Surface Plasmon Resonance for Protease Detection by Integration of Homogeneous Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of SPR Chips
2.3. Procedure for Cas-3 Detection
2.4. Inhibitor Detection and Cell Lysate Analysis
3. Results and Discussion
3.1. Feasibility of the Strategy
3.2. Detection of Cas-3 and Its Inhibitor
3.3. Selectivity
3.4. Evaluation of Cell Apoptosis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suaifan, G.A.; Shehadeh, M.; Al-Ijel, H.; Ng, A.; Zourob, M. Recent progress in prostate-specific antigen and HIV proteases detection. Expert Rev. Mol. Diagn. 2013, 13, 707. [Google Scholar] [CrossRef] [PubMed]
- Ong, I.L.H.; Yang, K.-L. Recent developments in protease activity assays and sensors. Analyst 2017, 142, 1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, J.; Singh, P.K. Trypsin detection strategies: A review. Crit. Rev. Anal. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.C.; Algar, W.R.; Medintz, I.L.; Hildebrandt, N. Quantum dots for Forster Resonance Energy Transfer FRET. TrAC-Trend Anal. Chem. 2020, 125, 115819. [Google Scholar] [CrossRef]
- La, M.; Zhao, X.; Peng, Q.; Chen, C.; Zhao, G. Electrochemical biosensors for probing of protease activity and screening of protease inhibitors. Int. J. Electrochem. Sci. 2015, 10, 3329. [Google Scholar]
- Pavan, S.; Berti, F. Short peptides as biosensor transducers. Anal. Bioanal. Chem. 2012, 402, 3055. [Google Scholar] [CrossRef]
- Xuan, F.; Fan, T.W.; Hsing, I.-M. Electrochemical interrogation of kinetically-controlled dendritic DNA/PNA assembly for immobilization-free and enzyme-free nucleic acids sensing. ACS Nano 2015, 9, 5027. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Fan, H.; Anderson, M.J.; Wright, J.G.; Hua, D.H.; Koehne, J.; Meyyappan, M.; Li, J. Electrochemical activity assay for protease analysis using carbon nanofiber nanoelectrode arrays. Anal. Chem. 2019, 91, 3971–3979. [Google Scholar] [CrossRef]
- Mahshid, S.S.; Ricci, F.; Kelley, S.O.; Vallée-Bélisle, A. Electrochemical DNA-based immunoassay that employs steric hindrance to detect small molecules directly in whole blood. ACS Sens. 2017, 2, 718–723. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.J.; Song, Y.; Fan, H.; Wright, J.G.; Ren, Z.; Hua, D.H.; Koehne, J.E.; Meyyappan, M.; Li, J. Simultaneous, multiplex quantification of protease activities using a gold microelectrode array. Biosens. Bioelectron. 2020, 165, 112330. [Google Scholar] [CrossRef]
- Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528. [Google Scholar] [CrossRef] [PubMed]
- Jean-Francois, M. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2017, 2, 16–30. [Google Scholar]
- Chang, C.-C. Recent advancements in aptamer-based surface plasmon resonance biosensing strategies. Biosensors 2021, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Kenshin, T. Surface plasmon resonance (SPR)- and localized SPR (LSPR)-based virus sensing systems: Optical vibration of nano- and micro-metallic materials for the development of next-generation virus detection technology. Biosensors 2021, 11, 250. [Google Scholar]
- Steinrücke, P.; Aldinger, U.; Hill, O.; Hillisch, A.; Basch, R.; Diekmann, S. Design of helical proteins for real-time endoprotease assays. Anal. Biochem. 2000, 286, 26. [Google Scholar] [CrossRef]
- Chen, H.; Mei, Q.; Hou, Y.; Zhu, X.; Koh, K.; Li, X.; Li, G. Fabrication of a protease sensor for caspase-3 activity detection based on surface plasmon resonance. Analyst 2013, 138, 5757. [Google Scholar] [CrossRef]
- Tomassetti, M.; Conta, G.; Campanella, L.; Favero, G.; Sanzò, G.; Mazzei, F.; Antiochia, R. A flow SPR immunosensor based on a sandwich direct method. Biosensors 2016, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Yatabe, R.; Onodera, T.; Toko, K. Sensitive detection of capsaicinoids using a surface plasmon resonance sensor with anti-homovanillic acid polyclonal antibodies. Biosensors 2013, 3, 374–384. [Google Scholar] [CrossRef] [Green Version]
- Esseghaier, C.; Ng, A.; Zourob, M. A novel and rapid assay for HIV-1 protease detection using magnetic bead mediation. Biosens. Bioelectron. 2013, 41, 335. [Google Scholar] [CrossRef]
- Gao, Y.M.; Zou, F.; Wu, B.P.; Wang, X.X.; Zhang, J.J.; Koh, K.; Chen, H.X. CB [7]-mediated signal amplification approach for sensitive surface plasmon resonance spectroscopy. Biosens. Bioelectron. 2016, 81, 207. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, T.; Liu, L.; Xia, N.; Zhao, Y.; Yi, X. Surface plasmon resonance biosensor for the detection of miRNAs by combining the advantages of homogeneous reaction and heterogeneous detection. Talanta 2021, 234, 122622. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, Y.; Zhao, F.; Xia, N.; Liu, L. Self-assembled biotin-phenylalanine nanoparticles for the signal amplification of surface plasmon resonance biosensors. Microchim. Acta 2020, 187, 473. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426. [Google Scholar] [CrossRef] [PubMed]
- Tabasi, O.; Falamaki, C. Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors. Anal. Methods 2018, 10, 3906. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Y.; Xu, X.; Liu, Y.; Lin, B.; Zhang, M.; Zhang, J.; Wan, S.; Yang, C.; Tan, W. Aptamer-based detection of circulating targets for precision medicine. Chem. Rev. 2021. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, G.B.; Lippitz, A.; Kim, Y.M.; Jung, D.; Unger, W.E.S.; Kim, Y.-P.; Lee, T.G. Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media. Sens. Actuators B Chem. 2019, 281, 527. [Google Scholar] [CrossRef]
- Liu, L.; Deng, D.; Wu, D.; Hou, W.; Wang, L.; Li, N.; Sun, Z. Duplex-specific nuclease-based electrochemical biosensor for the detection of microRNAs by conversion of homogeneous assay into surface-tethered electrochemical analysis. Anal. Chim. Acta 2021, 1149, 338199. [Google Scholar] [CrossRef]
- Chang, Y.; Ma, X.; Sun, T.; Liu, L.; Hao, Y. Electrochemical detection of kinase by converting homogeneous analysis into heterogeneous assay through avidin-biotin interaction. Talanta 2021, 234, 122649. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Chen, P.; Wang, Y.; Zhang, J.; Aili, D.; Liedberg, B. Biofunctionalized gold nanoparticles for colorimetric sensing of botulinum neurotoxin a light chain. Anal. Chem. 2014, 86, 2345. [Google Scholar] [CrossRef]
- Xia, N.; Huang, Y.; Cui, Z.; Liu, S.; Deng, D.; Liu, L.; Wang, J. Impedimetric biosensor for assay of caspase-3 activity and evaluation of cell apoptosis using self-assembled biotin-phenylalanine network as signal enhancer. Sens. Actuators B Chem. 2020, 320, 128436. [Google Scholar] [CrossRef]
- Liu, L.; Wu, D.; Zhen, S.; Lu, K.; Yi, X.; Sun, Z. Electrochemical detection of telomerase in cancer cells based on the in-situ formation of streptavidin-biotin-DNA-biotin networks for signal amplification. Sens. Actuators B Chem. 2021, 334, 129659. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Y.; Zhang, C. Label-free and homogenous detection of caspase-3-like proteases by disrupting homodimerization-directed bipartite tetracysteine display. Anal. Chem. 2017, 89, 4055. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Guo, M.; Nie, Z.; Huang, Y.; Peng, Y.; Liu, A.; Qing, M.; Yao, S. Colorimetric detection of apoptosis based on caspase-3 activity assay using unmodified gold nanoparticles. Chem. Commun. 2012, 997. [Google Scholar] [CrossRef] [PubMed]
- Takano, S.; Shiomoto, S.; Inoue, K.Y.; Ino, K.; Ino, H.; Matsue, T. Electrochemical approach for the development of a simple method for setecting cell apoptosis based on caspase-3 activity. Anal. Chem. 2014, 86, 4723. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, F.; Yu, T.; Gu, C.; Wang, G.; Shi, R.; Lv, R.; Wu, E.; Ma, C.; Guo, R.; Li, J.; et al. Sensitive detection of caspase-3 enzymatic activities and inhibitor screening by mass spectrometry with dual maleimide labelling quantitation. Analyst 2019, 144, 6751. [Google Scholar] [CrossRef]
- Xia, N.; Sun, Z.; Ding, F.; Wang, Y.; Sun, W.; Liu, L. Protease biosensor by conversion of a homogeneous assay into a surface-tethered electrochemical analysis based on streptavidin-biotin interactions. ACS Sens. 2021, 6, 1166. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, J.; Gao, Y.; Liu, S.; Koh, K.; Zhu, X.; Yin, Y. Sensitive cell apoptosis assay based on caspase-3 activity detection with graphene oxide-assisted electrochemical signal amplification. Biosens. Bioelectron. 2015, 68, 777. [Google Scholar] [CrossRef]
- Song, S.; Shang, X.; Zhao, J.; Hu, X.; Koh, K.; Wang, K.; Chen, H. Sensitive and selective determination of caspase-3 based oncalixarene functionalized reduction of graphene oxide assisted signal amplification. Sens. Actuators B Chem. 2018, 267, 357. [Google Scholar] [CrossRef]
- Khalilzadeh, B.; Charoudeh, H.N.; Shadjou, N.; Mohammad-Rezaei, R.; Omidi, Y.; Velaei, K.; Aliyari, Z.; Rashidi, M.R. Ultrasensitive caspase-3 activity detection using an electrochemical biosensor engineered by gold nanoparticle functionalized MCM-41: Its application during stem cell differentiation. Sens. Actuators B Chem. 2016, 231, 561. [Google Scholar] [CrossRef]
- Song, S.; Hu, X.; Li, H.; Zhao, J.; Koh, K.; Chen, H. Guests involved CB [8] capped silver nanoparticles as a means of electrochemical signal enhancement for sensitive detection of Caspase-3. Sens. Actuators B Chem. 2018, 274, 54. [Google Scholar] [CrossRef]
- Khalilzadeh, B.; Shadjou, N.; Eskandani, M.; Charoudeh, H.N.; Omidi, Y.; Rashidi, M.-R. A reliable self-assembled peptide based electrochemical biosensor fordetection of caspase 3 activity and apoptosis. RSC Adv. 2015, 5, 58316. [Google Scholar] [CrossRef]
- Dong, Y.P.; Chen, G.; Zhou, Y.; Zhu, J.J. Electrochemiluminescent sensing for caspase-3 activity based on Ru(bpy)32+-doped silica nanoprobe. Anal. Chem. 2016, 88, 1922. [Google Scholar] [CrossRef] [PubMed]
- Khalilzadeh, B.; Shadjou, N.; Afsharan, H.; Eskandani, M.; Charoudeh, H.N.; Rashidi, M.-R. Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor. BioImpacts 2016, 6, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Signal Label | Linear Range | Detection Limit | Ref. |
---|---|---|---|---|
EIS | Biotin-FNP network | 1–125 pg/mL | 1 pg/mL | [30] |
EIS | SA-peptide network | 0–50 pg/mL | 0.2 pg/mL | [36] |
DPV | Methylene blue/GO | 0.1–100 pg/mL | 0.06 pg/mL | [37] |
DPV | Calixarene-rGO | 10–100 pg/mL | 0.0167 pg/mL | [38] |
DPV | AuNPs-MCM/MB-HRP | 10 fM–10 nM | 5 fM | [39] |
LSV | CB(8)-capped AgNPs | 1–10 ng/mL | 24.62 pg/mL | [40] |
SWV | MB/HRP | 0.1–1 nM | 56 pM | [41] |
ECL | Ru@SiO2 | 0.2–200 pg/mL | 0.07 pg/mL | [42] |
ECL | HRP-SA-MB | 0.5–100 fM | 0.5 fM | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, N.; Liu, G.; Yi, X. Surface Plasmon Resonance for Protease Detection by Integration of Homogeneous Reaction. Biosensors 2021, 11, 362. https://doi.org/10.3390/bios11100362
Xia N, Liu G, Yi X. Surface Plasmon Resonance for Protease Detection by Integration of Homogeneous Reaction. Biosensors. 2021; 11(10):362. https://doi.org/10.3390/bios11100362
Chicago/Turabian StyleXia, Ning, Gang Liu, and Xinyao Yi. 2021. "Surface Plasmon Resonance for Protease Detection by Integration of Homogeneous Reaction" Biosensors 11, no. 10: 362. https://doi.org/10.3390/bios11100362
APA StyleXia, N., Liu, G., & Yi, X. (2021). Surface Plasmon Resonance for Protease Detection by Integration of Homogeneous Reaction. Biosensors, 11(10), 362. https://doi.org/10.3390/bios11100362