Market Perspectives and Future Fields of Application of Odor Detection Biosensors within the Biological Transformation—A Systematic Analysis †
Abstract
:1. Introduction
- What are the specific market potentials of odor detection biosensors?
- What are therefore the most promising application fields for odor detection biosensors?
- What new fields of application can arise for odor detection biosensors from their specific properties?
- What role do odorant detection biosensors play in the biological transformation of industrial value creation?
2. Basics
2.1. Biological Foundations of the Olfactory System
2.2. Types of Odor Sensing Technologies
2.3. Technical Performance Criteria of Odor Sensing Technologies
- Sensitivity: describes the degree to which the output signal (measured value) changes in relation to the change of the input signal (measuring signal);
- Accuracy: describes the deviations of the sensor’s predicted measurement values from the real (ideal) value (typically 2 or 3 sigma of the error fluctuations);
- Selectivity: describes the response of the sensor to a certain group of analytes or one specific analyte;
- Specificity: indicates the probability that the measured value is falsely positive or falsely negative;
- Resolution: describes the smallest measurable change the sensor is able to register;
- Repeatability: indicates the error that occurs with repeated measurements, under the same situation.
- Reliability: describes the performance of the sensor that must be maintained over a defined period;
- Resistance to environmental influences or stability: describes the accuracy of the measurement results in case of changing environmental influences, such as temperature, humidity, radiation or magnetism;
- Maintenance effort: describes the overall effort of measures that keep the system in a functional state;
- Multi-sensing capability: describes the ability to measure several different substances in parallel;
- Operability: describes the simplicity of use;
- Measurement duration: the time required to complete a measurement process.
- Durability: describes the period of time during which the sensor remains functional, i.e., the performance remains within certain predefined specifications (e.g., a maximum drop of the measurable signal below 50% of its original value).
- Dimensions: describes the flexibility of relevant, characteristic geometric dimensions of the sensor shape.
- Weight: mass of the body in kg per measuring unit or sensor;
- Cost: describes the monetary costs of the manufacturing process for materials and the production process.
2.4. Markets and Application Fields for Biosensors
- Healthcare: the healthcare market includes the ambulatory and stationary achievement contribution by established physicians, dentists, and hospitals, as well as other service providers [70]. In 2019, the health care system in Germany had a turnover of EUR 86.5 billion [64]. In 2018, 48,346 companies in Germany were active in the healthcare sector [71]. One example of a future field of application is diagnostics. Compared to healthy people, people with diseases excrete either different concentrations of certain VOCs or different types of VOCs. These VOCs are used as biomarkers and can be identified by breath, urine, and other body fluids. A diagnosis based solely on a patient’s odor requires very accurate diagnostic equipment [72]. Odor sensors prove to be a suitable diagnostic tool when it comes to diagnosing diseases. There is a great demand for non-invasive diagnostic methods in the healthcare sector. These sensor devices should be able to perform real-time monitoring, and they should be portable and inexpensive [73].
- Food industry: the food industry comprises food and feed manufacturers together with the beverage industry. Altogether, there are about 6000 companies with more than 20 employees in the German food industry [74]. In 2018, these companies employed more than half a million people. With an annual turnover of almost EUR 180 billion, the food industry is one of the largest industries in Germany [65]. The odor sensors in this industry should enable fast detection of quality changes during production. During quality control, impurities and pathogens are identified. Furthermore, the correct composition of the produced food and its smell and taste can be analyzed [75].
- Agriculture: agriculture is the economic activity where soil, livestock, labor, and know-how produce agricultural products that ensure the supply of plant and animal food to the people [76]. In 2018, there were 266,600 active companies in Germany [77]. They had a turnover of EUR 38.3 billion in 2018 [66]. Odor sensors can be used in agriculture to determine the quality of products and stocks based on odors or VOCs, or to detect pests and other negative influences already in the field [20]. Another application example is the monitoring of livestock odors [78].
- Cosmetics industry: cosmetics include all products that have a healing effect but are also used for beauty care. The industry is mainly determined by the large consumer goods groups. In 2018, there were 137 companies in the German industry for the production of cosmetics [79], generating sales of approximately EUR 6.4 billion [67]. Fields of application for odor sensors in the cosmetics industry are mainly quality control of production goods. Odor sensors can also be used in production to check the correct composition of the products, in order to be able to analyze odors and develop them more specifically, for example [20].
- Safety applications: safety applications are all applications that aim to detect hazardous substances. Smells contain important information about the environment and activities relevant to military and safety-oriented applications. This includes the detection of explosive materials or hazardous chemicals. However, an odor sensor can also be used for crime prevention tasks, such as security checks at airports or drug detection [80]. In 2021, the security industry in Germany is forecast to generate sales of EUR 9.2 billion [68].
- Environmental monitoring: in environmental monitoring, indoor and outdoor air is analyzed in order to detect air quality issues caused by harmful VOCs. These issues occur, for example, during the manufacturing of furniture [81]. The detection of harmful and toxic substances is also one of the areas of application for odor sensors. Furthermore, air quality and factory emissions can be monitored as well as the quality of ground and surface water. Sensors can be either installed stationary or mounted on drones [82]. Because of increased environmental awareness and pollution, the market for technological solutions for environmental monitoring applications is growing [75]. The turnover of the German environmental protection industry in 2018 amounted to EUR 71 billion [69].
3. Methodology
4. Results
4.1. Performance Profile of Biosensors for Odor Detection
4.2. Requirement Profiles for Different Application Fields of Odor Sensing Technologies
4.3. Market Potentials of Biosensors in Different Application Scenarios
5. Discussion
5.1. Discussion of the Empirical Investigation
5.2. The Role of Odorant Sensing Biosensors within the Biological Transformation
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Full, J.; Delbrück, L.; Sauer, A.; Miehe, R. Market Perspectives and Future Fields of Application of Odor Detection Biosensors—A Systematic Analysis. Proceedings 2020, 60, 7029. [Google Scholar] [CrossRef]
- Byrne, G.; Dimitrov, D.; Monostori, L.; Teti, R.; van Houten, F.; Wertheim, R. Biologicalisation: Biological transformation in manufacturing. CIRP J. Manuf. Sci. Technol. 2018, 21, 1–32. [Google Scholar] [CrossRef]
- Drossel, W.; Dani, I.; Wertheim, R. Biological transformation and technologies used for manufacturing of multifunctional metal-based parts. Procedia Manuf. 2019, 33, 115–122. [Google Scholar] [CrossRef]
- Herles, B. Industry 5.0: The Next Industrial Revolution is Biological (German). Available online: https://www.capital.de/wirtschaft-politik/industrie-5-0-die-naechste-industrielle-revolution-ist-biologisch (accessed on 31 January 2021).
- Miehe, R.; Bauernhansl, T.; Schwarz, O.; Traube, A.; Lorenzoni, A.; Waltersmann, L.; Full, J.; Horbelt, J.; Sauer, A. The biological transformation of the manufacturing industry—Envisioning biointelligent value adding. Procedia CIRP 2018, 72, 739–743. [Google Scholar] [CrossRef]
- Miehe, R.; Bauernhansl, T.; Beckett, M.; Brecher, C.; Demmer, A.; Drossel, W.-G.; Elfert, P.; Full, J.; Hellmich, A.; Hinxlage, J.; et al. The biological transformation of industrial manufacturing—Technologies, status and scenarios for a sustainable future of the German manufacturing industry. J. Manuf. Sys. 2020, 54, 50–61. [Google Scholar] [CrossRef]
- Guvendiren, M.; Molde, J.; Soares, R.M.D.; Kohn, J. Designing Biomaterials for 3D Printing. ACS Biomater. Sci. Eng. 2016, 2, 1679–1693. [Google Scholar] [CrossRef]
- Gungor-Ozkerim, P.S.; Inci, I.; Zhang, Y.S.; Khademhosseini, A.; Dokmeci, M.R. Bioinks for 3D bioprinting: An overview. Biomater. Sci. 2018, 6, 915–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayavenkataraman, S.; Yan, W.-C.; Lu, W.F.; Wang, C.-H.; Fuh, J.Y.H. 3D bioprinting of tissues and organs for regenerative medicine. Adv. Drug Deliv. Rev. 2018, 132, 296–332. [Google Scholar] [CrossRef]
- Miehe, R.; Fischer, E.; Berndt, D.; Herzog, A.; Horbelt, J.; Full, J.; Bauernhansl, T.; Schenk, M. Enabling bidirectional real time interaction between biological and technical systems: Structural basics of a control oriented modeling of biology-technology-interfaces. Procedia CIRP 2019, 81, 63–68. [Google Scholar] [CrossRef]
- Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e. V. Identified Research and Design Fields in the Field of Action Further and New Development of Biology-Technology Interfaces (German). 2018. Available online: https://www.biotrain.info/projektveroeffentlichungen/ (accessed on 2 February 2021).
- Dung, T.T.; Oh, Y.; Choi, S.-J.; Kim, I.-D.; Oh, M.-K.; Kim, M. Applications and Advances in Bioelectronic Noses for Odour Sensing. Sensors 2018, 18, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohbot, J.D.; Vernick, S. The Emergence of Insect Odorant Receptor-Based Biosensors. Biosensors 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Haghnegahdar, N.; Abbasi Tarighat, M.; Dastan, D. Curcumin-functionalized nanocomposite AgNPs/SDS/MWCNTs for electrocatalytic simultaneous determination of dopamine, uric acid, and guanine in co-existence of ascorbic acid by glassy carbon electrode. J. Mater. Sci. Mater. Electron. 2021. [Google Scholar] [CrossRef]
- Shan, K.; Yi, Z.-Z.; Yin, X.-T.; Dastan, D.; Altaf, F.; Garmestani, H.; Alamgir, F.M. Mixed conductivity evaluation and sensing characteristics of limiting current oxygen sensors. Surf. Interfaces 2020, 21, 100762. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Wang, Z.; Yang, L.; Wu, X.; Han, N.; Chen, Y. Synergetic p+n Field-Effect Transistor Circuits for ppb-Level Xylene Detection. IEEE Sens. J. 2018, 18, 3875–3882. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Sun, W.; Lu, N.; Yan, M.; Wu, Y.; Hua, Z.; Fan, S. Development of a Low-Cost Portable Electronic Nose for Cigarette Brands Identification. Sensors 2020, 20, 4239. [Google Scholar] [CrossRef]
- Yin, X.-T.; Li, J.; Dastan, D.; Zhou, W.-D.; Garmestani, H.; Alamgir, F.M. Ultra-high selectivity of H2 over CO with a p-n nanojunction based gas sensors and its mechanism. Sens. Actuators B Chem. 2020, 319, 128330. [Google Scholar] [CrossRef]
- Shan, K.; Yi, Z.-Z.; Yin, X.-T.; Dastan, D.; Dadkhah, S.; Coates, B.T.; Garmestani, H. Mixed conductivities of A-site deficient Y, Cr-doubly doped SrTiO3 as novel dense diffusion barrier and temperature-independent limiting current oxygen sensors. Adv. Powder Technol. 2020, 31, 4657–4664. [Google Scholar] [CrossRef]
- Guthrie, B. Machine Olfaction. In Springer Handbook of Odor; Büttner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 459–504. ISBN 9783319269306. [Google Scholar]
- Cali, K.; Persaud, K.C. Modification of an Anopheles gambiae odorant binding protein to create an array of chemical sensors for detection of drugs. Sci. Rep. 2020, 10, 3890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spath, D.; Ardilio, A.; Laib, S. The potential of emerging technologies: Strategy-planning for technology-providers throughout an application-radar. In Proceedings of the PICMET ’09—2009 Portland International Conference on Management of Engineering & Technology, Portland, OR, USA, 2–6 August 2009; pp. 462–477. [Google Scholar]
- Müller, W.A.; Frings, S.; Möhrlen, F. Animal and Human Physiology (German); Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-662-58461-3. [Google Scholar]
- Breer, H.; Fleischer, J.; Strotmann, J. Odorant Sensing. In Springer Handbook of Odor; Büttner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 585–603. ISBN 9783319269306. [Google Scholar]
- Feigenspan, A. Principles of Physiology (German); Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-662-54116-6. [Google Scholar]
- Frings, S.; Müller, F. Biology of the Senses (German); Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-662-58349-4. [Google Scholar]
- Breer, H.; Pfannkuche, H.; Sann, H.; Deeg, C.A. Sensory Physiology (German). In Physiology of Pets (German); von Engelhardt, W., Breves, G., Diener, M., Gäbel, G., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 2015; ISBN 9783830412595. [Google Scholar]
- Cave, J.W.; Wickiser, J.K.; Mitropoulos, A.N. Progress in the development of olfactory-based bioelectronic chemosensors. Biosens. Bioelectron. 2019, 123, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Son, M.; Park, T.H. The bioelectronic nose and tongue using olfactory and taste receptors: Analytical tools for food quality and safety assessment. Biotechnol. Adv. 2018, 36, 371–379. [Google Scholar] [CrossRef]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic Nose and Its Applications: A Survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef] [Green Version]
- Scheider-Häder, B.; Müller, M.; Hambacher, E.; Wiech, H.; Wortelmann, T. Instrumental Sensory Analysis in the Food Industry (German): Teil 1: Elektronische Nasen. Available online: https://www.dlg.org/de/lebensmittel/themen/publikationen/expertenwissen-sensorik/elektronische-nasen/ (accessed on 3 April 2020).
- Röck, F.; Weimar, U. Electronic nose and signal extraction (German). In Information Fusion in Measurement and Sensor Technology (German); Beyerer, J., Ed.; Universitätsverlag: Karlsruhe, Germany, 2006; pp. 261–278. ISBN 3-86644-053-7. [Google Scholar]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef]
- Karunakaran, C.; Bhargava, K.; Benjamin, R. (Eds.) Biosensors and Bioelectronics; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 012803100X. [Google Scholar]
- Dacres, H.; Wang, J.; Leitch, V.; Horne, I.; Anderson, A.R.; Trowell, S.C. Greatly enhanced detection of a volatile ligand at femtomolar levels using bioluminescence resonance energy transfer (BRET). Biosens. Bioelectron. 2011, 29, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Jin, H.J.; Song, H.S.; Hong, S.; Park, T.H. Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. J. Biotechnol. 2012, 157, 467–472. [Google Scholar] [CrossRef]
- Park, S.J.; Kwon, O.S.; Lee, S.H.; Song, H.S.; Park, T.H.; Jang, J. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett. 2012, 12, 5082–5090. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, D.; Kim, J.; Moon, D.; Song, H.S.; Lee, M.; Hong, S.; Park, T.H. Nanodisc-Based Bioelectronic Nose Using Olfactory Receptor Produced in Escherichia coli for the Assessment of the Death-Associated Odor Cadaverine. ACS Nano 2017, 11, 11847–11855. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Son, M.; Kang, J.H.; Kim, D.; Hong, S.; Park, T.H.; Chun, H.S.; Choi, S.S. A triangle study of human, instrument and bioelectronic nose for non-destructive sensing of seafood freshness. Sci. Rep. 2018, 8, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.H.; Park, J.; Ahn, J.H.; Jin, H.J.; Hong, S.; Park, T.H. A peptide receptor-based bioelectronic nose for the real-time determination of seafood quality. Biosens. Bioelectron. 2013, 39, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Reiner-Rozman, C.; Kotlowski, C.; Knoll, W. Electronic Biosensing with Functionalized rGO FETs. Biosensors 2016, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Di Pietrantonio, F.; Benetti, M.; Cannatà, D.; Verona, E.; Palla-Papavlu, A.; Fernández-Pradas, J.M.; Serra, P.; Staiano, M.; Varriale, A.; D’Auria, S. A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules. Biosens. Bioelectron. 2015, 67, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Mulla, M.Y.; Tuccori, E.; Magliulo, M.; Lattanzi, G.; Palazzo, G.; Persaud, K.; Torsi, L. Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat. Commun. 2015, 6, 6010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiao, M.-S.; Chang, A.Y.-F.; Liao, B.-Y.; Ching, Y.-H.; Lu, M.-Y.J.; Chen, S.M.; Li, W.-H. Transcriptomes of mouse olfactory epithelium reveal sexual differences in odorant detection. Genome Biol. Evol. 2012, 4, 703–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, K.; Li, S.; Zhuang, L.; Qin, Z.; Zhang, B.; Huang, L.; Wang, P. In vivo bioelectronic nose using transgenic mice for specific odor detection. Biosens. Bioelectron. 2018, 102, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Guo, T.; Cao, D.; Ling, L.; Su, K.; Hu, N.; Wang, P. Detection and classification of natural odors with an in vivo bioelectronic nose. Biosens. Bioelectron. 2015, 67, 694–699. [Google Scholar] [CrossRef]
- Dennis, J.C.; Aono, S.; Vodyanoy, V.J.; Morrison, E.E. Development, Morphology, and Functional Anatomy of the Olfactory Epithelium. In Handbook of Olfaction and Gustation, 3rd ed.; Doty, R.L., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2015; pp. 93–108. ISBN 9781118971758. [Google Scholar]
- Strauch, M.; Lüdke, A.; Münch, D.; Laudes, T.; Galizia, C.G.; Martinelli, E.; Lavra, L.; Paolesse, R.; Ulivieri, A.; Catini, A.; et al. More than apples and oranges--detecting cancer with a fruit fly’s antenna. Sci. Rep. 2014, 4, 3576. [Google Scholar] [CrossRef] [Green Version]
- Myrick, A.J.; Park, K.-C.; Hetling, J.R.; Baker, T.C. Real-time odor discrimination using a bioelectronic sensor array based on the insect electroantennogram. Bioinspir. Biomim. 2008, 3, 46006. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Chen, P.; Yu, H.; Liu, Q.; Zong, X.; Cai, H.; Wang, P. A novel biomimetic olfactory-based biosensor for single olfactory sensory neuron monitoring. Biosens. Bioelectron. 2009, 24, 1498–1502. [Google Scholar] [CrossRef]
- Du, L.; Zou, L.; Wang, Q.; Zhao, L.; Huang, L.; Wang, P.; Wu, C. A novel biomimetic olfactory cell-based biosensor with DNA-directed site-specific immobilization of cells on a microelectrode array. Sens. Actuators B Chem. 2015, 217, 186–192. [Google Scholar] [CrossRef]
- Figueroa, X.A.; Cooksey, G.A.; Votaw, S.V.; Horowitz, L.F.; Folch, A. Large-scale investigation of the olfactory receptor space using a microfluidic microwell array. Lab Chip 2010, 10, 1120–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veithen, A.; Philippeau, M.; Chatelain, P. High-Throughput Receptor Screening Assay. In Springer Handbook of Odor; Büttner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 505–526. ISBN 9783319269306. [Google Scholar]
- Sanz, G.; Schlegel, C.; Pernollet, J.-C.; Briand, L. Comparison of odorant specificity of two human olfactory receptors from different phylogenetic classes and evidence for antagonism. Chem. Senses 2005, 30, 69–80. [Google Scholar] [CrossRef]
- Kajiya, K.; Inaki, K.; Tanaka, M.; Haga, T.; Kataoka, H.; Touhara, K. Molecular Bases of Odor Discrimination: Reconstitution of Olfactory Receptors that Recognize Overlapping Sets of Odorants. J. Neurosci. 2001, 21, 6018–6025. [Google Scholar] [CrossRef]
- Saito, H.; Kubota, M.; Roberts, R.W.; Chi, Q.; Matsunami, H. RTP family members induce functional expression of mammalian odorant receptors. Cell 2004, 119, 679–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirokova, E.; Schmiedeberg, K.; Bedner, P.; Niessen, H.; Willecke, K.; Raguse, J.-D.; Meyerhof, W.; Krautwurst, D. Identification of specific ligands for orphan olfactory receptors. G protein-dependent agonism and antagonism of odorants. J. Biol. Chem. 2005, 280, 11807–11815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matarazzo, V.; Zsürger, N.; Guillemot, J.-C.; Clot-Faybesse, O.; Botto, J.-M.; Dal Farra, C.; Crowe, M.; Demaille, J.; Vincent, J.-P.; Mazella, J.; et al. Porcine odorant-binding protein selectively binds to a human olfactory receptor. Chem. Senses 2002, 27, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Abaffy, T.; Malhotra, A.; Luetje, C.W. The molecular basis for ligand specificity in a mouse olfactory receptor: A network of functionally important residues. J. Biol. Chem. 2007, 282, 1216–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukutani, Y.; Nakamura, T.; Yorozu, M.; Ishii, J.; Kondo, A.; Yohda, M. The N-terminal replacement of an olfactory receptor for the development of a yeast-based biomimetic odor sensor. Biotechnol. Bioeng. 2012, 109, 205–212. [Google Scholar] [CrossRef]
- Paredes, R.M.; Etzler, J.C.; Watts, L.T.; Zheng, W.; Lechleiter, J.D. Chemical calcium indicators. Methods 2008, 46, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraden, J. Sensor Characteristics. In Handbook of Modern Sensors; Fraden, J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 35–68. ISBN 978-3-319-19302-1. [Google Scholar]
- Frost & Sullivan. Analysis of the Global Biosensors Market: Biosensors Monitoring Stimulates Prevention and Control; Frost & Sullivan: Mountain View, CA, USA, 2015. [Google Scholar]
- Statistisches Bundesamt. Sales Development in the Healthcare Sector in Germany in the Years from 2006 to 2023 (German). Available online: https://de.statista.com/statistik/daten/studie/247979/umfrage/prognose-zum-umsatz-im-gesundheitswesen-in-deutschland/ (accessed on 12 October 2020).
- Statistisches Bundesamt. Sales of the Food Industry in Germany in the Years 2008 to 2019 (German). Available online: https://de.statista.com/statistik/daten/studie/75611/umfrage/umsatz-der-deutschen-ernaehrungsindustrie-seit-2008/ (accessed on 12 October 2020).
- Statistisches Bundesamt. Net Sales of Agriculture in Germany in the Years 2002 to 2018 (German). Available online: https://de.statista.com/statistik/daten/studie/323340/umfrage/umsatz-der-landwirtschaft-in-deutschland/ (accessed on 12 October 2020).
- Statistisches Bundesamt. Sales of the German Personal Care and Fragrance Manufacturing Industry from 2008 to 2019 (German). Available online: https://de.statista.com/statistik/daten/studie/256917/umfrage/umsatz-der-deutschen-kosmetik-und-koerperpflegeindustrie/ (accessed on 12 October 2020).
- Statistisches Bundesamt. Forecasted Sales Development in the Security Industry in Germany in the Years from 2007 to 2021 (German). Available online: https://de.statista.com/statistik/daten/studie/248225/umfrage/prognose-zum-umsatz-in-der-sicherheitsbranche-in-deutschland/ (accessed on 12 October 2020).
- Statistisches Bundesamt. Sales of the German Environmental Protection Industry in the Years 2008 to 2018 (German). Available online: https://de.statista.com/statistik/daten/studie/240324/umfrage/umsatz-mit-umweltschutz-klimaschutzguetern-in-deutschland/ (accessed on 12 October 2020).
- Werding, M. Definition: Healthcare (German). Springer Fachmedien Wiesbaden GmbH [Online]. 19 February 2018. Available online: https://wirtschaftslexikon.gabler.de/definition/gesundheitswesen-34513/version-258015 (accessed on 12 October 2020).
- Statista. Healthcare 2020 (German): Statista Branchenreport—WZ-Code 86. 2020. Available online: https://de.statista.com/statistik/studie/id/62/dokument/gesundheitswesen/ (accessed on 12 October 2020).
- Chen, S.; Wang, Y.; Choi, S. Applications and Technology of Electronic Nose for Clinical Diagnosis. OJAB 2013, 2, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Capelli, L.; Taverna, G.; Bellini, A.; Eusebio, L.; Buffi, N.; Lazzeri, M.; Guazzoni, G.; Bozzini, G.; Seveso, M.; Mandressi, A.; et al. Application and Uses of Electronic Noses for Clinical Diagnosis on Urine Samples: A Review. Sensors 2016, 16, 1708. [Google Scholar] [CrossRef] [Green Version]
- Statistisches Bundesamt. Anzahl der Betriebe in der Lebensmittelindustrie in Deutschland in den Jahren 2008 bis 2019 (German). Available online: https://de.statista.com/statistik/daten/studie/321182/umfrage/betriebe-in-der-lebensmittelindustrie-in-deutschland/ (accessed on 12 October 2020).
- Wasilewski, T.; Gębicki, J.; Kamysz, W. Advances in olfaction-inspired biomaterials applied to bioelectronic noses. Sens. Actuators B Chem. 2018, 257, 511–537. [Google Scholar] [CrossRef]
- Berwanger, J. Definition: Agriculture (German). Available online: https://wirtschaftslexikon.gabler.de/definition/landwirtschaft-41331/version-264696 (accessed on 12 October 2020).
- Statistisches Bundesamt. Number of Establishments in the Agricultural Sector in Germany in the Years 1975 to 2019. Available online: https://de.statista.com/statistik/daten/studie/36094/umfrage/landwirtschaft---anzahl-der-betriebe-in-deutschland/ (accessed on 12 October 2020).
- Pan, L.; Yang, S.X. A new intelligent electronic nose system for measuring and analysing livestock and poultry farm odours. Environ. Monit. Assess. 2007, 135, 399–408. [Google Scholar] [CrossRef]
- Statistisches Bundesamt. Number of Establishments in the German Personal Care and Fragrance Manufacturing Industry in the Years 2008 to 2019 (German). Available online: https://de.statista.com/statistik/daten/studie/256938/umfrage/betriebe-in-der-deutschen-kosmetik-und-koerperpflegeindustrie/ (accessed on 12 October 2020).
- Koniku Inc. Koniku—Intelligence is Natural: Application. Available online: https://koniku.com/applications (accessed on 1 October 2020).
- Brown, N. Indoor air quality monitoring (German). Elektronik Industrie 2017, 48, 62–85. [Google Scholar]
- Burgués, J.; Marco, S. Environmental chemical sensing using small drones: A review. Sci. Total Environ. 2020, 748, 141172. [Google Scholar] [CrossRef]
- Prickril, B.; Rasooly, A. Biosensors and Biodetection; Springer: New York, NY, USA, 2017; ISBN 978-1-4939-6910-4. [Google Scholar]
- Hurot, C.; Scaramozzino, N.; Buhot, A.; Hou, Y. Bio-Inspired Strategies for Improving the Selectivity and Sensitivity of Artificial Noses: A Review. Sensors 2020, 20, 1803. [Google Scholar] [CrossRef] [Green Version]
- Son, M.; Lee, J.Y.; Ko, H.J.; Park, T.H. Bioelectronic Nose: An Emerging Tool for Odor Standardization. Trends Biotechnol. 2017, 35, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, T.; Gębicki, J.; Kamysz, W. Bioelectronic nose: Current status and perspectives. Biosens. Bioelectron. 2017, 87, 480–494. [Google Scholar] [CrossRef] [PubMed]
- Beccherelli, R.; Zampetti, E.; Pantalei, S.; Bernabei, M.; Persaud, K.C. Design of a very large chemical sensor system for mimicking biological olfaction. Sens. Actuators B Chem. 2010, 146, 446–452. [Google Scholar] [CrossRef]
- Du, L.; Wu, C.; Liu, Q.; Huang, L.; Wang, P. Recent advances in olfactory receptor-based biosensors. Biosens. Bioelectron. 2013, 42, 570–580. [Google Scholar] [CrossRef]
- Oh, J.; Yang, H.; Jeong, G.E.; Moon, D.; Kwon, O.S.; Phyo, S.; Lee, J.; Song, H.S.; Park, T.H.; Jang, J. Ultrasensitive, Selective, and Highly Stable Bioelectronic Nose That Detects the Liquid and Gaseous Cadaverine. Anal. Chem. 2019, 91, 12181–12190. [Google Scholar] [CrossRef]
- Tan, J.; Xu, J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Arroyo, P.; Meléndez, F.; Suárez, J.I.; Herrero, J.L.; Rodríguez, S.; Lozano, J. Electronic Nose with Digital Gas Sensors Connected via Bluetooth to a Smartphone for Air Quality Measurements. Sensors 2020, 20, 786. [Google Scholar] [CrossRef] [Green Version]
- Pelosi, P.; Zhu, J.; Knoll, W. From Gas Sensors to Biomimetic Artificial Noses. Chemosensors 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Macías Macías, M.; Agudo, J.E.; García Manso, A.; García Orellana, C.J.; González Velasco, H.M.; Gallardo Caballero, R. A compact and low cost electronic nose for aroma detection. Sensors 2013, 13, 5528–5541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, A.; Yan, F. Flexible Electrochemical Biosensors for Health Monitoring. ACS Appl. Electron. Mater. 2020. [Google Scholar] [CrossRef]
- Son, M.; Kim, D.; Ko, H.J.; Hong, S.; Park, T.H. A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors. Biosens. Bioelectron. 2017, 87, 901–907. [Google Scholar] [CrossRef]
- Kwon, O.S.; Song, H.S.; Park, S.J.; Lee, S.H.; An, J.H.; Park, J.W.; Yang, H.; Yoon, H.; Bae, J.; Park, T.H.; et al. An Ultrasensitive, Selective, Multiplexed Superbioelectronic Nose That Mimics the Human Sense of Smell. Nano Lett. 2015, 15, 6559–6567. [Google Scholar] [CrossRef]
- Burgués, J.; Jiménez-Soto, J.M.; Marco, S. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models. Anal. Chim. Acta 2018, 1013, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Burgués, J.; Marco, S. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors. Sensors 2018, 18, 339. [Google Scholar] [CrossRef] [Green Version]
Properties | Fulfillment | Rating | References |
---|---|---|---|
High sensitivity | Because of the natural binding of olfactory receptors (ORs) with the specific ligand, the sensor can react even to very small amounts of analyte. | 2 | [12,83,84,85] |
High accuracy | High accuracy due to natural binding of OR with specific ligand. | 2 | [12,83] |
High resolution | Substances can be detected in very high resolutions at a level of nanomoles (or lower). | 2 | [12,86,87,88] |
High repeat accuracy | Currently there are still problems with the stability of the results. No high repeat accuracy can be guaranteed yet. | 0 | [86,89,90] |
High selectivity | It can be tested very specifically for certain substances. | 2 | [12,20,84,85] |
High specificity | Good results for falsely positive and falsely negative measurements. | 2 | [12,20] |
Low weight | A compact and light design for biosensors in comparison to analytical instruments allows online monitoring. Portable devices (sensors on chip) are currently in testing phases. No advantages. Probably no significant advantages over electronic noses to be expected. | 1 | [75,85] |
Small dimensions | Analytical instruments are large benchtop systems permanently installed in laboratories. There are electronic noses with a diameter of a few cm. The same is possible for biosensors. Probably no significant advantages over electronic noses to be expected. | 1 | [17,85,89,91] |
Low cost | The manufacturing costs for biological odor sensors are not yet finally known. Because of high research and development costs and complex production processes, a high sales price can be expected. For comparison, analytical instruments can cost up to USD 30,000. Electronic noses are available from USD 200. | 1 | [13,17,28,85,86,92,93] |
High durability | Sensors, which use cells as bioreceptors, currently have a lifetime of just about a few weeks. The durability of these systems, especially for use as industrial sensors, are not reported. | 0 | [12,20,84,86,92] |
Low maintenance effort | Bioreceptors must be replaced regularly. Replacement receptors must be stored correctly. | 0 | [28,86,94] |
Short measuring duration | Measuring times for biosensors are reported from 5–30 s. Total measuring process takes 5 min due to sample preparation and pauses between measurements. This is comparatively faster than analytical instruments but in the same range as electronic noses. | 1 | [12,28,85] |
Operability | Usability cannot be conclusively evaluated yet. However, odor sensors allow a non-invasive measuring method that does not require the extraction of sample material. | 1 | [33,73,85] |
Resistant to environmental influences | Sensors must be protected against environmental influences. Susceptible to humidity and temperature fluctuations. | 0 | [20] |
Multi-sensing capability | Biosensors are able to measure several different substances simultaneously. By multiplexing/multi-channeling various naturally occurring or synthetically optimized biological detection elements (olfactory receptors, olfactory receptor derived proteins, odorant binding protein), the bioelectronic nose can detect a variety of combinations of different VOCs. Although only a few multiplexed systems have been presented so far, multi-sensing is considered to be a decisive advantage over technical odor sensors in terms of mimicking and digitizing the sense of smell. | 2 | [29,33,83,84,85,95,96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Full, J.; Baumgarten, Y.; Delbrück, L.; Sauer, A.; Miehe, R. Market Perspectives and Future Fields of Application of Odor Detection Biosensors within the Biological Transformation—A Systematic Analysis. Biosensors 2021, 11, 93. https://doi.org/10.3390/bios11030093
Full J, Baumgarten Y, Delbrück L, Sauer A, Miehe R. Market Perspectives and Future Fields of Application of Odor Detection Biosensors within the Biological Transformation—A Systematic Analysis. Biosensors. 2021; 11(3):93. https://doi.org/10.3390/bios11030093
Chicago/Turabian StyleFull, Johannes, Yannick Baumgarten, Lukas Delbrück, Alexander Sauer, and Robert Miehe. 2021. "Market Perspectives and Future Fields of Application of Odor Detection Biosensors within the Biological Transformation—A Systematic Analysis" Biosensors 11, no. 3: 93. https://doi.org/10.3390/bios11030093
APA StyleFull, J., Baumgarten, Y., Delbrück, L., Sauer, A., & Miehe, R. (2021). Market Perspectives and Future Fields of Application of Odor Detection Biosensors within the Biological Transformation—A Systematic Analysis. Biosensors, 11(3), 93. https://doi.org/10.3390/bios11030093