Label-free Surface Enhanced Raman Scattering (SERS) on Centrifugal Silver Plasmonic Paper (CSPP): A Novel Methodology for Unprocessed Biofluids Sampling and Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Regents
2.2. Silver Nanoparticle Synthesis and Characterization
2.3. Serum Processing
2.4. CSPP Sampling Methodology
2.5. SERS Spectral Acquisition and Data Processing
2.6. Experimental Design
2.7. Robustness and Experimental Variability
2.8. Serum Collecting System Shelf Life
2.9. Sensibility
3. Results and Discussion
3.1. Development of the Analytical Method
3.2. Characterization of the CSPP
3.3. Study of the Impact of Independent Factors on the SERS Signal
3.4. Precision and Experimental Variability
3.5. Shelf Life
3.6. Evaluation of the SERS Response at Different Metabolite Concentrations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q. Nanostructure-Based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials. Nat. Rev. Mater. 2016, 1, 1–16. [Google Scholar] [CrossRef]
- Kumar, G.V.P. Plasmonic Nano-Architectures for Surface Enhanced Raman Scattering: A Review. J. Nanophotonics 2012, 6, 064503. [Google Scholar] [CrossRef] [Green Version]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Lee, P.C.; Meisel, D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Premasiri, W.R.; Moir, D.T.; Klempner, M.S.; Krieger, N.; Jones, G.; Ziegler, L.D. Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria. J. Phys. Chem. B 2005, 109, 312–320. [Google Scholar] [CrossRef]
- Hasi, W.-L.-J.; Lin, X.; Lou, X.-T.; Lin, S.; Yang, F.; Lin, D.-Y.; Lu, Z.-W. Chloride Ion-Assisted Self-Assembly of Silver Nanoparticles on Filter Paper as SERS Substrate. Appl. Phys. A 2015, 118, 799–807. [Google Scholar] [CrossRef]
- Goodacre, R.; Graham, D.; Faulds, K. Recent Developments in Quantitative SERS: Moving towards Absolute Quantification. TrAC Trends Anal. Chem. 2018, 102, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Ogundare, S.A.; van Zyl, W.E. A Review of Cellulose-Based Substrates for SERS: Fundamentals, Design Principles, Applications. Cellulose 2019, 26, 6489–6528. [Google Scholar] [CrossRef]
- Tantra, R.; Brown, R.J.C.; Milton, M.J.T. Strategy to Improve the Reproducibility of Colloidal SERS. J. Raman Spectrosc. 2007, 38, 1469–1479. [Google Scholar] [CrossRef]
- Linh, V.T.N.; Moon, J.; Mun, C.; Devaraj, V.; Oh, J.-W.; Park, S.-G.; Kim, D.-H.; Choo, J.; Lee, Y.-I.; Jung, H.S. A Facile Low-Cost Paper-Based SERS Substrate for Label-Free Molecular Detection. Sens. Actuators B Chem. 2019, 291, 369–377. [Google Scholar] [CrossRef]
- Dalla Marta, S.; Novara, C.; Giorgis, F.; Bonifacio, A.; Sergo, V. Optimization and Characterization of Paper-Made Surface Enhanced Raman Scattering (SERS) Substrates with Au and Ag NPs for Quantitative Analysis. Materials 2017, 10, 1365. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.L.; Su, W.-N.; Chen, C.-H.; Hwang, B.-J. Ag@SiO 2 Nanocube Loaded Miniaturized Filter Paper as a Hybrid Flexible Plasmonic SERS Substrate for Trace Melamine Detection. Anal. Methods 2017, 9, 6823–6829. [Google Scholar] [CrossRef]
- Martins, N.C.T.; Fateixa, S.; Fernandes, T.; Nogueira, H.I.S.; Trindade, T. Inkjet Printing of Ag and Polystyrene Nanoparticle Emulsions for the One-Step Fabrication of Hydrophobic Paper-Based Surface-Enhanced Raman Scattering Substrates. ACS Appl. Nano Mater. 2021, 4, 4484–4495. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, B.-B.; Liu, X.-Q.; Zhang, Y.-L.; Xu, Y.; Chen, Q.-D.; Sun, H.-B. Highly Efficient SERS Test Strips. Chem. Commun. 2012, 48, 5913–5915. [Google Scholar] [CrossRef]
- Polavarapu, L.; Liz-Marzán, L.M. Towards Low-Cost Flexible Substrates for Nanoplasmonic Sensing. Phys. Chem. Chem. Phys. 2013, 15, 5288–5300. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.L.; Workie, Y.A.; Su, W.-N.; Hwang, B.J. Plasmonic Paper Substrates for Point-of-Need Applications: Recent Developments and Fabrication Methods. Sens. Actuators B Chem. 2021, 345, 130401. [Google Scholar] [CrossRef]
- Cheng, H.; Yi, L.; Wu, J.; Li, G.; Zhao, G.; Xiao, Z.; Hu, B.; Zhao, L.; Tian, J. Drug Preconcentration and Direct Quantification in Biofluids Using 3D-Printed Paper Cartridge. Biosens. Bioelectron. 2021, 189, 113266. [Google Scholar] [CrossRef]
- Kim, W.-S.; Shin, J.-H.; Park, H.-K.; Choi, S. A Low-Cost, Monometallic, Surface-Enhanced Raman Scattering-Functionalized Paper Platform for Spot-on Bioassays. Sens. Actuators B Chem. 2016, 222, 1112–1118. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Tang, J.; Gao, N.; Yue, X.; Zhong, F.; Lv, X.; Fu, J.; Wang, T.; Ma, C. Establishment of a Reliable Scheme for Obtaining Highly Stable SERS Signal of Biological Serum. Biosens. Bioelectron. 2021, 189, 113315. [Google Scholar] [CrossRef]
- Bonifacio, A.; Cervo, S.; Sergo, V. Label-Free Surface-Enhanced Raman Spectroscopy of Biofluids: Fundamental Aspects and Diagnostic Applications. Anal. Bioanal. Chem. 2015, 407, 8265–8277. [Google Scholar] [CrossRef]
- Fornasaro, S.; Berton, F.; Stacchi, C.; Farina, F.; Esposito, A.; Sergo, V.; Di Lenarda, R.; Bonifacio, A. Label-Free Analysis of Gingival Crevicular Fluid (GCF) by Surface Enhanced Raman Scattering (SERS). Analyst 2021, 146, 1464–1471. [Google Scholar] [CrossRef]
- Bonifacio, A.; Dalla Marta, S.; Spizzo, R.; Cervo, S.; Steffan, A.; Colombatti, A.; Sergo, V. Surface-Enhanced Raman Spectroscopy of Blood Plasma and Serum Using Ag and Au Nanoparticles: A Systematic Study. Anal Bioanal Chem 2014, 406, 2355–2365. [Google Scholar] [CrossRef]
- Beleites, C.; Sergo, V. HyperSpec: A Package to Handle Hyperspectral Data Sets in R. R Package Version 099-20200527. Available online: https://github.com/r-hyperspec/hyperSpec (accessed on 21 November 2021).
- Wickham, H. ggplot2; Use R! Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Wheeler, B. AlgDesign: Algorithmic Experimental Design. R Package Version 1.2.0. Available online: https://github.com/jvbraun/AlgDesign (accessed on 21 November 2021).
- Lenth, R.V. Response-Surface Methods in R, Using Rsm. J. Stat. Softw. 2010, 32, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, R.M.; Rowe, W.; Yaffe, N.R.; O’Connor, R.; Knowles, J.D.; Blanch, E.W.; Goodacre, R. Multiobjective Evolutionary Optimisation for Surface-Enhanced Raman Scattering. Anal. Bioanal. Chem. 2010, 397, 1893–1901. [Google Scholar] [CrossRef] [PubMed]
- Pieper, R.; Gatlin, C.L.; Makusky, A.J.; Russo, P.S.; Schatz, C.R.; Miller, S.S.; Su, Q.; McGrath, A.M.; Estock, M.A.; Parmar, P.P.; et al. The Human Serum Proteome: Display of Nearly 3700 Chromatographically Separated Protein Spots on Two-Dimensional Electrophoresis Gels and Identification of 325 Distinct Proteins. Proteomics 2003, 3, 1345–1364. [Google Scholar] [CrossRef] [PubMed]
- Westley, C.; Xu, Y.; Thilaganathan, B.; Carnell, A.J.; Turner, N.J.; Goodacre, R. Absolute Quantification of Uric Acid in Human Urine Using Surface Enhanced Raman Scattering with the Standard Addition Method. Anal. Chem. 2017, 89, 2472–2477. [Google Scholar] [CrossRef] [Green Version]
- Premasiri, W.R.; Lee, J.C.; Ziegler, L.D. Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes and Bioanalytical Sensing. J. Phys. Chem. B 2012, 116, 9376–9386. [Google Scholar] [CrossRef] [Green Version]
- Fornasaro, S.; Gurian, E.; Pagarin, S.; Genova, E.; Stocco, G.; Decorti, G.; Sergo, V.; Bonifacio, A. Ergothioneine, a Dietary Amino Acid with a High Relevance for the Interpretation of Label-Free Surface Enhanced Raman Scattering (SERS) Spectra of Many Biological Samples. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2021, 246, 119024. [Google Scholar] [CrossRef]
- Gurian, E.; Di Silvestre, A.; Mitri, E.; Pascut, D.; Tiribelli, C.; Giuffrè, M.; Crocè, L.S.; Sergo, V.; Bonifacio, A. Repeated Double Cross-Validation Applied to the PCA-LDA Classification of SERS Spectra: A Case Study with Serum Samples from Hepatocellular Carcinoma Patients. Anal. Bioanal. Chem. 2020, 413, 1303–1312. [Google Scholar] [CrossRef]
- Lin, D.; Pan, J.; Huang, H.; Chen, G.; Qiu, S.; Shi, H.; Chen, W.; Yu, Y.; Feng, S.; Chen, R. Label-Free Blood Plasma Test Based on Surface-Enhanced Raman Scattering for Tumor Stages Detection in Nasopharyngeal Cancer. Sci. Rep. 2014, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gurian, E.; Giraudi, P.; Rosso, N.; Tiribelli, C.; Bonazza, D.; Zanconati, F.; Giuricin, M.; Palmisano, S.; de Manzini, N.; Sergo, V.; et al. Differentiation between Stages of Non-Alcoholic Fatty Liver Diseases Using Surface-Enhanced Raman Spectroscopy. Anal. Chim. Acta 2020, 1110, 190–198. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Liu, J.-F.; Liu, R.; Sun, J.-F.; Wei, G.-H. Thin Layer Chromatography Coupled with Surface-Enhanced Raman Scattering as a Facile Method for On-Site Quantitative Monitoring of Chemical Reactions. Anal. Chem. 2014, 86, 7286–7292. [Google Scholar] [CrossRef]
- Siebe, H.S.; Chen, Q.; Li, X.; Xu, Y.; Browne, W.R.; Bell, S.E.J. Filter Paper Based SERS Substrate for the Direct Detection of Analytes in Complex Matrices. Analyst 2021, 146, 1281–1288. [Google Scholar] [CrossRef]
- Jang, W.; Byun, H.; Kim, J.-H. Rapid Preparation of Paper-Based Plasmonic Platforms for SERS Applications. Mater. Chem. Phys. 2020, 240, 122124. [Google Scholar] [CrossRef]
Factor | Symbol | Levels | ||
---|---|---|---|---|
Analyte drying time (min) | A | 0 | - | 20 |
Ag-NPs volume (µL) | B | 75 | 100 | 150 |
Incubation time (min) | C | 0 | - | 20 |
Centrifugation time (min) | D | 2 | 10 | 20 |
Centrifugation speed (rpm) | E | 4000 | 8000 | 13,000 |
Drying time after centrifugation (min) | F | 0 | - | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, A.; Bonifacio, A.; Sergo, V.; Fornasaro, S. Label-free Surface Enhanced Raman Scattering (SERS) on Centrifugal Silver Plasmonic Paper (CSPP): A Novel Methodology for Unprocessed Biofluids Sampling and Analysis. Biosensors 2021, 11, 467. https://doi.org/10.3390/bios11110467
Esposito A, Bonifacio A, Sergo V, Fornasaro S. Label-free Surface Enhanced Raman Scattering (SERS) on Centrifugal Silver Plasmonic Paper (CSPP): A Novel Methodology for Unprocessed Biofluids Sampling and Analysis. Biosensors. 2021; 11(11):467. https://doi.org/10.3390/bios11110467
Chicago/Turabian StyleEsposito, Alessandro, Alois Bonifacio, Valter Sergo, and Stefano Fornasaro. 2021. "Label-free Surface Enhanced Raman Scattering (SERS) on Centrifugal Silver Plasmonic Paper (CSPP): A Novel Methodology for Unprocessed Biofluids Sampling and Analysis" Biosensors 11, no. 11: 467. https://doi.org/10.3390/bios11110467
APA StyleEsposito, A., Bonifacio, A., Sergo, V., & Fornasaro, S. (2021). Label-free Surface Enhanced Raman Scattering (SERS) on Centrifugal Silver Plasmonic Paper (CSPP): A Novel Methodology for Unprocessed Biofluids Sampling and Analysis. Biosensors, 11(11), 467. https://doi.org/10.3390/bios11110467