. Optimizing Diffusive Transport Through a Synthetic Membrane Channel. Adv. Mater. 2013, 25, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Altamura, E.; Milano, F.; Tangorra, R.R.; Trotta, M.; Omar, O.H.; Stano, P.; Mavelli, F. Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells. Proc. Natl. Acad. Sci. USA 2017, 114, 3837–3842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soniya, M.; Muthuraman, G. Comparative study between liquid–liquid extraction and bulk liquid membrane for the removal and recovery of methylene blue from wastewater. J. Ind. Eng. Chem. 2015, 30, 266–273. [Google Scholar] [CrossRef]
- Gaither, L.; Eide, D. Eukaryotic zinc transporters and their regulation. Biometals 2001, 14, 251–270. [Google Scholar] [CrossRef]
- Sun, D. Preparation of Planar Bilayer Lipid Membranes and Research on Zn2+ Transfer across BLM. Ph.D. Thesis, Shanghai University, Shanghai, China, 2005. [Google Scholar]
- Ren, Y.F.; Gong, J.X.; Fu, R.R.; Li, Z.; Yu, Z.C.; Lou, J.F.; Wang, F.B.; Zhang, J.F. Dyeing and functional properties of polyester fabric dyed with prodigiosins nanomicelles produced by microbial fermentation. J. Clean. Prod. 2017, 148, 375–385. [Google Scholar] [CrossRef]
- Livadaru, L.; Kovalenko, A. Fundamental mechanism of translocation across liquidlike membranes: Toward control over nanoparticle behavior. Nano Lett. 2006, 6, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Roiter, Y.; Ornatska, M.; Rammohan, A.R.; Balakrishnan, J.; Heine, D.R.; Minko, S. Interaction of nanoparticles with lipid membrane. Nano Lett. 2008, 8, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Obataya, I.; Nakamura, C.; Han, S.; Nakamura, N.; Miyake, J. Nanoscale Operation of a Living Cell Using an Atomic Force Microscope with a Nanoneedle. Nano Lett. 2005, 5, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Leroueil, P.R.; Berry, S.A.; Duthie, K.; Han, G.; Rotello, V.M.; McNerny, D.Q.; Baker, J.R.; Orr, B.G.; Holl, M.M.B. Wide Varieties of Cationic Nanoparticles Induce Defects in Supported Lipid Bilayers. Nano Lett. 2008, 8, 420–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.; Leroueil, P.R.; Janus, E.K.; Peters, J.L.; Kober, M.M.; Islam, M.T.; Orr, B.G.; Baker, J.R., Jr.; Banaszak Holl, M.M. Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability. Bioconj. Chem. 2006, 17, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Mecke, A.; Uppuluri, S.; Sassanella, T.M.; Lee, D.K.; Ramamoorthy, A.; Baker, J.R., Jr.; Orr, B.G.; Banaszak Holl, M.M. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem. Phys. Lipids 2004, 132, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Leroueil, P.R.; Hong, S.; Mecke, A.; Baker, J.R., Jr.; Orr, B.G.; Banaszak Holl, M.M. Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face? Acc. Chem. Res. 2007, 40, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Larson, R.G. Coarse-grained molecular dynamics studies of the concentration and size dependence of fifth- and seventh-generation PAMAM dendrimers on pore formation in DMPC bilayer. J. Phys. Chem. B 2008, 112, 7778–7784. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, V.V.; Balijepalli, S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett. 2007, 7, 3716–3722. [Google Scholar] [CrossRef]
- Verma, A.; Uzun, O.; Hu, Y.; Hu, Y.; Han, H.-S.; Watson, N.; Chen, S.; Irvine, D.J.; Stellacci, F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 2013, 12, 376. [Google Scholar] [CrossRef]
- Florence, A.T.; Siepmann, J. Modern Pharmaceutics; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Yang, K. Computer Simulations on the Interactions between Lipid Bilayer and Amphiphiles/Nanoparticles. Ph.D. Thesis, Nanjing University, Nanjing, China, 2009. [Google Scholar]
- Mahmoudi, M.; Meng, J.; Xue, X.; Liang, X.J.; Rahman, M.; Pfeiffer, C.; Hartmann, R.; Gil, P.R.; Pelaz, B.; Parak, W.J.; et al. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol. Adv. 2014, 32, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Asati, A.; Santra, S.; Kaittanis, C.; Perez, J.M. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 2010, 4, 5321–5331. [Google Scholar] [CrossRef] [PubMed]
- Ojeajiménez, I.; Garcíafernández, L.; Lorenzo, J.; Puntes, V.F. Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting. ACS Nano 2012, 6, 7692–7702. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, C.; Hartmann, R.; Zhang, F.; Parak, W.J.; Kissel, T.H.; Rivera Gil, P. Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J. Nanobiotechnol. 2012, 10, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Soenen, S.J.; Brisson, A.R.; Jonckheere, E.; Nuytten, N.; Tan, S.; Himmelreich, U.; De Cuyper, M. The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes. Biomaterials 2011, 32, 1748–1758. [Google Scholar] [CrossRef] [PubMed]
- Soenen, S.J.; Manshian, B.; Montenegro, J.M.; Amin, F.; Meermann, B.; Thiron, T.; Cornelissen, M.; Vanhaecke, F.; Doak, S.; Parak, W.J.; et al. Cytotoxic effects of gold nanoparticles: A multiparametric study. ACS Nano 2012, 6, 5767–5783. [Google Scholar] [CrossRef] [PubMed]
- Harper, S.L.; Carriere, J.L.; Miller, J.M.; Hutchison, J.E.; Maddux, B.L.; Tanguay, R.L. Systematic evaluation of nanomaterial toxicity: Utility of standardized materials and rapid assays. ACS Nano 2011, 5, 4688–4697. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.X.; Ren, Y.F.; Fu, R.R.; Li, Z.; Zhang, J.F. pH-Mediated Antibacterial Dyeing of Cotton with Prodigiosins Nanomicelles Produced by Microbial Fermentation. Polymers 2017, 9, 468. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, S.; Huang, J.; Mei, H. Improve Microorganism Cell Permeability for Whole-Cell Bioprocess: Methods and Strategies. China Biotechnol. 2014, 34, 125–131. [Google Scholar]
- Tang, W.; Jia, S. Effect of cell membrane permeability on yield of bacteria cellulose produced by acetobacter xylinum. Food Eng. 2017, 13–16. [Google Scholar]
- Lernia, I.D.; Schiraldi, C.; Generoso, M.; Rosa, M.D. Trehalose production at high temperature exploiting an immobilized cell bioreactor. Extremophiles 2002, 6, 341–347. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, J.; Liu, J.; Tan, X.; Li, Z.; Li, Q.; Zhang, J. Bio-Preparation and Regulation of Pyrrole Structure Nano-Pigment Based on Biomimetic Membrane. Nanomaterials 2019, 9, 114. https://doi.org/10.3390/nano9010114
Gong J, Liu J, Tan X, Li Z, Li Q, Zhang J. Bio-Preparation and Regulation of Pyrrole Structure Nano-Pigment Based on Biomimetic Membrane. Nanomaterials. 2019; 9(1):114. https://doi.org/10.3390/nano9010114
Chicago/Turabian StyleGong, Jixian, Jiayin Liu, Xueqiang Tan, Zheng Li, Qiujin Li, and Jianfei Zhang. 2019. "Bio-Preparation and Regulation of Pyrrole Structure Nano-Pigment Based on Biomimetic Membrane" Nanomaterials 9, no. 1: 114. https://doi.org/10.3390/nano9010114
APA StyleGong, J., Liu, J., Tan, X., Li, Z., Li, Q., & Zhang, J. (2019). Bio-Preparation and Regulation of Pyrrole Structure Nano-Pigment Based on Biomimetic Membrane. Nanomaterials, 9(1), 114. https://doi.org/10.3390/nano9010114