Optimized Technologies for Cointegration of MOS Transistor and Glucose Oxidase Enzyme on a Si-Wafer
Abstract
:1. Introduction
2. Method
2.1. FET Part Fabrication
2.2. Ti Conversion in Nanostructured TiO2 on Si-Wafer
2.3. GOx Enzyme Immobilization
2.4. Final ENFET
2.5. Microphysical Characterization
3. Technological Characterizations
3.1. Results for the FET Part
3.2. Results for Nanostructured TiO2
3.3. Results for GOx Imobilization
4. Calibration Curve
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, X.-L.; Xu, J.-J.; Zhao, W.; Chen, H.-Y. A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens. Bioelectron. 2004, 19, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Sawan, M. Microelectronics-Based Biosensors Dedicated to the Detection of Neurotransmitters: A Review. Sensors 2014, 14, 17981–18008. [Google Scholar] [CrossRef] [PubMed]
- Hermann, A.; Sitdikova, G. Homocysteine: Biochemistry, Molecular Biology and Role in Disease. Biomolecules 2021, 11, 737. [Google Scholar] [CrossRef]
- Heredia, F.L.; Resto, P.J.; Parés-Matos, E.I. Fast Adhesion of Gold Nanoparticles (AuNPs) to a Surface Using Starch Hydrogels for Characterization of Biomolecules in Biosensor Applications. Biosensors 2020, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Mark Lundstrom, Moore’s Law Forever? Science 2003, 299, 210–211. [CrossRef]
- IBM. Unveils World’s First 2 Nanometer Chip Technology, Opening a New Frontier for Semiconductors, Internal Report. 2021. Available online: https://newsroom.ibm.com/2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology,-Opening-a-New-Frontier-for-Semiconductors (accessed on 1 October 2021).
- Deleonibus, S. CMOS nanoelectronics at the time of diversifications. In Proceedings of the IEEE International Symposium on VLSI Technology Systems and Applications, Hsinchu, Taiwan, 25–27 April 2011; pp. 1–4. [Google Scholar]
- Oh, J.; Yoo, G.; Wook Chang, Y.; Joon Kim, H.; Jose, J.; Kim, E.; Pyun, Y.-C.; Yoo, K.-H. A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum. Biosens. Bioelectron. 2013, 50, 345–350. [Google Scholar] [CrossRef]
- Cai, B.; Huang, L.; Zhang, H.; Sun, Z.; Zhang, Z.; Zhang, G.-J. Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection. Biosens. Bioelectron. 2015, 74, 329–334. [Google Scholar] [CrossRef]
- Ahopelto, J.; Ardila, G.; Baldi, L.; Balestra, F.; Belot, D.; Fagas, G.; De Gendt, S.; Demarchi, D.; Fernandez-Bolaños, M.; Holden, D.; et al. NanoElectronics roadmap for Europe: From nanodevices and innovative materials to system integration. Solid State Electron. 2019, 155, 7–19. [Google Scholar] [CrossRef]
- Ravariu, C.; Manea, E.; Parvulescu, C.; Babarada, F.; Popescu, A. Titanium dioxide nanotubes on silicon wafer designated for GOX enzymes immobilization. Dig. J. Nanomater. Biostruct. 2011, 6, 703–707. [Google Scholar]
- Guerrieri, A.; Ciriello, R.; Bianco, G.; de Gennaro, F.; Frascaro, S. Allosteric Enzyme-Based Biosensors—Kinetic Behaviours of Immobilised L-Lysine-α-Oxidase from Trichoderma viride: pH Influence and Allosteric Properties. Biosensors 2020, 10, 145. [Google Scholar] [CrossRef] [PubMed]
- Darkar, T.; Mukherjee, N.; Das, J. Studies on dielectric constant and AC conductivity of nano porous silicon layer for efficient glucose sensing. J. Mater. Sci. Mater. Electron. 2020, 31, 18996–19002. [Google Scholar]
- Ravariu, C.; Manea, E.; Popescu, A.; Podaru, C.; Parvulescu, C. Micro-Technological Steps During the Fabrication of an AcHE Biosensor Designated to the Environment Monitoring. Am. J. Biosci. Bioeng. 2015, 3, 1–6. [Google Scholar] [CrossRef]
- Ravariu, C.; Manea, E.; Babarada, F. Masks and metallic electrodes compounds for silicon biosensor integration. J. Alloys Compd. 2017, 697, 72–79. [Google Scholar] [CrossRef]
- Artigues, M.; Abellà, J.; Colominas, S. Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples. Sensors 2017, 17, 2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Yue, Z.; Huo, G.; Zhang, S.; Zhu, B.; Zhang, S.; Huang, W. 3D Hydrogen Titanate Nanotubes on Ti Foil: A Carrier for Enzymatic Glucose Biosensor. Sensors 2020, 20, 1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, K.S.; Ahmad, R.; Yoo, J.-Y.; Hahn, Y.-B. Nozzle-jet printed flexible field-effect transistor biosensor for high performance glucose detection. J. Colloid Interface Sci. 2017, 506, 188–196. [Google Scholar] [CrossRef]
- Arachchige, H.M.; Zappa, D.; Poli, N.; Gunawardhana, N.; Attanayake, N.H.; Comini, E. Seed-Assisted Growth of TiO2 Nanowires by Thermal Oxidation for Chemical Gas Sensing. Nanomaterials 2020, 10, 935. [Google Scholar] [CrossRef] [PubMed]
- Ravariu, C.; Popescu, A.; Podaru, C.; Manea, E.; Babarada, F. The Nanopous Al2O3 Material Used for the Enzyme Entrapping in a Glucose Biosensor. In Proceedings of the XII Mediterranean Conference on Medical and Biological Engineering and Computing MEDICON 2010, Chalkidiki, Greece, 27–30 May 2010; Volume 29, pp. 459–462. [Google Scholar]
- Ravariu, F.; Podaru, C.; Nedelcu, O.; Ravariu, C.; Manea, E. A silicon nanoporous membrane used for drug delivery. In Proceedings of the 32nd IEEE Semiconductor Annual Conference, Sinaia, Romania, 4–6 October 2004; Volume 1, pp. 101–104. [Google Scholar]
- IMT. Support Centre for MIcro- and NAnoFABrication (IMT-MINAFAB) in Operation since 2009. Available online: http://erris.gov.ro/MINAFAB (accessed on 1 November 2021).
- Ravariu, C.; Dogita, M. Enzyme-FET transistor technology and simulations aided by microelectronics tools. Adv. Nano-Bio-Mater. Devices 2017, 1, 204–209. [Google Scholar]
- Ravariu, C.; Babarada, F.; Manea, E.; Popescu, A. The Electrodes Geometry Design and Global Simulations for an ENFET Gluco-Detector. In Proceedings of the 8-th IASTED International Conference of Biomedical Engineering BioMED, Innsbruck, Austria, 16–18 February 2011; pp. 429–432. [Google Scholar]
- Justin Gooding, J.; Ciampi, S. The molecular level modification of surfaces: From self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 2011, 40, 2704–2718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zucca, P.; Sanjust, E. Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules 2014, 19, 14139–14194. [Google Scholar] [CrossRef]
- Dief, E.M.; Brun, A.P.L.; Ciampi, S.; Darwish, N. Spontaneous Grafting of OH-Terminated Molecules on Si−H Surfaces via Si–O–C Covalent Bonding. Surfaces 2021, 4, 81–88. [Google Scholar] [CrossRef]
- Ravariu, C.; Arora, V. Modeling of Enzyme-FET Biosensor Based on Experimental Glucose-Oxidase Receptor. In Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Guadalajara, Jalisco, Mexico, 30 October–5 November 2021; pp. 4339–4342. [Google Scholar]
- Liao, J.; Lin, S.; Yang, Y.; Liu, K.; Du, W. Highly selective and sensitive glucose sensors based on organic electrochemical transistors using TiO2 nanotube arrays-based gate electrodes. Sens. Actuators B Chem. 2015, 208, 457–463. [Google Scholar] [CrossRef]
- Puneka, N.S. Enzymes: Catalysis, Kinetics and Mechanisms, 1st ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 95–99. [Google Scholar]
- Kanapieniene, J.J.; Dedinaite, A.A.; Laurinavicius, V.S.A. Miniature glucose biosensor with extended linearity. Sens. Actuators B 1992, 10, 27–40. [Google Scholar] [CrossRef]
- Demirkıran, N.; Ekinci, E.; Asilturk, M. Immobilization of glucose oxidase in silica sol-gel film for application to biosensor and amperometric determination of glucose. J. Chil. Chem. Soc. 2011, 57, 1136–1339. [Google Scholar]
- Olarte, O.; Chilo, J.; Pelegri-Sebastia, J.; Barbe, K.; Van Moer, W. Glucose Detection in Human Sweat Using an Electronic Nose. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 3–7 July 2013; pp. 1462–1466. [Google Scholar]
- Wiorek, A.; Parrilla, M.; Cuartero, M.; Crespo, G. Epidermal Patch with Glucose Biosensor: pH and Temperature Correction toward More Accurate Sweat Analysis during Sport Practice. Anal. Chem. 2020, 92, 10153–10161. [Google Scholar] [CrossRef] [PubMed]
- Juska, V.B.; Pemble, M.E. A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems. Sensors 2020, 20, 6013. [Google Scholar] [CrossRef]
- Zhang, J.; Rupakula, M.; Bellando, F.; Cordero, E.G.; Longo, J.; Wildhaber, F.; Herment, G.; Guérin, H.; Ionescu, A.M. Sweat Biomarker Sensor Incorporating Picowatt, Three-Dimensional Extended Metal Gate Ion Sensitive Field Effect Transistors. ACS Sens. 2019, 4, 2039–2047. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravariu, C.; Parvulescu, C.C.; Manea, E.; Tucureanu, V. Optimized Technologies for Cointegration of MOS Transistor and Glucose Oxidase Enzyme on a Si-Wafer. Biosensors 2021, 11, 497. https://doi.org/10.3390/bios11120497
Ravariu C, Parvulescu CC, Manea E, Tucureanu V. Optimized Technologies for Cointegration of MOS Transistor and Glucose Oxidase Enzyme on a Si-Wafer. Biosensors. 2021; 11(12):497. https://doi.org/10.3390/bios11120497
Chicago/Turabian StyleRavariu, Cristian, Catalin Corneliu Parvulescu, Elena Manea, and Vasilica Tucureanu. 2021. "Optimized Technologies for Cointegration of MOS Transistor and Glucose Oxidase Enzyme on a Si-Wafer" Biosensors 11, no. 12: 497. https://doi.org/10.3390/bios11120497
APA StyleRavariu, C., Parvulescu, C. C., Manea, E., & Tucureanu, V. (2021). Optimized Technologies for Cointegration of MOS Transistor and Glucose Oxidase Enzyme on a Si-Wafer. Biosensors, 11(12), 497. https://doi.org/10.3390/bios11120497