A Novel Enzyme-Based SPR Strategy for Detection of the Antimicrobial Agent Chlorophene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Collection and Characterization
2.3. Cr/Au Thin Film Deposition
2.4. SPR Instrumentation
2.5. Enzymatic Activity
2.6. Enzyme Bioreceptor: Chip Functionalization and Laccase Immobilization
2.7. SPR Measurements: Chlorophene Detection
2.8. HPLC Measurements
3. Results and Discussion
3.1. Chip Functionalization and Laccase Immobilization
3.2. SPR Measurements: Chlorophene Detection
3.3. Evaluation of SPR Performance with River Water: Study of Matrix Effects
3.4. Comparison of SPR Protocol with the HPLC Method
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Félix-Cañedo, T.E.; Durán-Álvarez, J.C.; Jiménez-Cisneros, B. The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci. Total Environ. 2013, 454, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Daughton, C.G.; Terne, A. Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change? Environ. Health Perspect. 1999, 107 (Suppl. S6), 907–938. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, C.H. Oxidative transformation of triclosan and chlorophene by manganese oxides. Environ. Sci. Technol. 2003, 37, 2421–2430. [Google Scholar] [CrossRef] [PubMed]
- ECHA. Chlorophene Product-type 2 (Disinfectants and Algaecides not Intended for Direct Application to Humans or Animals): Assesment Report; ECHA: Helsinki, Finland, 2017.
- Yamarik, T. Safety assessment of dichlorophene and chlorophene. Int. J. Toxicol. 2004, 23, 1–27. [Google Scholar]
- US EPA. Summary Document Registration Review: Initial Docket, Chemical Safety and Pollution Prevention for o-benzyl-p-chlorophenol (7510P); United States Environmental Protection Agency: Washington, DC, USA, 2011. Available online: http://www.regulations.gov/ (accessed on 18 March 2020).
- Rayaroth, M.; Nejumal, K.; Subha, S.; Usha, A.; Charuvila, A. Identification of chlorophene in a backwater stream in Kerala (India) and its sonochemical degradation studies. CLEAN Soil Air Water 2015, 43, 1338–1343. [Google Scholar] [CrossRef]
- Bolobajev, J.; Bilgin, N.; Öncü, M.; Viisimaa, M.; Trapido, M.; Goi, A.; Balcıoğlu, I. Column experiment on activation aids and biosurfactant application to the persulphate treatment of chlorophene-contaminated soil. Environ. Technol. 2015, 36, 348–357. [Google Scholar] [CrossRef]
- Sirés, I.; Garrido, J.A.; Rodriguez, R.M.; Brillas, E.; Oturan, N.; Oturan, M.A. Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl. Catal. B 2007, 72, 382–394. [Google Scholar] [CrossRef]
- Houtman, M.; van Oostveen, C.J.; Brouwer, A.M.; Lamoree, A.; Legler, J.H. Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environ. Sci. Technol. 2004, 38, 6415–6423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wu, N.; Xu, X.; Qu, R.; Li, C.; Pan, X.; Wei, Z.; Wang, Z. Fe(VI)-Mediated Single-Electron Coupling Processes for the Removal of Chlorophene: A Combined Experimental and Computational Study. Environ. Sci. Technol. 2018, 52, 12592–12601. [Google Scholar] [CrossRef]
- Habauzit, D.; Armengaud, J.; Roig, B.; Chopineau, J. Determination of estrogen presence in water by SPR using estrogen receptor dimerization. Anal. Bioanal. Chem. 2008, 390, 873–883. [Google Scholar] [CrossRef]
- Marchesini, G.R.; Meulenberg, E.; Haasnoot, W.; Irth, H. Biosensor immunoassays for the detection of bisphenol A. Anal. Chim. Acta 2005, 528, 37–45. [Google Scholar] [CrossRef]
- Mauriz, E.; Calle, A.; Lechuga, L.M.; Quintana, J.; Montoya, A.; Manclús, J.J. Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Anal. Chim. Acta 2006, 561, 40–47. [Google Scholar] [CrossRef]
- Hong, S.; Kang, T.; Oh, S.; Moon, J.; Choi, I.; Choi, K.; Yi, J. Label-free sensitive optical detection of polychlorinated biphenyl (PCB) in an aqueous solution based on surface plasmon resonance measurements. Sens. Actuators B Chem. 2008, 134, 300–306. [Google Scholar] [CrossRef]
- Shi, H.; Peng, J.; Li, J.; Mao, L.; Wang, Z.; Gao, S. Laccase-catalyzed removal of the antimicrobials chlorophene and dichlorophen from water: Reaction kinetics, pathway and toxicity evaluation. J. Hazard. Mater. 2016, 317, 81–89. [Google Scholar] [CrossRef]
- Thurston, C.F. The structure and function of fungal laccases. Microbiology 1994, 140, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Bollag, J.M. Decontaminating soil with enzymes. Environ. Sci. Technol. 1992, 26, 1876–1881. [Google Scholar] [CrossRef]
- Sondhi, S.; Sharma, P.; George, N.; Chauhan, P.; Puri, N.; Gupta, N. An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp. 3 Biotech 2015, 5, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Moss, P. Enzyme Nomenclature; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Myszka, D.G. Analysis of small-molecule interactions using Biacore S51 technology. Anal. Biochem. 2004, 329, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Gestwicki, J.E.; Hsieh, H.V.; Pitner, J.B. Using receptor conformational change to detect low molecular weight analytes by surface plasmon resonance. Anal. Chem. 2001, 73, 5732–5737. [Google Scholar] [CrossRef] [PubMed]
- Daems, D.; Lu, J.; Delport, F.; Mariën, N.; Orbie, L.; Aernouts, B.; Adriaens, I.; Huybrechts, T.; Saeys, W.; Spasic, D.; et al. Competitive inhibition assay for the detection of progesterone in dairy milk using a fiber optic SPR biosensor. Anal. Chim. Acta 2017, 950, 1–6. [Google Scholar] [CrossRef]
- Lou, Z.; Han, H.; Mao, D.; Jiang, Y.; Song, J. Qualitative and quantitative detection of PrPSc based on the controlled release property of magnetic microspheres using surface plasmon resonance (SPR). Nanomaterials 2018, 8, 107. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Lou, Z.; Wang, W.; Yang, L.; Li, Y. Synthesis of Fe3C@ C from Pyrolysis of Fe3O4-Lignin clusters and its application for quick and sensitive detection of PrPSc through a sandwich SPR detection assay. Int. J. Mol. Sci. 2019, 20, 741. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Wu, Y.-J.; Knoll, W. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosens. Bioelectron. 2005, 21, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, S.; Dabirmanesh, B.; Arab, S.S.; Amanlou, M.; Daneshjou, S.; Gholami, S.; Khajeh, K. A novel enzyme based SPR-biosensor to detect bromocriptine as an ergoline derivative drug. Sens. Actuators B Chem. 2017, 240, 519–527. [Google Scholar] [CrossRef]
- SSA. NOM-230-SSA1-2002, Enviromental Health. Water for Human Use and Consumption, Sanitary Requirements Must Be Met in Public and Private Supply Systems during Water Management. Sanitary Procedures for Sampling. 2002. Available online: http://www.salud.gob.mx/unidades/cdi/nom/230ssa102.html (accessed on 6 April 2020).
- SE. NMX-AA-036 SCFI-2001: Determination of Acidity and Alkalinity in Natural Water, Wastewater and Treated Wastewater-Test Method, Diario Oficial de la Federacion 2001. Available online: https://www.gob.mx/cms/uploads/attachment/file/166776/NMX-AA-036-SCFI-2001.pdf (accessed on 16 March 2020).
- CONAGUA. NMX-AA-072-SCFI-2001: Water Analysis-Determination of Total Hardness in Natural Water, Wastewater and Treated Wastewater-Test Method. 2001. Available online: http://lasa.ciga.unam.mx/monitoreo/images/biblioteca/45NMX-AA-072-SCFI-2001_Dureza.pdf (accessed on 6 April 2020).
- SCFI. NMX-AA-073-SCFI-2001: Water Analysis- Determination of Total Chloride in Natural Water, Wastewater and Treated Wastewater-Test Method. 2001. Available online: http://www.aniq.org.mx/pqta/pdf/NMX-AA-quimicosgpo2.pdf (accessed on 6 April 2020).
- DOF. NMX-AA-051-SCFI-2016: Water Analysis -Measurement of Metals by Atomic Absorption in Natural Water, Drinking Water, Wastewater and Treated Wastewater-Test Method. 2016. Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=5464459&fecha=07/12/2016 (accessed on 6 April 2020).
- Luna-Moreno, D.; Sánchez-álvarez, A.; Islas-Flores, I.; Canto-Canche, B.; Carrillo-Pech, M.; Villarreal-Chiu, J.; Rodríguez-Delgado, M. Early detection of the fungal banana black sigatoka pathogen Pseudocercospora fijiensis by an SPR immunosensor method. Sensors (Basel) 2019, 19, 465. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Alvarez, A.; Luna-Moreno, D.; Hernández-Morales, J.A.; Zaragoza-Zambrano, J.O.; Castillo-Guerrero, G.H. Control of Stepper Motor Rotary Stages applied to optical sensing technique using LabView. Opt. Int. J. Light Electron. Opt. 2018, 164, 65–71. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Fan, J.; Wang, Z.; Li, L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal. Chim. Acta 2018, 1009, 65–72. [Google Scholar] [CrossRef]
- Leonardo, S.; Toldrà, A.; Rambla-Alegre, M.; Fernández-Tejedor, M.; Andree, K.; Ferreres, L.; Campbell, K.; Elliott, C.; O’Sullivan, C.; Pazos, Y.; et al. Self-assembled monolayer-based immunoassays for okadaic acid detection in seawater as monitoring tools. Mar. Environ. Res. 2017, 133, 6–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soler, M.; Estevez, M.-C.; Alvarez, M.; Otte, M.A.; Sepulveda, B.; Lechuga, L.M. Direct detection of protein biomarkers in human fluids using site-specific antibody immobilization strategies. Sensors 2014, 14, 2239–2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sota, H.; Hasegawa, Y.; Iwakura, M. Detection of conformational changes in an immobilized protein using surface plasmon resonance. Anal. Chem. 1998, 70, 2019–2024. [Google Scholar] [CrossRef]
- Yang, C.Y.; Brooks, E.; Li, Y.; Denny, P.; Ho, C.M.; Qi, F.; Shi, W.; Wolinsky, L.; Wu, B.; Wong, D.T.; et al. Detection of picomolar levels of interleukin-8 in human saliva by SPR. Lab. Chip 2005, 5, 1017–1023. [Google Scholar] [CrossRef]
- Song, H.Y.; Zhou, X.; Hobley, J.; Su, X. Comparative study of random and oriented antibody immobilization as measured by dual polarization interferometry and surface plasmon resonance spectroscopy. Langmuir 2011, 28, 997–1004. [Google Scholar] [CrossRef]
- Vashist, S.K.; Dixit, C.K.; MacCraith, B.D.; O’Kennedy, R. Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay. Analyst 2011, 136, 4431–4436. [Google Scholar] [CrossRef] [PubMed]
- Madhavi, V.; Lele, S.S. Laccase: Properties and applications. Bioresources 2009, 4, 1694–1717. [Google Scholar]
- Enguita, F.J.; Marcal, D.; Martins, L.O.; Grenha, R.; Henriques, A.O.; Lindley, P.F.; Carrondo, M.a. Substrate and Dioxygen Binding to the Endospore Coat Laccase from Bacillus subtilis. J. Biol. Chem. 2004, 279, 23472–23476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estevez, M.-C.; Belenguer, J.; Gomez-Montes, S.; Miralles, J.; Escuela, A.M.; Montoya, A.; Lechuga, L.M. Indirect competitive immunoassay for the detection of fungicide Thiabendazole in whole orange samples by Surface Plasmon Resonance. Analyst 2012, 137, 5659–5665. [Google Scholar] [CrossRef]
- Pardo, I.; Rodríguez-Escribano, D.; Aza, P.; de Salas, F.; Martínez, A.; Camarero, S. A highly stable laccase obtained by swapping the second cupredoxin domain. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Muthukumarasamy, N.P.; Jackson, B.; Joseph-Raj, A.; Sevanan, M. Production of Extracellular Laccase from Bacillus subtilis MTCC 2414 Using Agroresidues as a Potential Substrate. Biochem. Res. Int. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
Bioreceptor | LOD (mg mL−1) | LOQ (mg mL−1) | Sensitivity (Reflectance/mg mL−1) | Dynamic Range (mg mL−1) |
---|---|---|---|---|
Laccase enzyme | 0.33 ± 0.01 | 1.1 ± 0.01 | 0.0281 ± 0.0001 | 0–10 |
pH | Total Hardness | Calcium-Based Hardness | Magnesium-Based Hardness | Chloride | Sulfates | Total Organic Carbon | Inorganic Carbon | As | Cu | Pb |
---|---|---|---|---|---|---|---|---|---|---|
8.05 ± 0.07 | 220.7 ± 6.4 | 151.3 ± 10.3 | 69.5 ± 3.9 | 10.99 ± 0.49 | 32.11 ± 1.85 | 23.66 | 60.75 | ˂0.003 | ˂0.1 | ˂0.2 |
Fortification Level (mg mL−1) | SPR Method | HPLC Method | ||
---|---|---|---|---|
3 | Mean (mg mL−1) | Recovery (%) | Mean (mg mL−1) | Recovery (%) |
3.28 ± 0.27 | 109.21 ± 7.08 | 3.04 ± 0.01 | 101.33 ± 3.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintanilla-Villanueva, G.E.; Luna-Moreno, D.; Blanco-Gámez, E.A.; Rodríguez-Delgado, J.M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M.M. A Novel Enzyme-Based SPR Strategy for Detection of the Antimicrobial Agent Chlorophene. Biosensors 2021, 11, 43. https://doi.org/10.3390/bios11020043
Quintanilla-Villanueva GE, Luna-Moreno D, Blanco-Gámez EA, Rodríguez-Delgado JM, Villarreal-Chiu JF, Rodríguez-Delgado MM. A Novel Enzyme-Based SPR Strategy for Detection of the Antimicrobial Agent Chlorophene. Biosensors. 2021; 11(2):43. https://doi.org/10.3390/bios11020043
Chicago/Turabian StyleQuintanilla-Villanueva, Gabriela Elizabeth, Donato Luna-Moreno, Edgar Allan Blanco-Gámez, José Manuel Rodríguez-Delgado, Juan Francisco Villarreal-Chiu, and Melissa Marlene Rodríguez-Delgado. 2021. "A Novel Enzyme-Based SPR Strategy for Detection of the Antimicrobial Agent Chlorophene" Biosensors 11, no. 2: 43. https://doi.org/10.3390/bios11020043
APA StyleQuintanilla-Villanueva, G. E., Luna-Moreno, D., Blanco-Gámez, E. A., Rodríguez-Delgado, J. M., Villarreal-Chiu, J. F., & Rodríguez-Delgado, M. M. (2021). A Novel Enzyme-Based SPR Strategy for Detection of the Antimicrobial Agent Chlorophene. Biosensors, 11(2), 43. https://doi.org/10.3390/bios11020043