Biometric Identification of Taxodium spp. and Their Hybrid Progenies by Electrochemical Fingerprints
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.-L.; Liu, X.-Q.; Zhang, M.-H.; Lin, B.; Zhu, D.-R.; Li, L.-N.; Chen, C.; Han, C.; Luo, J.-G.; Kong, L.-Y. Taxodisones A and B: Bioactive C 30-Terpenes with New Skeletons from Taxodium Distichum and Their Biosynthetic Origin. Chem. Commun. 2020, 56, 3329–3332. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Bianchette, T.A.; Liu, K.; Yao, Q.; Maiti, K.D. Palynological and Geochemical Records of Environmental Changes in a Taxodium Swamp near Lake Pontchartrain in Southern Louisiana (USA) during the Last 150 Years. J. Coast. Res. 2018, 85, 381–385. [Google Scholar] [CrossRef]
- Hua, J.; Han, L.; Wang, Z.; Gu, C.; Yin, Y. Morpho-Anatomical and Photosynthetic Responses of Taxodium Hybrid “Zhongshanshan” 406 to Prolonged Flooding. Flora 2017, 231, 29–37. [Google Scholar] [CrossRef]
- Yang, J.; Xu, C.; Chen, H.; Huang, M.; Ma, X.; Deng, S.; Huang, Y.; Wen, Y.; Yang, X.; Song, P. In Vitro and In Vivo Antitumor Effects of the Diterpene-Enriched Extract from Taxodium Ascendens through the Mitochondrial-Dependent Apoptosis Pathway. Biomed. Pharmacother. 2017, 96, 1199–1208. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, D.; Sun, G. Quality Monitoring and Evaluation of Powdered Poppy Capsule Extractive by Multiple Wavelengths Matching Average Fusion Chromatographic Fingerprint Combined with Electrochemical Fingerprint. Microchem. J. 2021, 169, 106516. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Bulko, T.V.; Kuzikov, A.V.; Masamrekh, R.A.; Pergushov, D.V.; Schacher, F.H.; Sigolaeva, L.V. Electrochemical Fingerprint of Cytochrome c on a Polymer/MWCNT Nanocomposite Electrode. Mendeleev Commun. 2020, 30, 299–301. [Google Scholar] [CrossRef]
- Cánovas, R.; Sleegers, N.; van Nuijs, A.L.; De Wael, K. Tetracycline Antibiotics: Elucidating the Electrochemical Fingerprint and Oxidation Pathway. Chemosensors 2021, 9, 187. [Google Scholar] [CrossRef]
- Fan, B.; Wang, Q.; Wu, W.; Zhou, Q.; Li, D.; Xu, Z.; Fu, L.; Zhu, J.; Karimi-Maleh, H.; Lin, C.-T. Electrochemical Fingerprint Biosensor for Natural Indigo Dye Yielding Plants Analysis. Biosensors 2021, 11, 155. [Google Scholar] [CrossRef]
- Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Zhuang, W.; Zhang, H.; Wang, A.; Su, W.; Yu, J.; Lin, C.-T. Enhanced Electrochemical Voltammetric Fingerprints for Plant Taxonomic Sensing. Biosens. Bioelectron. 2018, 120, 102–107. [Google Scholar] [CrossRef]
- Liu, Z.; Bruins, M.E.; de Bruijn, W.J.C.; Vincken, J.-P. A Comparison of the Phenolic Composition of Old and Young Tea Leaves Reveals a Decrease in Flavanols and Phenolic Acids and an Increase in Flavonols upon Tea Leaf Maturation. J. Food Compos. Anal. 2020, 86, 103385. [Google Scholar] [CrossRef]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds: Oleuropein, Phenolic Acids, Phenolic Alcohols and Flavonoids from Olive Leaves and Evaluation of Its Antioxidant Activities. Ind. Crop. Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Ramsay, A.; Mueller-Harvey, I. Procyanidins from Averrhoa Bilimbi Fruits and Leaves. J. Food Compos. Anal. 2016, 47, 16–20. [Google Scholar] [CrossRef]
- Marín-Sáez, J.; Romero-González, R.; Garrido Frenich, A. Effect of Tea Making and Boiling Processes on the Degradation of Tropane Alkaloids in Tea and Pasta Samples Contaminated with Solanaceae Seeds and Coca Leaf. Food Chem. 2019, 287, 265–272. [Google Scholar] [CrossRef]
- Chou, S.; Chen, B.; Chen, J.; Wang, M.; Wang, S.; Croft, H.; Shi, Q. Estimation of Leaf Photosynthetic Capacity from the Photochemical Reflectance Index and Leaf Pigments. Ecol. Indic. 2020, 110, 105867. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, H.; Fu, L. Preparation Gold Nanoparticles Using Herb Leaf Extract for Electro-Oxidation Determination of Ascorbic Acid. Inorg. Nano-Met. Chem. 2018, 48, 449–453. [Google Scholar] [CrossRef]
- Zheng, Y.; Fu, L.; Wang, A.; Cai, W. Electrochemical Detection of Quinoline Yellow in Soft Drinks Based on Layer-by-Layer Fabricated Multi-Walled Carbon Nanotube. Int. J. Electrochem. Sci. 2015, 10, 3530–3538. [Google Scholar]
- Fu, L.; Liu, Z.; Huang, Y.; Lai, G.; Zhang, H.; Su, W.; Yu, J.; Wang, A.; Lin, C.-T.; Yu, A. Square Wave Voltammetric Quantitative Determination of Flavonoid Luteolin in Peanut Hulls and Perilla Based on Au NPs Loaded Boron Nitride Nanosheets. J. Electroanal. Chem. 2018, 817, 128–133. [Google Scholar] [CrossRef]
- Fu, L.; Wang, A.; Lai, G.; Su, W.; Malherbe, F.; Yu, J.; Lin, C.-T.; Yu, A. Defects Regulating of Graphene Ink for Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid. Talanta 2018, 180, 248–253. [Google Scholar] [CrossRef]
- Shi, H.; Chen, F.; Zhao, S.; Ye, C.; Lin, C.-T.; Zhu, J.; Fu, L. Preparation of Cassava Fiber-Iron Nanoparticles Composite for Electrochemical Determination of Tea Polyphenol. J. Food Meas. Charact. 2021, 15, 4711–4717. [Google Scholar] [CrossRef]
- Martini, M.; de Carvalho, L.M.; Blasco-Blasco, A.; Doménech-Carbó, A. Screening and Authentication of Herbal Formulations Based on Microextraction-Assisted Voltammetry of Microparticles. Anal. Methods 2015, 7, 5740–5747. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Cebrián-Torrejón, G.; Lopes-Souto, A.; Martins-de-Moraes, M.; Jorge-Kato, M.; Fechine-Tavares, J.; Barbosa-Filho, J.M. Electrochemical Ecology: VIMP Monitoring of Plant Defense against External Stressors. RSC Adv. 2015, 5, 61006–61011. [Google Scholar] [CrossRef]
- Dominguez, I.; Domenech-Carbo, A. Screening and Authentication of Tea Varieties Based on Microextraction-Assisted Voltammetry of Microparticles. Sens. Actuators B Chem. 2015, 210, 491–499. [Google Scholar] [CrossRef]
- Sharifian, H.; Kirk, D. Electrochemical Oxidation of Phenol. J. Electrochem. Soc. 1986, 133, 921. [Google Scholar] [CrossRef]
- Zhang, M.; Pan, B.; Wang, Y.; Du, X.; Fu, L.; Zheng, Y.; Chen, F.; Wu, W.; Zhou, Q.; Ding, S. Recording the Electrochemical Profile of Pueraria Leaves for Polyphyly Analysis. ChemistrySelect 2020, 5, 5035–5040. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, J.; Fu, L.; Liu, Q. Phylogenetic Investigation of Yellow Camellias Based on Electrochemical Voltammetric Fingerprints. Int. J. Electrochem. Sci. 2020, 15, 9622–9630. [Google Scholar] [CrossRef]
- Fu, L.; Wu, M.; Zheng, Y.; Zhang, P.; Ye, C.; Zhang, H.; Wang, K.; Su, W.; Chen, F.; Yu, J.; et al. Lycoris Species Identification and Infrageneric Relationship Investigation via Graphene Enhanced Electrochemical Fingerprinting of Pollen. Sens. Actuators B Chem. 2019, 298, 126836. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Zhang, P.; Wang, Y.; Zheng, Y.; Fu, L.; Zhang, H.; Lin, C.-T.; Yu, A. Infrageneric Phylogenetics Investigation of Chimonanthus Based on Electroactive Compound Profiles. Bioelectrochemistry 2020, 133, 107455. [Google Scholar] [CrossRef]
- Iniesta, J.; Michaud, P.; Panizza, M.; Cerisola, G.; Aldaz, A.; Comninellis, C. Electrochemical Oxidation of Phenol at Boron-Doped Diamond Electrode. Electrochim. Acta 2001, 46, 3573–3578. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Keenan, T.F.; Hallik, L. A Worldwide Analysis of Within-canopy Variations in Leaf Structural, Chemical and Physiological Traits across Plant Functional Types. New Phytol. 2015, 205, 973–993. [Google Scholar] [CrossRef] [Green Version]
- Rolland-Lagan, A.; Amin, M.; Pakulska, M. Quantifying Leaf Venation Patterns: Two-dimensional Maps. Plant J. 2009, 57, 195–205. [Google Scholar] [CrossRef]
- Feng, Z.; Lin, B.; Xu, Y.; Zhu, L.; Liu, J.; Gao, J. Efficacy Analysis of Combining Three Comparative-Omics Profilings to Screen Candidate Biological Macromolecules. Mol. Biol. Rep. 2013, 40, 1861–1866. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Guo, J.; Xuan, L.; Wang, Z.; Li, M.; Yin, Y.; Yang, Y. Comparative Chloroplast Genomics of the Genus Taxodium. BMC Genom. 2020, 21, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Xu, S.; Yin, Y. Transcriptome Analysis of the Taxodium “Zhongshanshan 405” Roots in Response to Salinity Stress. Plant Physiol. Biochem. 2016, 100, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gu, C.; Xuan, L.; Hua, J.; Shi, Q.; Fan, W.; Yin, Y.; Yu, F. Identification of Suitable Reference Genes in Taxodium “Zhongshanshan” under Abiotic Stresses. Trees 2017, 31, 1519–1530. [Google Scholar] [CrossRef]
- Abdelsalam, N.R.; Salem, M.Z.; Ali, H.M.; Mackled, M.I.; Mervat, E.-H.; Elshikh, M.S.; Hatamleh, A.A. Morphological, Biochemical, Molecular, and Oil Toxicity Properties of Taxodium Trees from Different Locations. Ind. Crop. Prod. 2019, 139, 111515. [Google Scholar] [CrossRef]
- Yunpeng, C.; Shihua, P.; Jianjun, Z.; Weijie, Z.; Huijuan, N.; Zhicai, Q.; Jingwen, W.; Daleng, S.; Zengji, Y. RAPD Analysis of Genetic Relationships among Natural Populations of Hybrid Taxodium Mucronatum Tenore. Fu Dan Xue Bao Zi Ran Ke Xue Ban J. Fudan Univ. Nat. Sci. 2002, 41, 641–645. [Google Scholar]
No. | Cultivars | Female Parent | Male Parent | Note |
---|---|---|---|---|
1 | Taxodium ‘Zhongshanshan 301’ | T. distichum | T. mucronatum | Cross |
2 | Taxodium ‘Zhongshanshan 302’ | T. distichum | T. mucronatum | Cross |
3 | Taxodium ‘Zhongshanshan 405’ | T. mucronatum | T. distichum | Reciprocal cross |
4 | Taxodium ‘Zhongshanshan 406’ | T. mucronatum | T. distichum | Reciprocal cross |
5 | Taxodium ‘Zhongshanshan 407’ | T. mucronatum | T. distichum | Reciprocal cross |
6 | Taxodium ‘Zhongshanshan 502’ | T. mucronatum | T. distichum | Reciprocal cross |
7 | Taxodium ‘Zhongshanshan 503’ | T. mucronatum | T. distichum | Reciprocal cross |
8 | Taxodium ‘Zhongshanshan 703’ | T. mucronatum | T. distichum | Reciprocal cross |
9 | Taxodium ‘Zhongshanshan 9’ | Taxodium ‘Zhongshanshan 302’ | T. mucronatum | Backcross |
10 | Taxodium ‘Zhongshanshan 27’ | Taxodium ‘Zhongshanshan 302’ | T. mucronatum | Backcross |
11 | Taxodium ‘Zhongshanshan 102’ | Taxodium ‘Zhongshanshan 302’ | T. mucronatum | Backcross |
12 | Taxodium ‘Zhongshanshan 118’ | Taxodium ‘Zhongshanshan 302’ | T. mucronatum | Backcross |
13 | Taxodium ‘Zhongshanshan 136’ | Taxodium ‘Zhongshanshan 302’ | T. mucronatum | Backcross |
14 | Taxodium ‘Zhongshanshan 146’ | Taxodium ‘Zhongshanshan 302’ | T. mucronatum | Backcross |
15 | Taxodium ‘Zhongshanshan 149’ | Taxodium ‘Zhongshanshan 302’ | T. mucronatum | Backcross |
16 | Taxodium ‘Zhongshanshan 111’ | T. mucronatum | T. ascendens | Cross |
17 | Taxodium ‘Zhongshanshan 125’ | T. mucronatum | T. ascendens | Cross |
18 | Taxodium ‘Zhongshanshan 401’ | T. ascendens | T. mucronatum | Reciprocal cross |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Wang, D.; Li, X.; Wang, Z.; Zhou, Q.; Fu, L.; Yin, Y.; Creech, D. Biometric Identification of Taxodium spp. and Their Hybrid Progenies by Electrochemical Fingerprints. Biosensors 2021, 11, 403. https://doi.org/10.3390/bios11100403
Zheng Y, Wang D, Li X, Wang Z, Zhou Q, Fu L, Yin Y, Creech D. Biometric Identification of Taxodium spp. and Their Hybrid Progenies by Electrochemical Fingerprints. Biosensors. 2021; 11(10):403. https://doi.org/10.3390/bios11100403
Chicago/Turabian StyleZheng, Yuhong, Da Wang, Xiaolong Li, Ziyang Wang, Qingwei Zhou, Li Fu, Yunlong Yin, and David Creech. 2021. "Biometric Identification of Taxodium spp. and Their Hybrid Progenies by Electrochemical Fingerprints" Biosensors 11, no. 10: 403. https://doi.org/10.3390/bios11100403
APA StyleZheng, Y., Wang, D., Li, X., Wang, Z., Zhou, Q., Fu, L., Yin, Y., & Creech, D. (2021). Biometric Identification of Taxodium spp. and Their Hybrid Progenies by Electrochemical Fingerprints. Biosensors, 11(10), 403. https://doi.org/10.3390/bios11100403