Study of Two Constraints Impacting Measurements of Human Glycemia Using a Microwave Sensor
Abstract
:1. Introduction
2. Theoretical Study
3. The Dielectric Properties of a Simulated Tissue Model in the Forearm
4. Comsol Multiphysique Modeling
4.1. Model Description of an Area from a Thin Person’s Forearm
- Skin layer with a thickness of 1 mm;
- Blood vessel wall;
- Blood;
- Muscle.
4.2. Results and Discussion
4.3. Model Description of an Area from an Overweight Person’s Forearm
5. Dosimetry
5.1. Methods and Model
Part of the Forearm Was Modeled Using COMSOL Multiphysics® Software
5.2. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Zips, A.; Faust, U. Determination of Biomass by Ultrasonic Measurements. Appl. Environ. Microbiol. 1989, 55, 1801–1807. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.S. Method and Apparatus for Noninvasive Measurement of Blood Glucose by Photoacoustics. U.S. Patent 5941821A, 24 August 1999. [Google Scholar]
- Kohl, M.; Essenpreis, M.; Böcker, D.; Cope, M. Influence of glucose concentration on light scattering in tissue-simulating phantoms. Opt. Lett. 1994, 19, 2170. [Google Scholar] [CrossRef] [Green Version]
- Maier, J.S.; Walker, S.A.; Fantini, S.; Franceschini, M.A.; Gratton, E. Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared. Opt. Lett. 1994, 19, 2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, G.W.; Arnold, M.A.; Marquardt, L.A. Strategies for coupling digital filtering with partial least-squares regression: Application to the determination of glucose in plasma by Fourier-transform near-infrared spectroscopy. Anal. Chem. 1993, 65, 3279–3289. [Google Scholar] [CrossRef]
- Berger, A.J.; Itzkan, I.; Feld, M.S. Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 1997, 53, 287–292. [Google Scholar]
- Tae-Woong, K.; Berger, A.J.; Irving, I.; Horowitz, G.; Michael, S. Feld reagentless blood analysis by near-infrared Raman spectroscopy. Diabetes Technol. Ther. 1999, 1, 153–157. [Google Scholar]
- Harman-Boehm, I.; Gal, A.; Raykhman, A.M.; Zahn, J.D.; Naidis, E.; Mayzel, Y. Noninvasive Glucose Monitoring: A Novel Approach. J. Diabetes Sci. Technol. 2009, 3, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourzi, M.; Rouane, A.; Guelaz, R.; Nadi, M.; Jaspard, F. Study of a new electromagnetic sensor for glycaemia measurement:in vitroresults on blood pig. J. Med Eng. Technol. 2003, 27, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Tura, A.; Sbrignadello, S.; Cianciavicchia, D.; Pacini, G.; Ravazzani, P. A Low Frequency Electromagnetic Sensor for Indirect Measurement of Glucose Concentration: In Vitro Experiments in Different Conductive Solutions. Sensors 2010, 10, 5346–5358. [Google Scholar] [CrossRef] [PubMed]
- Harnsoongnoen, S.; Wanthong, A. Coplanar waveguides loaded with a split ring resonator-based microwave sensor for aqueous sucrose solutions. Meas. Sci. Technol. 2016, 27, 015103. [Google Scholar] [CrossRef]
- Sathyanath, D.; Jayakrishnan, M.P.; Thushara, H.P.; Mridula, S.; Mohanan, P. Microwave Based Bio-sensor for Blood Glucose Monitoring. In Proceedings of the Fifth International Conference on Advances in Computing and Communications (ICACC), Kerala, India, 2–4 September 2015; pp. 362–365. [Google Scholar]
- Adhyapak, A.; Sidley, M.; Venkataraman, J. Analytical Model for Real Time, Noninvasive Estimation of Blood Glucose Level. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 5020–5023. [Google Scholar]
- Smulders, P.F.; Buysse, M.G.; Huang, M.D. Dielectric Properties of Glucose Solutions in the 0.5–67 GHz Range. Microw. Opt. Technol. Lett. 2013, 55, 1916–1917. [Google Scholar] [CrossRef]
- Mohammadi, L.B.; Klotzbuecher, T.; Sigloch, S.; Welzel, K.; Goeddel, M.; Pieber, T.R.; Schaupp, L. Clinical performance of a low cost near infrared sensor for continuous glucose monitoring applied with subcutaneous microdialysis. Biomed. Microdevices 2015, 17, 73. [Google Scholar] [CrossRef]
- Goodarzi, M.; Saeys, W. Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum. Talanta 2016, 146, 155–165. [Google Scholar] [CrossRef]
- Freedom Meditech, Inc. Freedom Meditech, Inc.’s Non-Invasive Glucose Measurements in the Eye Highly Effective in Clinical Study; Freedom Meditech, Inc.: San Diego, CA, USA, 2010. [Google Scholar]
- Cahn, F.; Burd, J.; Ignotz, K.; Mishra, S. Measurement of Lens Autofluorescence Can Distinguish Subjects With Diabetes From Those Without. J. Diabetes Sci. Technol. 2014, 8, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Caduff, A.; Mueller, M.; Megej, A.; Dewarrat, F.; Suri, R.E.; Klisic, J.; Donath, M.; Zakharov, P.; Schaub, D.; Stahel, W.A.; et al. Characteristics of a multisensor system for non invasive glucose monitoring with external validation and prospective evaluation. Biosens. Bioelectron. 2011, 26, 3794–3800. [Google Scholar] [CrossRef] [PubMed]
- Zanon, M.; Sparacino, G.; Facchinetti, A.; Talary, M.S.; Caduff, A.; Cobelli, C. Regularised Model Identification Improves Accuracy of Multisensor Systems for Noninvasive Continuous Glucose Monitoring in Diabetes Management. J. Appl. Math. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Kim, S.; Melikyan, H.; Kim, J.; Babajanyan, A.; Lee, J.H.; Enkhtur, L.; Friedman, B.; Lee, K. Noninvasive in vitro measurement of pig-blood d-glucose by using a microwave cavity sensor. Diabetes Res. Clin. Pract. 2012, 96, 379–384. [Google Scholar] [CrossRef]
- Zidane, M.A.; Rouane, A.; Hamouda, C.; Amar, H. Hyper-sensitive microwave sensor based on split ring resonator (SRR) for glucose measurement in water. Sens. Actuators A Phys. 2021, 321, 112601. [Google Scholar] [CrossRef]
- Turgul, V.; Kale, I. On the accuracy of complex permittivity model of glucose/water solutions for non-invasive microwave blood glucose sensing. In Proceedings of the Health and Bioengineering Conference (EHB), Iasi, Romania, 19–21 November 2015; pp. 1–4. [Google Scholar]
- Juan, C.G.; Bronchalo, E.; Potelon, B.; Quendo, C.; Avila-Navarro, E.; Sabater-Navarro, J.M. Concentration Measurement of Microliter-Volume Water–Glucose Solutions Using Q Factor of Microwave Sensors. IEEE Trans. Instrum. Meas. 2019, 68, 2621–2634. [Google Scholar] [CrossRef]
- Hasgall, P.A.; Neufeld, E.; Gosselin, M.C.; Klingenböck, A.; Kuster, N.; Kuster, N.; Hasgall, P.; Gosselin, M. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues; OSA: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Turgul, V.; Kale, I. A novel pressure sensing circuit for non-invasive RF/microwave blood glucose sensors. In Proceedings of the 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, United Arab Emirates, 14–16 November 2016; pp. 1–4. [Google Scholar]
- Yilmaz, T.; Foster, R.; Hao, Y. Radio-Frequency and Microwave Techniques for Non-Invasive Measurement of Blood Glucose Levels. Diagnostics 2019, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Choi, H. Design and In Vitro Interference Test of Microwave Noninvasive Blood Glucose Monitoring Sensor. IEEE Trans. Microw. Theory Tech. 2015, 63, 3016–3025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zonoori, S.I.; Makki, S.; Vahab, A.D.; Torabi, A. A Comparative study of the distance effects of human head from mobile phone radiation. Int. J. Microw. Opt. Technol. 2015, 10, 20–27. [Google Scholar]
- Morega, M.; Morega, A.M. Computed SAR in human head for the assessment of exposure from different phone device antennas. Environ. Eng. Manag. J. 2011, 10, 527–533. [Google Scholar] [CrossRef]
- Psenakova, Z.; Smondrk, M.; Benova, M. Modelling and Simulation of the Electric Field Strength Distribution in a Human Head Model by 2.4 GHz Radio Frequency Radiation. In Proceedings of the 23rd Annual Conference Proceedings, Prag-Çek Cumhuriyeti, Prague, Czech Republic, 6–9 September 2015; pp. 50–60. [Google Scholar]
- Bennet, M.A.; Poomathi, J.S.; Kalpana, C.; Priya, S.S. Specific absorption rate assessment on human head due to radiations by mobile phone antenna. Int. J. Smart Sens. Intell. Syst. 2017, 10, 374–394. [Google Scholar]
- Vecchia, P.; Matthes, R.; Ziegelberger, G.; Lin, J.; Saunders, R.; Swerdlow, A. (Eds.) Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz–300 GHz). In International Commission on Non-Ionizing Radiation Protection; 2009; Available online: https://www.icnirp.org/en/publications/article/hf-review-2009.html (accessed on 14 March 2021).
- Chakyar, S.P.; Simon, S.K.; Bindu, C.; Andrews, J.; Joseph, V.P. Complex permittivity measurement using metamaterial split ring resonators. J. Appl. Phys. 2017, 121, 054101. [Google Scholar] [CrossRef]
- Kesari, K.K. Cell Phone Radiation Exposure on Brain and Associated Biological Systems. Indian J. Exp. Biol. 2013, 51, 187–200. [Google Scholar]
- Krawczyk, A.; Sobiech, J.E.S. Model for Investigation of Microwave Energy Absorbed by Young and Mature Living Animals. Electromagn. Field, Health Environ. 2008, 29, 126–132. Available online: https://ebooks.iospress.nl/publication/22549 (accessed on 14 March 2021).
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zidane, M.A.; Amar, H.; Rouane, A. Study of Two Constraints Impacting Measurements of Human Glycemia Using a Microwave Sensor. Biosensors 2021, 11, 83. https://doi.org/10.3390/bios11030083
Zidane MA, Amar H, Rouane A. Study of Two Constraints Impacting Measurements of Human Glycemia Using a Microwave Sensor. Biosensors. 2021; 11(3):83. https://doi.org/10.3390/bios11030083
Chicago/Turabian StyleZidane, Mohamed Amine, Hichem Amar, and Amar Rouane. 2021. "Study of Two Constraints Impacting Measurements of Human Glycemia Using a Microwave Sensor" Biosensors 11, no. 3: 83. https://doi.org/10.3390/bios11030083
APA StyleZidane, M. A., Amar, H., & Rouane, A. (2021). Study of Two Constraints Impacting Measurements of Human Glycemia Using a Microwave Sensor. Biosensors, 11(3), 83. https://doi.org/10.3390/bios11030083