Ternary Fingerprints with Reference Odor for Fluctuation-Enhanced Sensing
Abstract
:1. Introduction: Fluctuation-Enhanced Sensing (FES)
2. Materials and Methods
2.1. Binary Fingerprints
2.2. The New Method: Ternary Fingerprints
2.3. Demonstration with Bacterial Isolates from Cow Manure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Bruschi, P.; Cacialli, F.; Nannini, A.; Neri, B. Gas and vapour effects on the resistance fluctuation spectra of conducting polymer thin-film resistors. Sens. Actuators B Chem. 1994, 19, 421–425. [Google Scholar] [CrossRef]
- Bruschi, P.; Nannini, A.; Neri, B. Vapour and gas sensing by noise measurements on polymeric balanced bridge microstructures. Sens. Actuators B Chem. 1995, 25, 429–432. [Google Scholar] [CrossRef]
- Gottwald, P.; Kincses, Z.; Szentpali, B. Unsolved Problems of Noise (UPoN’96); Doering, C.R., Kiss, L.B., Shlesinger, M.F., Eds.; World Scientific: Singapore, 1997; p. 122. [Google Scholar]
- Kiss, L.B.; Granqvist, C.G.; Söderlund, J. Detection of Chemicals Based on Resistance Fluctuation-Spectroscopy. Available online: http://was.prv.se/spd/pdf/8V-xToJGAh7WS3oljenFlQ/SE513148.C2.pdf (accessed on 6 August 2020).
- Kish, L.B.; Granqvist, C.G.; Vajtai, R. Sampling-and-Hold Chemical Sensing by Noise Measurements for Electronic. Available online: http://was.prv.se/spd/pdf/RdizounvzhfWS3oljenFlQ/SE515249.C2.pdf (accessed on 6 August 2020).
- Schmera, G.; Kish, L.B. System and Method of Fluctuation Enhanced Gas-Sensing Using Saw Devices. U.S. Patent 7,286,942, 23 October 2007. [Google Scholar]
- Schmera, G.; Kish, L.B. System and Method of Molecule Counting Using Fluctuation Enhanced Sensors. U.S. Patent 7,524,460, 28 April 2009. [Google Scholar]
- Smulko, J.; Kish, L.B.; Schmera, G. System and Method for Gas Recognition by Analysis of Bispectrum Function. U.S. Patent 7,680,607, 16 March 2010. [Google Scholar]
- Kish, L.B.; King, M.D.; Young, R.; Cheng, M.; Biard, J.R.; Bezrukov, S. Sensing Phage-Triggered Ion Cascade (SEPTIC). U.S. Patent 7,229,754, 12 June 2007. [Google Scholar]
- Schmera, G.; Kish, L.B. Bacteria Identification by Phage Induced Impedance Fluctuation Analysis, BIPIF. U.S. Patent 9,645,101, 9 May 2017. [Google Scholar]
- Kish, L.B.; Vajtai, R.; Granqvist, C.-G. Extracting information from noise spectra of chemical sensors: Single sensor electronic noses and tongues. Sens. Actuators B 2000, 71, 55. [Google Scholar] [CrossRef]
- Solis, J.L.; Kish, L.B.; Vajtai, R.; Granqvist, C.G.; Olsson, J.; Schnurer, J.; Lantto, V. Identifying natural and artificial odors through noise analysis with a sampling-and-hold electronic nose. Sens. Actuators B 2001, 77, 312. [Google Scholar] [CrossRef]
- Schmera, G.; Kish, L.B. Fluctuation Enhanced Chemical Sensing by Surface Acoustic Wave Devices. Fluct. Noise Lett. 2002, 2, L117–L123. [Google Scholar] [CrossRef]
- Schmera, G.; Kish, L.B. Surface diffusion enhanced chemical sensing by surface acoustic waves. Sens. Actuators B 2003, 93, 159–163. [Google Scholar] [CrossRef]
- Smulko, J.; Granqvist, C.G.; Kish, L.B. On the statistical analysis of noise in chemical sensors and its application for sensing. Fluct. Noise Lett. 2001, 1, L14722. [Google Scholar] [CrossRef]
- Smulko, J.M.; Kish, L.B. Higher-Order Statistics for Fluctuation-Enhanced Gas-Sensing. Sens. Mater. 2004, 16, 291–299. [Google Scholar]
- Dobozi-King, M.; Seo, S.; Kim, J.U.; Young, R.; Cheng, M.; Kish, L.B. Rapid Detection and Identification of Bacteria: SEnsing of Phage-Triggered Ion Cascade (SEPTIC). J. Biol. Phys. Chem. 2005, 5, 3–7. [Google Scholar] [CrossRef]
- Kish, L.B.; Schmera, G.; King, M.D.; Cheng, M.; Young, R.; Granqvist, C.G. Fluctuation-Enhanced Chemical/Biological Sensing and Prompt Identification of Bacteria by Sensing of Phage Triggered Ion Cascade (SEPTIC). Int. J. High Speed Electron. Syst. 2008, 18, 11–18. [Google Scholar] [CrossRef]
- Gomri, S.; Seguin, J.-L.; Aguir, K. Modeling on oxygen chemisorption-induced noise in metallic oxide gas sensors. Sens. Actuators B Chem. 2005, 107, 722–729. [Google Scholar] [CrossRef]
- Gomri, S.; Seguin, J.-L.; Guerin, J.; Aguir, K. Adsorption–desorption noise in gas sensors: Modelling using Langmuir and Wolkenstein models for adsorption. Sens. Actuators B Chem. 2006, 114, 451–459. [Google Scholar] [CrossRef]
- Gomri, S.; Seguin, J.-L.; Guerin, J.; Aguir, K. A mobility and free carriers density fluctuations based model of adsorption–desorption noise in gas sensor. J. Phys. D Appl. Phys. 2008, 41, 065501. [Google Scholar] [CrossRef]
- Contaret, T.; Seguin, J.-L.; Menini, P.; Aguir, K. Physical-based characterization of noise responses in metal-oxide gas sensors. IEEE Sens. J. 2012, 13, 980–986. [Google Scholar] [CrossRef]
- Gomri, S.; Contaret, T.; Seguin, J.; Aguir, K.; Masmoudi, M. Noise modeling in MOX gas sensors. Fluct. Noise Lett. 2017, 16, 1750013. [Google Scholar] [CrossRef]
- Gomri, S.; Contaret, T.; Seguin, J.-L. A New Gases Identifying Method with MOX Gas Sensors Using Noise Spectroscopy. IEEE Sens. J. 2018, 18, 6489–6496. [Google Scholar] [CrossRef]
- Gomri, S.; Seguin, J.; Contaret, T.; Fiorido, T.; Aguir, K. A noise spectroscopy-based selective gas sensing with MOX gas sensors. Fluct. Noise Lett. 2018, 17, 1850016. [Google Scholar] [CrossRef]
- Gomri, S.; Bedoui, S.; Morati, N.; Fiorido, T.; Contaret, T.; Seguin, J.-L.; Kachouri, A.; Masmoudi, M. A Noise Spectroscopy-Based Features Extraction Method to Detect Two Gases Using One Single MOX Sensor. IEEE Sens. J. 2019, 19, 9063–9070. [Google Scholar] [CrossRef]
- Hoel, A.; Ederth, J.; Kopniczky, J.; Heszler, P.; Kish, L.B.; Olsson, E.; Granqvist, C.G. Conduction invasion noise in nanoparticle WO3/Au thin-film devices for gas sensing application. Smart Mater. Struct. 2002, 11, 640–644. [Google Scholar] [CrossRef]
- Solis, J.L.; Seeton, G.; Li, Y.; Kish, L.B. Fluctuation-Enhanced Sensing with Commercial Gas Sensors. Sens. Transducers Mag. 2003, 38, 59–66. [Google Scholar]
- Solis, J.L.; Seeton, G.E.; Li, Y.; Kish, L.B. Fluctuation-Enhanced Multiple-Gas Sensing. IEEE Sens. J. 2005, 5, 1338–1345. [Google Scholar] [CrossRef]
- Kish, L.B.; Li, Y.; Solis, J.L.; Marlow, W.H.; Vajtai, R.; Granqvist, C.G.; Lantto, V.; Smulko, J.M.; Schmera, G. Detecting Harmful Gases Using Fluctuation-Enhanced Sensing. IEEE Sens. J. 2005, 5, 671–676. [Google Scholar] [CrossRef]
- Smulko, J.M.; Ederth, J.; Li, Y.; Kish, L.B.; Kennedy, M.K.; Kruis, F.E. Gas-Sensing by Thermoelectric Voltage Fluctuations in SnO2 Nanoparticle Films. Sens. Actuators B 2005, 106, 708–712. [Google Scholar]
- Ederth, J.; Smulko, J.M.; Kish, L.B.; Heszler, P.; Granqvist, C.G. Comparison of classical and fluctuation-enhanced gas sensing with PdxWO3 nanoparticle films. Sens. Actuators B 2006, 113, 310–315. [Google Scholar] [CrossRef]
- Kish, L.B.; Smulko, J.; Heszler, P.; Granqvist, C.G. On the sensitivity, selectivity, sensory information, and optimal size of resistive chemical sensors. Nanotechnol. Percept. 2007, 3, 43–52. [Google Scholar] [CrossRef]
- Kwan, C.; Ayhan, B.; Chen, G.; Chang, C.; Wang, J.; Ji, B. A Novel Approach for Spectral Unmixing, Classification, and Concentration Estimation of Chemical and Biological Agents. IEEE Trans. Geosci. Remote Sens. 2006, 44, 409–419. [Google Scholar] [CrossRef]
- Ayhan, B.; Kwan, C.; Zhou, J.; Kish, L.B.; Benkstein, K.D.; Rogers, P.H.; Semancik, S. Fluctuation enhanced sensing (FES) with a nanostructured, semiconducting metal oxide film for gas detection and classification. Sens. Actuators B Chem. 2013, 188, 651–660. [Google Scholar] [CrossRef]
- Makra, P.; Topalian, Z.; Granqvist, C.G.; Kish, L.B.; Kwan, C. Accuracy versus speed in fluctuation-enhanced sensing. Fluct. Noise Lett. 2012, 11, 1250010. [Google Scholar] [CrossRef]
- Kish, L.B.; Chang, H.C.; King, M.D.; Kwan, C.; Jensen, J.O.; Schmera, G.; Smulko, J.; Gingl, Z.; Granqvist, C.G. Fluctuation-Enhanced Sensing for Biological Agent Detection and Identification. IEEE Nanotechnol. 2011, 10, 1238–1242. [Google Scholar] [CrossRef] [Green Version]
- Gingl, Z.; Kish, L.B.; Ayhan, B.; Kwan, C.; Granqvist, C.-G. Fluctuation-Enhanced Sensing with Zero-Crossing Analysis for High-Speed and Low-Power Applications. IEEE Sens. J. 2010, 10, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.C.; Kish, L.B.; King, M.D.; Kwan, C. Fluctuation-Enhanced Sensing of Bacterium Odors. Sens. Actuators B 2009, 142, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Kwan, C.; Schmera, G.; Smulko, J.; Kish, L.B.; Heszler, P.; Granqvist, C.G. Advanced agent identification at fluctuation-enhanced sensing. IEEE Sens. J. 2008, 8, 706–713. [Google Scholar] [CrossRef]
- Aroutiounian, M.; Mkhitaryan, Z.; Adamian, A.; Granqvist, C.-G.; Kish, L.B. Fluctuation-enhanced gas sensing. Proced. Chem. 2009, 1, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Li, H.; Xie, J.; Panikov, N.S.; Cui, H.L. Agent identification using a sparse Bayesian model. IEEE Sens. J. 2011, 11, 2556–2564. [Google Scholar] [CrossRef]
- Wan, S.; Mak, M.W.; Kung, S.Y. mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines. BMC Bioinform. 2012, 13, 290. [Google Scholar] [CrossRef] [Green Version]
- Smulko, J.M.; Ionescu, R.; Granqvist, C.G.; Kish, L.B. Determination of gas mixture components using fluctuation enhanced sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst. 2015, 22, 341–350. [Google Scholar]
- Wan, S.; Mak, M.W.; Kung, S.Y. Sparse regressions for predicting and interpreting subcellular localization of multi-label proteins. BMC Bioinform. 2016, 17, 97. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.C.; Kish, L.B.; King, M.D.; Kwan, C. Binary Fingerprints at Fluctuation-Enhanced Sensing. Sensors 2010, 10, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Glusker, M.; Hogan, D.M.; Vass, P. The Ternary Calculating Machine of Thomas Fowler. IEEE Ann. Hist. Comput. 2005, 27, 4–22. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- Favard, A.; Yan, X.; Anguille, S.; Moulin, P.; Seguin, J.-L.; Aguir, K.; Bendahan, M. Ionic Liquids Filter for Humidity Effect Reduction on Metal Oxide Gas Sensor Response. Sens. Transducers 2018, 222, 6–11. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Kish, L.B.; Seguin, J.-L.; King, M.D. Ternary Fingerprints with Reference Odor for Fluctuation-Enhanced Sensing. Biosensors 2020, 10, 93. https://doi.org/10.3390/bios10080093
Yu X, Kish LB, Seguin J-L, King MD. Ternary Fingerprints with Reference Odor for Fluctuation-Enhanced Sensing. Biosensors. 2020; 10(8):93. https://doi.org/10.3390/bios10080093
Chicago/Turabian StyleYu, Xiaoyu, Laszlo B. Kish, Jean-Luc Seguin, and Maria D. King. 2020. "Ternary Fingerprints with Reference Odor for Fluctuation-Enhanced Sensing" Biosensors 10, no. 8: 93. https://doi.org/10.3390/bios10080093
APA StyleYu, X., Kish, L. B., Seguin, J. -L., & King, M. D. (2020). Ternary Fingerprints with Reference Odor for Fluctuation-Enhanced Sensing. Biosensors, 10(8), 93. https://doi.org/10.3390/bios10080093