Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing
Abstract
:1. Introduction
2. Modification Methodologies
2.1. Ink Mixing Method
2.2. Drop Casting Method
2.3. Methods based on Electrochemical Deposition
2.3.1. Electrochemical Methods based on Potentiostatic Techniques
2.3.2. Methods based on the Galvanostatic Technique
2.4. Other Methods for NPs Modification
3. Roles and Applications of Metal Nanoparticles
3.1. As catalyst in Enzymatic and Non-Enzymatic Devices
3.1.1. Hydrogen Peroxide Monitoring
3.1.2. Carbohydrate Monitoring
NPs | Modification | Analyte | Detection | Performance | Sample | Year | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
Tech. | Parameters | Tech. | Parameters | Linear range | LOD | |||||
Ag | DC | 12 μL AgNP-rGO composite, RT | H2O2 | AD | −0.3 V | 0.5 μM to 12 mM | 0.21 μM | Contact lens care solution | 2016 | [26] |
PE | CA, −1.2 V, 10 s | Sulfite | AD | +0.4 V | 1.96 to 16.66 mM | 1.99 mM | Beverages | 2013 | [31] | |
PE | Step 1: CA, 0.13 V, 5 ms Step 2: CA, 0.24 V, 25 s | Metronidazole | DPV | Eamp: −0.1 V 0.075 Vs−1 | 3.1 to 310 μM | 0.4 μM | Serum, Urine, and Tablets | 2012 | [32] | |
PE | CA, −1.2 V, 120 s | Lamotrigine | DPCSV (CA+DPV) | A: −0.90, 147 s | 0.33 to 1.50 μM | 0.372 μM | Pharmaceuticals | 2007 | [33] | |
PE | CA, −1.2 V, 20 s | Chloride Bromide Iodide | LSV | −0.2 to 0.6 V, 0.01 V s−1 | 3 μM to 100 μM 5 μM to 90 μM 5 μM to 80 μM | 3 μM 5 μM 5 μM | Synthetic sweat | 2018 | [34] | |
Au | IM | Ionophore based ink | Trazodone | OCP | - | 10 μM to 10 mM | 6.8 μM | Pharmaceuticals | 2018 | [15] |
DC | - | Carbofuran | DPCSV (CA+DPV) | A: 0 V, 60 s DPV: −0.2 to 0.35 V, Ep: 0.15 V, tp: 0.3 s, Estep: 0.01 V | 1–250 µM | 0.22 µM | Food | 2017 | [21] | |
DC | 1.8 µL AuNPs Graphene composite, RT, 12 h | H2O2 Glucose | AD | −0.2V | 0.2 to 4.2 mM 2 to 10mM | − 180 µM | Blood | 2010 | [28] | |
PE | CA, +0.18 V, 10 s | Sulfite | AD | +0.3 V | 9.8 to 83.33 μM | 9.79 μM | Beverages | 2013 | [31] | |
PE | CA, +0.18 V, 50 s | Ascorbic acid | DPV | −0.2 to 0.8 V, 0.1 V s−1 Ep: 0.012 V, tp: 0.07 s, Estep: 0.025 V | 1.9 to 16.6 μM | 0.99 μM | Serum | 2017 | [35] | |
HEA-GE | Step 1: CP, 3 Acm−2, 100 s, RT Step 2: CV, 10 cycles, −0.7 to 0.4 V, 0.05 Vs−1 | Glucose | AD | −0.2 V | 1.5 and 16 mM | 25 µM | Serum | 2018 | [36] | |
PE | CA, −0.2 V, 150 s | Glycated hemoglobin | CV | 0 to −0.6 V, 0.1 Vs−1 Calibrated at −0.45 V | 2 to 20% | 0.65% | Serum | 2019 | [58] | |
PE | CV, 5 cycles +0.4 to −0.6 V, 0.05 Vs−1 | Sulfide | DPCSV (CA+DPV) | A, +0.4 V, 60 s DPV: +0.4 to −0.9 V, Ep: 0.008 V, tp: 0.05 s, Estep: 0.1 V | 0.05 to 1.5 μM | 0,2 uM | Tap water | 2016 | [59] | |
GE | CP, −100 μA, 6000 s | Glucose | CV | −0.3 to +0.5 V, 0.1 Vs−1 | 0.01 to 5 mM | 6 µM | Beverages | 2017 | [64] | |
Bi | PE | CA, −1 V, 4 min | Phenol | CA | +0.8 V, 150 s | 5 to 100 µM | 480 nM | Wastewater | 2010 | [38] |
PE | CV, 20 cycles −0.6 to 0.3 V | H2O2 | CV | −0.3 to −1.3 V | 100 µM to 5 mM | 57 µM | Cosmetic | 2011 | [39] | |
SD | 1.2 kV, 20 cycles | Riboflavin | SWV | 0 to −0.8 V, Freq: 50 Hz, Eamp: 0.05 V, Estep: 0.0015 V | 1 to 100 nM | 0.7 nM | Multivitamin | 2015 | [67] | |
Cu | GE | CP, −225 μA, 60 s | Glucose Fructose Arabinose Galactose Mannose Xylose | CA | +0.65 V, 100 s | 1 μM to 10 mΜ | 0.57 μM 0.61 μM 1.0 μM 0.89 μM 1.3 μM 1.04 μM | Honey and beverages | 2017 | [42] |
IM | Ink with 50% of Cu(OH)2 nanorods | Ascorbic acid | CA | 0 V, 25 s | 0.0125 to 10 mΜ | 6 mM | Tablets Urine | 2017 | [89] | |
Ir | IM | Ink with 0,9:5 of Ir-C powder (5 % Ir) | Triglyceride | CA | +0.15 V, 30 s | Up to 10 mM | - | Serum | 2008 | [11] |
Ni | DC | 15 μL (10 g L−1) Activation: A, −1.5 V, 600 s in NaOH 0.1 M | Glucose Fructose Mix 1:1 | AD, FIA | +0.7 V, 2 mL min−1 | 0.05 to 1 mM | 0.06 mM 0.04 mM 0.04 mM | Honey | 2012 | [24] |
HEA-GE | CP, 0.1 A, 30 s | Glucose | CA | +0.5 V, 100 s | 0.5 μM to 4 mM | 0.07 μM | Blood | 2013 | [45] | |
PE | CV, 40 cycles, 0.05 Vs−1, 0 to −1.5 V Activation: CV, 40 cycles, 0.1 Vs−1, 0 to +0.8 V in 0.1 M NaOH | Glucose | AD | +0.6 V | 0.2 to 9 mM | 4.1 μM | Urine | 2013 | [46] | |
GE | CP, −25 μA, 60 s Activation: CV, 50 cycles, 0.1 Vs−1, +0.2 to +0.7 V in 0.1 M NaOH | Glucose Fructose | CA | +0.6 V, 120 s | 25 to 1000 μM | Between 8 μM and 20 μM | Food | 2016 | [47] | |
Pd | PE | CV, 10 cycles, 0.05 Vs−1 −0.25 to +1.2 V | Dopamine | DPV | −0.1 to +0.6 V | 0.35 to 135.35 µM | 0.056 µM | Injection | 2015 | [48] |
PE | CV, 20 cycles, 0.02 Vs−1 +1.2 to −0.25 V | Hydrazine | AD | −0.05 V | 0.05 to 1415 µM | 4 nM | Drainage water | 2016 | [49] | |
PE | CA, −0.6 V, 180 s | Dissolved O2 | CV | 0.5 to −0.3 V, 0.02 V s−1 | Up to 250 µM | - | Ground and tap water | 2006 | [50] | |
Pt | DC | 12 μL, RT, 24 h | H2O2 | AD | −0.3 V | 1 µM to 10 mM | 0.43 µM | Contact lens care solution | 2016 | [17] |
DC | 20 μL, dried at 80 ˚C, 10 min | H2O2 | AD | 0.345 V | Up to 0.1 mM | 6.6 µM | Whitening Strips | 2015 | [18] | |
DC | 10 μL (2 g L−1), dried at 40 ˚C, 180 min | Ethanol | LSV | −1 to 1 V, 0.05 V s−1 | 15 to 102 mM | 15 mM | Beverages | 2017 | [19] | |
DC | 0.5 µL PtNP-MWCNT composite, RT | H2O2 | CA | +0.3 V, 60 s | 10 to 100 µM | 10 µM | Green tea | 2018 | [25] | |
PE | CA, −0.5 V, 300 s | H2O2 | CA | −0.7 V, 30 s | 500 µM to 20 mM | 32.8 µM | Serum | 2017 | [51] | |
PE | CA, −0.4 V, 900 s | H2O2 | AD | +0.7 V | 6 to 215 µM | 7.6 µM | Hair lightener Antiseptic Plant extract | 2017 | [53] | |
PE | CA, 12.4 V, 12 min | H2O2 | AD | +0.7 V | Up to 6.5 mM | 80 µM | Hair lightener | 2018 | [56] | |
Rh | DC | 15 μL, RT | H2O2 | AD | 0 V | 5 to 600 μM | 2 μM | Tea extracts | 2015 | [20] |
PE | CA, −0.25 V, 480 s | Bromide | CSV (CA+LSV) | A: +1.25 V, 20 s LSV: +1 to −0.25 | Up to 40 mM | 39 μM | Seawater Pharmaceuticals | 2019 | [57] |
NPs | Modification | Analyte | Detection | Performance | Sample | Year | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
Tech. | Parameters | Tech. | Parameters | Linear range | LOD | |||||
Cu-Ti | DC | 4 μL dried at RT | Glucose | CA | +0.5 V, 60 s | 25 μM to 2 mM | 7 μM | Honey Plasma | 2017 | [29] |
Pt-Ag | PE-GD | Step 1: CA, −0.3 V, 900 s Step 2: 0.2 mM H2PtCl6 at pH 3.4 with 0.2 mM AA for 2.5 hours | H2O2 | AD | +0.7 V | 2.2 to 67 µM | 0.34 µM | Antiseptic and Laundry boosters | 2019 | [30] |
Pt-Pd | PE | Step 1: CP, 0.4 V, 20 s Step 2: 50 cycles of: CP, 0.5 V, 0.2 s CP, 0.4 V, 10 s | H2O2 Glucose | AD | −0.4 V | 0.005 to 6 mM Up to 16 mM | 0.87 μM 10 μM | Simulative blood | 2012 | [54] |
Au-Ag | PE | CV, 5 cycles, +0.4 to −0.6 V 0.05 Vs−1 | Sulfide | LSCSV (CA+LSV) | A, +0.2 V, 30 s LSV, +0.2 to −0.9 V 0.05 Vs−1 | 0.5 to 12.5 μM | 0,2 μM | Water | 2016 | [59] |
Cu-Pd | PE | Step 1, Cu: CA, −0.7 V, 300 s Step 2, Pd: CA, −0.6 V, 180 s | Hydrazine | AD, FIA | +0.2 V 0.5 mL min−1 | 2 to 100 µM | 270 nM | Cigarette tobacco | 2005 | [61] |
3.2. As sensing Phase for Other Analytes
3.3. As platforms for Sensing Phases
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chu, Z.; Peng, J.; Jin, W. Advanced nanomaterial inks for screen-printed chemical sensors. Sens. Actuatorsb Chem. 2017, 243, 919–926. [Google Scholar] [CrossRef]
- Hernández-Santos, D.; González-García, M.B.; García, A.C. Metal-nanoparticles based electroanalysis. Electroanalysis 2002, 14, 1225–1235. [Google Scholar] [CrossRef]
- Serrano, N.; Alberich, A.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Coating methods, modifiers and applications of bismuth screen-printed electrodes. Trac. Trends Anal. Chem. 2013, 46, 15–29. [Google Scholar] [CrossRef]
- Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Antimony- based electrodes for analytical determinations. Trac. Trends Anal. Chem. 2016, 77, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Jovanovski, V.; Hočevar, S.B.; Ogorevc, B. Bismuth electrodes in contemporary electroanalysis. Curr. Opin. Electrochem. 2017, 3, 114–122. [Google Scholar] [CrossRef]
- Economou, A. Screen-printed electrodes modified with “green” metals for electrochemical stripping analysis of toxic elements. Sensors 2018, 18, 1032. [Google Scholar] [CrossRef] [Green Version]
- Foster, C.W.; Kadara, R.O.; Banks, C.E. Fundamentals of Screen-Printing Electrochemical Architectures; Springer: Cham, Switzerland, 2016; ISBN 9783319251912. [Google Scholar]
- Cardosi, M.F.; Birch, S.W. Screen printed glucose electrodes based on platinised carbon particles and glucose oxidase. Anal. Chim. Acta 1993, 276, 69–74. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q. Screen-printed glucose strip based on palladium-dispersed carbon ink. Analyst 1994, 119, 1849–1851. [Google Scholar] [CrossRef]
- Luo, Y.C.; Do, J.S.; Liu, C.C. An amperometric uric acid biosensor based on modified Ir-C electrode. Biosens. Bioelectron. 2006, 22, 482–488. [Google Scholar] [CrossRef]
- Liao, W.Y.; Liu, C.C.; Chou, T.C. Detection of triglyceride using an iridium nano-particle catalyst based amperometric biosensor. Analyst 2008, 133, 1757–1763. [Google Scholar] [CrossRef]
- Metters, J.P.; Tan, F.; Banks, C.E. Screen-printed palladium electroanalytical sensors. J. Solid State Electrochem. 2013, 17, 1553–1562. [Google Scholar] [CrossRef]
- Jeon, W.Y.; Choi, Y.B.; Kim, H.H. Disposable non-enzymatic glucose sensors using screen-printed nickel/carbon composites on indium tin oxide electrodes. Sensors 2015, 15, 31083–31091. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Layani, M.; Cai, X.; Zhao, H.; Magdassi, S.; Lan, M. An inkjet printed Ag electrode fabricated on plastic substrate with a chemical sintering approach for the electrochemical sensing of hydrogen peroxide. Sens. Actuatorsb Chem. 2018, 256, 938–945. [Google Scholar] [CrossRef]
- Salama, F.M.; Attia, K.A.; Said, R.A.; El-Olemy, A.; Abdel-Raoof, A.M. Disposable gold nanoparticle functionalized and bare screen-printed electrodes for potentiometric determination of trazodone hydrochloride in pure form and pharmaceutical preparations. RSC Adv. 2018, 8, 11517–11527. [Google Scholar] [CrossRef] [Green Version]
- Mayorga-Martinez, C.C.; Cadevall, M.; Guix, M.; Ros, J.; Merkoçi, A. Bismuth nanoparticles for phenolic compounds biosensing application. Biosens. Bioelectron. 2013, 40, 57–62. [Google Scholar] [CrossRef]
- Yang, X.; Ouyang, Y.; Wu, F.; Hu, Y.; Zhang, H.; Wu, Z. In situ & controlled preparation of platinum nanoparticles dopping into graphene sheets@cerium oxide nanocomposites sensitized screen printed electrode for nonenzymatic electrochemical sensing of hydrogen peroxide. J. Electroanal. Chem. 2016, 777, 85–91. [Google Scholar] [CrossRef]
- Popa, A.; Abenojar, E.C.; Vianna, A.; Buenviaje, C.Y.A.; Yang, J.; Pascual, C.B.; Samia, A.C.S. Fabrication of Metal Nanoparticle-Modified Screen Printed Carbon Electrodes for the Evaluation of Hydrogen Peroxide Content in Teeth Whitening Strips. J. Chem. Educ. 2015, 92, 1913–1917. [Google Scholar] [CrossRef]
- Pereira Silva Neves, M.M.; González-García, M.B.; Bobes-Limenes, P.; Pérez-Junquera, A.; Hernández-Santos, D.; Vidal-Iglesias, F.J.; Solla-Gullón, J.; Fanjul-Bolado, P. A non-enzymatic ethanol sensor based on a nanostructured catalytic disposable electrode. Anal. Methods 2017, 9, 5108–5114. [Google Scholar] [CrossRef]
- Gatselou, V.A.; Giokas, D.L.; Vlessidis, A.G.; Prodromidis, M.I. Rhodium nanoparticle-modified screen-printed graphite electrodes for the determination of hydrogen peroxide in tea extracts in the presence of oxygen. Talanta 2015, 134, 482–487. [Google Scholar] [CrossRef]
- Jirasirichote, A.; Punrat, E.; Suea-Ngam, A.; Chailapakul, O.; Chuanuwatanakul, S. Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta 2017, 175, 331–337. [Google Scholar] [CrossRef]
- Shamkhalichenar, H.; Choi, J.W. An inkjet-printed non-enzymatic hydrogen peroxide sensor on paper. J. Electrochem. Soc. 2017, 164, B3101–B3106. [Google Scholar] [CrossRef]
- Shabalina, A.V.; Svetlichnyi, V.A.; Ryzhinskaya, K.A.; Lapin, I.N. Copper nanoparticles for ascorbic acid sensing in water on carbon screen-printed electrodes. Anal. Sci. 2017, 33, 1415–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, M.; Escarpa, A. A class-selective and reliable electrochemical monosaccharide index in honeys, as determined using nickel and nickel-copper nanowires. Anal. Bioanal. Chem. 2012, 402, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.; Wu, K.; Hsu, F.; Lee, C. ScienceDirect Pt-MWCNT modified carbon electrode strip for rapid and quantitative detection of H2O2 in food. J. Food Drug Anal. 2017, 26, 662–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Z.; Yang, X.; Wu, F.; Wu, W.; Wu, F. Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium(IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchim. Acta 2016, 183, 2799–2806. [Google Scholar] [CrossRef]
- Hjiri, M.; Dhahri, R.; Ben Mansour, N.; El Mir, L.; Bonyani, M.; Mirzaei, A.; Leonardi, S.G.; Neri, G. Electrochemical properties of a novel Ni-doped nanoporous carbon. Mater. Lett. 2015, 160, 452–455. [Google Scholar] [CrossRef]
- Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens. Bioelectron. 2010, 25, 1070–1074. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; Carrasco-Rodríguez, J.; Fierro, J.L.G.; García Alonso, F.J.; Costa-García, A. Copper-modified titanium phosphate nanoparticles as electrocatalyst for glucose detection. Electrochim. Acta 2017, 229, 102–111. [Google Scholar] [CrossRef]
- Gómez-Monedero, B.; González-Sánchez, M.I.; Iniesta, J.; Agrisuelas, J.; Valero, E. Design and characterization of effective Ag, Pt and agpt nanoparticles to H2O2 electrosensing from scrapped printed electrodes. Sensors 2019, 19, 1685. [Google Scholar] [CrossRef] [Green Version]
- Molinero-Abad, B.; Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, M.J. Amperometric determination of sulfite using screen-printed electrodes modified with metallic nanoparticles. Microchim. Acta 2013, 180, 1351–1355. [Google Scholar] [CrossRef]
- Sadeghi, S.; Hemmati, M.; Garmroodi, A. Preparation of Ag-Nanoparticles/Ionic-Liquid Modified Screen-Printed Electrode and Its Application in the Determination of Metronidazole. Electroanalysis 2013, 25, 316–322. [Google Scholar] [CrossRef]
- Burgoa Calvo, M.E.; Domínguez Renedo, O.; Arcos Martínez, M.J. Determination of lamotrigine by adsorptive stripping voltammetry using silver nanoparticle-modified carbon screen-printed electrodes. Talanta 2007, 74, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Bujes-Garrido, J.; Izquierdo-Bote, D.; Heras, A.; Colina, A.; Arcos-Martínez, M.J. Determination of halides using Ag nanoparticles-modified disposable electrodes. A first approach to a wearable sensor for quantification of chloride ions. Anal. Chim. Acta 2018, 1012, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Saldaña-Botín, A.; Arcos-Martínez, M.J. Determination of ascorbic acid in serum samples by screen-printed carbon electrodes modified with gold nanoparticles. Talanta 2017, 174, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Viet, N.X.; Chikae, M.; Ukita, Y.; Takamura, Y. Enzyme-free glucose sensor based on micro-nano Dualporous gold-modified screen-printed carbon electrode. Int. J. Electrochem. Sci. 2018, 13, 8633–8644. [Google Scholar] [CrossRef]
- Chikae, M.; Idegami, K.; Kerman, K.; Nagatani, N.; Ishikawa, M.; Takamura, Y.; Tamiya, E. Direct fabrication of catalytic metal nanoparticles onto the surface of a screen-printed carbon electrode. Electrochem. Commun. 2006, 8, 1375–1380. [Google Scholar] [CrossRef]
- Merkoçi, A.; Anik, U.; Çevik, S.; Çubukçu, M.; Guixa, M. Bismuth film combined with screen-printed electrode as biosensing platform for phenol detection. Electroanalysis 2010, 22, 1429–1436. [Google Scholar] [CrossRef]
- Chiu, M.H.; Kumar, A.S.; Sornambikai, S.; Chen, P.Y.; Shih, Y.; Zen, J.M. Cosmetic hydrogen peroxide detection using nano bismuth species deposited built-in three-in-one screen-printed silver electrode. Int. J. Electrochem. Sci. 2011, 6, 2352–2365. [Google Scholar]
- Lien, C.H.; Chen, J.C.; Hu, C.C.; Wong, D.S.H. Cathodic deposition of binary nickel-cobalt hydroxide for non-enzymatic glucose sensing. J. Taiwan Inst. Chem. Eng. 2014, 45, 846–851. [Google Scholar] [CrossRef]
- Huang, T.K.; Lin, K.W.; Tung, S.P.; Cheng, T.M.; Chang, I.C.; Hsieh, Y.Z.; Lee, C.Y.; Chiu, H.T. Glucose sensing by electrochemically grown copper nanobelt electrode. J. Electroanal. Chem. 2009, 636, 123–127. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Martín-Yerga, D.; Costa-García, A. Galvanostatic electrodeposition of copper nanoparticles on screen-printed carbon electrodes and their application for reducing sugars determination. Talanta 2017, 175, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Peng, J.; Wu, C.C. Geometric effect of copper nanoparticles electrodeposited on screen-printed carbon electrodes on the detection of α-, β- And γ-amino acids. Sens. Actuatorsb Chem. 2013, 186, 270–277. [Google Scholar] [CrossRef]
- Zen, J.M.; Hsu, C.T.; Kumar, A.S.; Lyuu, H.J.; Lin, K.Y. Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst 2004, 129, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Lan, M.; Zhao, H.; Chen, C. Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal. Chem. 2013, 85, 3561–3569. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yu, J.H.; Rudi Strickler, J.; Chang, W.J.; Gunasekaran, S. Nickel nanoparticle-chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens. Bioelectron. 2013, 47, 530–538. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Martín-Yerga, D.; Costa-García, A. Electrodeposition of nickel nanoflowers on screen-printed electrodes and their application to non-enzymatic determination of sugars. RSC Adv. 2016, 6, 83748–83757. [Google Scholar] [CrossRef]
- Palanisamy, S.; Thirumalraj, B.; Chen, S.M.; Ali, M.A.; Al-Hemaid, F.M.A. Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine. J. Colloid Interface Sci. 2015, 448, 251–256. [Google Scholar] [CrossRef]
- Karuppiah, C.; Velmurugan, M.; Chen, S.M.; Devasenathipathy, R.; Karthik, R.; Wang, S.F. Electrochemical Activation of Graphite Nanosheets Decorated with Palladium Nanoparticles for High Performance Amperometric Hydrazine Sensor. Electroanalysis 2016, 28, 808–816. [Google Scholar] [CrossRef]
- Yang, C.C.; Kumar, A.S.; Zen, J.M. Electrocatalytic reduction and determination of dissolved oxygen at a preanodized screen-printed carbon electrode modified with palladium nanoparticles. Electroanalysis 2006, 18, 64–69. [Google Scholar] [CrossRef]
- Fu, L.; Wu, K.; Ji, J.; Zhang, J.; Guo, X. A highly sensitive disposable glucose biosensor based on platinum nanoflowers decorated screen printed carbon electrode. In Proceedings of the IEEE Sensors 2017, Glasgow, Scotland, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Chou, C.; Chang, J.; Zen, J. Sensors and Actuators B: Chemical Effective analysis of gaseous formaldehyde based on a platinum-deposited screen-printed edge band ultramicroelectrode coated with Nafion as solid polymer electrolyte. Sens. Actuators B. Chem. 2010, 147, 669–675. [Google Scholar] [CrossRef]
- Agrisuelas, J.; González-Sánchez, M.I.; Valero, E. Hydrogen peroxide sensor based on in situ grown Pt nanoparticles from waste screen-printed electrodes. Sens. Actuatorsb Chem. 2017, 249, 499–505. [Google Scholar] [CrossRef]
- Niu, X.; Chen, C.; Zhao, H.; Chai, Y.; Lan, M. Biosensors and Bioelectronics Novel snowflake-like Pt–Pd bimetallic clusters on screen-printed gold nanofilm electrode for H2O2 and glucose sensing. Biosens. Bioelectron. 2012, 36, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Zhao, H.; Chen, C.; Lan, M. Electrochimica Acta Platinum nanoparticle-decorated carbon nanotube clusters on screen-printed gold nanofilm electrode for enhanced electrocatalytic reduction of hydrogen peroxide. Electrochim. Acta 2012, 65, 97–103. [Google Scholar] [CrossRef]
- González-Sánchez, M.I.; Gómez-Monedero, B.; Agrisuelas, J.; Valero, E. Recycling Metals from Spent Screen-Printed Electrodes while Learning the Fundamentals of Electrochemical Sensing. J. Chem. Educ. 2018, 95, 847–851. [Google Scholar] [CrossRef]
- Cunha-Silva, H.; Arcos-Martinez, M.J. A disposable rhodium nanoparticle-modified screen-printed sensor for direct determination of bromide anions. Sens. Actuatorsb Chem. 2019, 282, 603–608. [Google Scholar] [CrossRef]
- Wang, X.; Su, J.; Zeng, D.; Liu, G.; Liu, L.; Xu, Y.; Wang, C.; Liu, X.; Wang, L.; Mi, X. Gold nano-flowers (Au NFs) modified screen-printed carbon electrode electrochemical biosensor for label-free and quantitative detection of glycated hemoglobin. Talanta 2019, 201, 119–125. [Google Scholar] [CrossRef]
- Chen, Y.H.; Kirankumar, R.; Kao, C.L.; Chen, P.Y. Electrodeposited Ag, Au, and AuAg nanoparticles on graphene oxide-modified screen-printed carbon electrodes for the voltammetric determination of free sulfide in alkaline solutions. Electrochim. Acta. 2016, 205, 124–131. [Google Scholar] [CrossRef]
- Rick, J.; Tsai, M.C.; Hwang, B.J. Biosensors incorporating bimetallic nanoparticles. Nanomaterials 2015, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.C.; Kumar, A.S.; Kuo, M.C.; Chien, S.H.; Zen, J.M. Copper-palladium alloy nanoparticle plated electrodes for the electrocatalytic determination of hydrazine. Anal. Chim. Acta 2005, 554, 66–73. [Google Scholar] [CrossRef]
- Choudhry, N.A.; Kampouris, D.K.; Kadara, R.O.; Jenkinson, N.; Banks, C.E. Next generation screen printed electrochemical platforms: Non-enzymatic sensing of carbohydrates using copper(ii) oxide screen printed electrodes. Anal. Methods 2009, 1, 183–187. [Google Scholar] [CrossRef]
- Martínez-Paredes, G.; González-García, M.B.; Costa-García, A. In situ electrochemical generation of gold nanostructured screen-printed carbon electrodes. Application to the detection of lead underpotential deposition. Electrochim. Acta 2009, 54, 4801–4808. [Google Scholar] [CrossRef]
- Núnez-Bajo, E.; Blanco-López, M.C.; Costa-García, A.; Fernández-Abedul, M.T. In situ gold-nanoparticle electrogeneration on gold films deposited on paper for non-enzymatic electrochemical determination of glucose. Talanta 2018, 178, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Espro, C.; Donato, N.; Galvagno, S.; Aloisio, D.; Leonardi, S.G.; Neri, G. CuO nanowires-based electrodes for glucose sensors. Chem. Eng. Trans. 2014, 41, 415–420. [Google Scholar] [CrossRef]
- Yang, J.; Kwak, T.-J.; Zhang, X.; McClain, R.; Chang, W.J.; Gunasekaran, S. Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors. J. Vis. Exp. 2016, e53339. [Google Scholar] [CrossRef]
- Riman, D.; Avgeropoulos, A.; Hrbac, J.; Prodromidis, M.I. Electrochimica Acta Sparked-bismuth oxide screen-printed electrodes for the determination of ribo fl avin in the sub-nanomolar range in non-deoxygenated solutions. Electrochim. Acta 2015, 165, 410–415. [Google Scholar] [CrossRef]
- Niu, P.; Fernández-Sánchez, C.; Gich, M.; Navarro-Hernández, C.; Fanjul-Bolado, P.; Roig, A. Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions. Microchim. Acta 2016, 183, 617–623. [Google Scholar] [CrossRef]
- Barton, J.; García, M.B.G.; Santos, D.H.; Fanjul-Bolado, P.; Ribotti, A.; McCaul, M.; Diamond, D.; Magni, P. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim. Acta 2016, 183, 503–517. [Google Scholar] [CrossRef]
- Waryo, T.; Kotzian, P.; Begić, S.; Bradizlova, P.; Beyene, N.; Baker, P.; Kgarebe, B.; Turkušić, E.; Iwuoha, E.; Vytřas, K.; et al. Amperometric Hydrogen Peroxide Sensors with Multivalent Metal Oxide-Modified Electrodes for Biomedical Analysis. In Proceedings of the 13th International Conference on Biomedical Engineering, Singapore, 3–6 December 2008; pp. 829–833. [Google Scholar]
- Katsounaros, I.; Schneider, W.B.; Meier, J.C.; Benedikt, U.; Biedermann, P.U.; Auer, A.A.; Mayrhofer, K.J.J. Hydrogen peroxide electrochemistry on platinum: Towards understanding the oxygen reduction reaction mechanism. Phys. Chem. Chem. Phys. 2012, 14, 7384–7391. [Google Scholar] [CrossRef]
- Dhara, K. Recent advances in electrochemical nonenzymatic hydrogen peroxide sensors based on nanomaterials: A review. J. Mater. Sci. 2019, 54, 12319–12357. [Google Scholar] [CrossRef]
- García-Cruz, L.; Montiel, V.; Solla-Gullón, J. Shape-controlled metal nanoparticles for electrocatalytic applications. Phys. Sci. Rev. 2018, 4, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Tao, F.F.; Tang, Y.; Li, Y.; Yu, J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765. [Google Scholar] [CrossRef] [PubMed]
- Leong, G.J.; Schulze, M.C.; Strand, M.B.; Maloney, D.; Frisco, S.L.; Dinh, H.N.; Pivovar, B.; Richards, R.M. Shape-directed platinum nanoparticle synthesis: Nanoscale design of novel catalysts. Appl. Organomet. Chem. 2014, 28, 1–17. [Google Scholar] [CrossRef]
- Lezi, N.; Vysko, V.; Economou, A. Electroanalysis of Organic Compounds at Bismuth Electrodes: A Short Review. Sens. Electroanal. 2012, 7, 71–78. [Google Scholar]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2018, 229, 206–217. [Google Scholar] [CrossRef]
- George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: A review. Microchim. Acta 2018, 185. [Google Scholar] [CrossRef]
- Sun, C.L.; Cheng, W.L.; Hsu, T.K.; Chang, C.W.; Chang, J.L.; Zen, J.M. Ultrasensitive and highly stable nonenzymatic glucose sensor by a CuO/graphene-modified screen-printed carbon electrode integrated with flow-injection analysis. Electrochem. Commun. 2013, 30, 91–94. [Google Scholar] [CrossRef]
- Leonardi, S.G.; Marini, S.; Espro, C.; Bonavita, A.; Galvagno, S.; Neri, G. In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. Microchim. Acta 2017, 184, 2375–2385. [Google Scholar] [CrossRef]
- Hallam, P.M.; Kampouris, D.K.; Kadara, R.O.; Jenkinson, N.; Banks, C.E. Nickel oxide screen printed electrodes for the sensing of hydroxide ions in aqueous solutions. Anal. Methods 2010, 2, 1152–1155. [Google Scholar] [CrossRef]
- Beyene, N.W.; Kotzian, P.; Schachl, K.; Alemu, H.; Turkušić, E.; Čopra, A.; Moderegger, H.; Švancara, I.; Vytřas, K.; Kalcher, K. (Bio)sensors based on manganese dioxide-modified carbon substrates: Retrospections, further improvements and applications. Talanta 2004, 64, 1151–1159. [Google Scholar] [CrossRef]
- Kotzian, P.; Brázdilová, P.; Kalcher, K.; Vytřas, K. Determination of hydrogen peroxide, glucose and hypoxanthine using (bio)sensors based on ruthenium dioxide-modified screen-printed electrodes. Anal. Lett. 2005, 38, 1099–1113. [Google Scholar] [CrossRef]
- Kotzian, P.; Brázdilová, P.; Řezková, S.; Kalcher, K.; Vytřas, K. Amperometric glucose biosensor based on rhodium dioxide-modified carbon ink. Electroanalysis 2006, 18, 1499–1504. [Google Scholar] [CrossRef]
- Kotzian, P.; Brázdilová, P.; Kalcher, K.; Handlíř, K.; Vytřas, K. Oxides of platinum metal group as potential catalysts in carbonaceous amperometric biosensors based on oxidases. Sens. Actuatorsb. Chem. 2007, 124, 297–302. [Google Scholar] [CrossRef]
- Ahmad, R.; Vaseem, M.; Tripathy, N.; Hahn, Y.-B. Wide Linear-Range Detecting Nonenzymatic Glucose Biosensor Based on CuO Nanoparticles Inkjet-Printed on Electrodes. Anal. Chem. 2013, 85, 10448–10454. [Google Scholar] [CrossRef]
- Kovalyk, A.; Tananaiko, O.; Borets, A.; Etienne, M.; Walcarius, A. Voltammetric and microscopic characteristics of MnO2 and silica-MnO2hybrid films electrodeposited on the surface of planar electrodes. Electrochim. Acta. 2019, 306, 680–687. [Google Scholar] [CrossRef]
- Bollella, P.; Fusco, G.; Stevar, D.; Gorton, L.; Ludwig, R.; Ma, S.; Boer, H.; Koivula, A.; Tortolini, C.; Favero, G.; et al. A Glucose/Oxygen Enzymatic Fuel Cell based on Gold Nanoparticles modified Graphene Screen-Printed Electrode. Proof-of-Concept in Human Saliva. Sens. Actuatorsb Chem. 2018, 256, 921–930. [Google Scholar] [CrossRef]
- Raveendran, J.; Krishnan, R.G.; Nair, B.G.; Satheesh Babu, T.G. Voltammetric determination of ascorbic acid by using a disposable screen printed electrode modified with Cu(OH)2nanorods. Microchim. Acta. 2017, 184, 3573–3579. [Google Scholar] [CrossRef]
- Hendawy, H.A.M.; Eldin, G.M.G.; Fekry, A.M. A Zirconium Oxide Nanoparticle Modified Screen-printed Electrode for Anodic Stripping Determination of Daclatasvir Dihydrochloride. Electroanalysis 2019, 31, 858–866. [Google Scholar] [CrossRef]
- Rezaei, R.; Foroughi, M.M.; Beitollahi, H.; Tajik, S.; Jahani, S. Synthesis of Lanthanium-doped ZnO Nanoflowers: Supported on Graphite Screen Printed Electrode for Selective and Sensitive Detection of Hydrochlorothiazide. Int. J. Electrochem. Sci. 2019, 14, 2038–2048. [Google Scholar] [CrossRef]
- Neves, M.M.P.S.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Screen-Printed Electrochemical 96-Well Plate: A High-Throughput Platform for Multiple Analytical Applications. Electroanalysis 2014, 26, 2764–2772. [Google Scholar] [CrossRef]
- Xiao, T.; Huang, J.; Wang, D.; Meng, T.; Yang, X. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020, 206, 120210. [Google Scholar] [CrossRef]
- Pezzato, C.; Maiti, S.; Chen, J.L.Y.; Cazzolaro, A.; Gobbo, C.; Prins, L.J. Monolayer protected gold nanoparticles with metal-ion binding sites: Functional systems for chemosensing applications. Chem. Commun. 2015, 51, 9922–9931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. Trac Trends Anal. Chem. 2015, 72, 1–9. [Google Scholar] [CrossRef]
- Tan, H.W.; An, J.; Chua, C.K.; Tran, T. Metallic Nanoparticle Inks for 3D Printing of Electronics. Adv. Electron. Mater. 2019, 5, 1800831. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; Carrasco-Rodríguez, J.; García Alonso, F.J.; Costa-García, A. Competitive electrochemical biosensing of biotin using cadmium-modified titanium phosphate nanoparticles and 8-channel screen-printed disposable electrodes. Anal. Methods 2017, 9, 3983–3991. [Google Scholar] [CrossRef]
- Teng, Y.; Ding, G.; Liu, W.; Liu, J.; Nie, Y.; Li, P. Electrodeposition of dendritic gold/silver nanaoparticles on disposable screen-printed carbon electrode and its application of 4-mercaptopyridine in in situ electrochemical surface-enhanced Raman scattering. Surf. Interface Anal. 2016, 48, 990–994. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antuña-Jiménez, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. Biosensors 2020, 10, 9. https://doi.org/10.3390/bios10020009
Antuña-Jiménez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. Biosensors. 2020; 10(2):9. https://doi.org/10.3390/bios10020009
Chicago/Turabian StyleAntuña-Jiménez, Daniel, María Begoña González-García, David Hernández-Santos, and Pablo Fanjul-Bolado. 2020. "Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing" Biosensors 10, no. 2: 9. https://doi.org/10.3390/bios10020009
APA StyleAntuña-Jiménez, D., González-García, M. B., Hernández-Santos, D., & Fanjul-Bolado, P. (2020). Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. Biosensors, 10(2), 9. https://doi.org/10.3390/bios10020009