Selective Voltammetric Detection of Ascorbic Acid from Rosa Canina on a Modified Graphene Oxide Paste Electrode by a Manganese(II) Complex
Abstract
:1. Introduction
2. Experimental
2.1. Material and Methods
2.2. Fabrication of the Electrochemical Sensor and Detection of Ascorbic Acid
- Stirring for 300 s of the manganese complex dissolution solution (0.01 mol L−1 borate buffer pH 9.0 containing 0.02 mol L−1 KBr) by applying a potential of +0.0 V and using the differential pulse voltammetry (DPV), as well as scanning the electrode potential cathodically between +1.2 to 0.0 V to immobilize the complex on the surface of the GROPE (Mn-GrOPE).
- Then Mn-GrOPE was rinsed with double-distilled water and dried at room temperature.
- Stirring for 300 s in the dissolution solution of ascorbic acid (0.05 mol L−1 acetate buffer pH 6.8 containing 0.01 mol L−1 NaCl) without applying a potential for its adsorption to the manganese modified GrOPE (Vit C-Mn-GROPE).
- Afterward, the fabricated Vit C-Mn-GROPE was transferred in measurement solution (0.1 mol L−1 acetate buffer pH 5.4 containing 0.008 mol L−1 KBr), where the signal transduction took place, using square wave voltammetry and cathodically scanning the potential of the working electrode between +2.2 and +0.0 V, with a step potential equal to 0.0003 mV, a modulation amplitude equal to 0.08 mV and a frequency equal to 25 Hz. The resulting voltammogram in each measurement took into account the manganese reduction peak, which appeared at a potential of +0.7 V.
2.3. Determination of Vitamin C in Real Samples
3. Results and Discussion
3.1. Electrochemical Behavior of the Modified Electrode Mn-GrOPE
3.2. Morphology of the Modified Mn-GrOPE
3.3. Electrochemical Behavior of Vitamin C on the Modified Mn-GrOPE
3.4. Optimization of Experimental Conditions
4. Analytical Performance of the Proposed Assay
5. Selectivity of the Proposed Assay
6. Determination of Vitamin C in Real Samples
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolander, F.F. Vitamins: Not just for enzymes. Cur. Opin. Investig. Drugs 2006, 7, 912–915. [Google Scholar]
- Kaçar, C.; Erden, P.E. An amperometric biosensor based on poly(L-aspartic acid), nanodiamond particles, carbon nanofiber, and ascorbate oxidase–modified glassy carbon electrode for the determination of L-ascorbic acid. Anal. Bioanal. Chem. 2020, 412, 5315–5327. [Google Scholar] [CrossRef] [PubMed]
- Shahamirifard, S.A.; Ghaedi, M. A new electrochemical sensor for simultaneous determination of arbutin and vitamin C based on hydroxyapatite-ZnO-Pd nanoparticles modified graphene oxide paste electrode. Biosens. Bioelectr. 2019, 141, 111474. [Google Scholar] [CrossRef] [PubMed]
- Lachapelle, M.Y.; Dronin, G. Inactivation dates of the human and guinea pig vitamin C genes. Genetica 2010, 139, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Akyilmaz, E.; Guvenc, C.; Koylu, H. A novel microbial biosensor system based on C. tropicalis yeast cells for selective determination of L-Ascorbıc acid. Bioelectrochemistry 2020, 132, 107420. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Mlcek, J.; Sochor, J.; Baron, M.; Kynicky, J.; Jurikova, T. Determination of Ascorbic Acid by Electrochemical Techniques and other Methods. Int. J. Electrochem. Sci. 2015, 10, 2421–2431. [Google Scholar]
- Wang, D.; Zhang, L.; Li, P.; Li, J.; Dong, C. Convenient synthesis of carbon nanodots for detecting Cr(vi) and ascorbic acid by fluorimetry. New J. Chem. 2020, 44, 20806–20811. [Google Scholar] [CrossRef]
- Okiei, W.; Ogunlesi, M.; Azeez, L.; Obakachi, V.; Osunsanmi, M.; Nkenchor, G. The Voltammetric and Titrimetric Determination of Ascorbic Acid Levels in Tropical Fruit Samples. Int. J. Electrochem. Sci. 2009, 4, 276–287. [Google Scholar]
- Zhu, M.; Tang, J.; Tu, X.; Chen, W. Determination of Ascorbic Acid, Total Ascorbic Acid and Dehydroascorbic Acid in Bee Pollen Using Hydrophilic Interaction Liquid Chromatography-Ultraviolet Detection. Molecules 2020, 25, 5696. [Google Scholar] [CrossRef]
- Szőcs, A.; Vancea, S.; Kiss, I.; Donáth-Nagy, G. Quantification of Plasma and Leukocyte Vitamin C by High Performance Liquid Chromatography with Mass Spectrometric Detection. J. Anal. Chem. 2020, 75, 1168–1176. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Bukharinova, M.A.; Stozhko, N.Y.; Sokolkov, S.V.; Tarasov, A.V.; Vidrevich, M.B. Electrochemical Sensor Based on a Carbon Vei Modified by Phytosynthesized Gold Nanoparticles for Determination of Ascorbic Acid. Sensors 2020, 20, 1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tashkhourian, J.; Valizadeh, H.; Abbaspour, A. Ascorbic Acid Determination Based on Electrocatalytic Behavior of Metal-Organic Framework MIL-101-(Cr) at Modified Carbon-Paste Electrode. J. AOAC Int. 2019, 102, 625–632. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.; Hasebe, Y.; Chen, L.; Zhang, Z.; Hu, Z. Electrochemical Sensor for Detection of Ascorbic Acid Using a Methylene Blue-Doped Polyimide-Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2019, 14, 8494–8505. [Google Scholar] [CrossRef]
- Prongmanee, W.; Asanithi, P. L-Cysteine/Graphene oxide for electrochemical determination of ascorbic acid in the presence of dopamine and uric acid. J. Phys. Conf. Ser. 2019, 1380, 012075. [Google Scholar] [CrossRef]
- Tkachenko, A.B.; Onizhuk, M.O.; Tkachenko, O.S.; Arenas, L.T.; Benvenutti, E.V.; Gushikem, Y.; Panteleimonov, A.V. An Electrochemical Sensor Based on Graphite Electrode Modified with Silica Containing 1-n-Propyl-3-Methylimidazolium Species for Determination of Ascorbic Acid. Methods Objects Chem. Anal. 2019, 14, 5–14. [Google Scholar] [CrossRef]
- Sharifan, S.; Nezamzadeh-Ejhien, A. Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid. Mater. Sci. Eng. C 2016, 58, 510–520. [Google Scholar] [CrossRef]
- Chiniforoshan, H.; Ensafi, A.A.; Heydari-Bafrooei, E.; Khalesi, S.B.; Tabrizi, L. Polymeric nanoparticle of copper(II)-4,4′-dicyanamidobiphenyl ligand: Synthetic, spectral and structural aspect, application to electrochemical sensing of dopamine and ascorbic acid. Appl. Surf. Sci. 2015, 347, 315–320. [Google Scholar] [CrossRef]
- Taei, M.; Hasanpour, F.; Tavakkoli, N.; Bahrameian, M. Electrochemical characterization of poly(fuchsine acid) modified glassy carbon electrode and its application for simultaneous determination of ascorbic acid, epinephrine and uric acid. J. Mol. Liq. 2015, 211, 353–362. [Google Scholar] [CrossRef]
- Darabi, R.; Shabani-Nooshabadi, M.; Khoobi, A. A Potential Strategy for Simultaneous Determination of Deferoxamine and Vitamin C Using MCR-ALS with Nanostructured Electrochemical Sensor in Serum and Urine of Thalassemia and Diabetic Patients. J. Electrochem. Soc. 2021, 168, 046514. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, J.; Xu, H.; Gao, S.; Jiang, T.; Zhang, S.; Jin, J. Gold nanorods decorated with graphene oxide and multi-walled carbon nanotubes for trace level voltammetric determination of ascorbic acid. Microchim. Acta 2019, 186, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, C.; Wang, Q.; Wang, X.; Wang, S. Electrochemical sensor based on an electrode modified with porous graphitic carbon nitride nanosheets (C3N4) embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine and uric acid. Microchim. Acta 2020, 187, 149. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, H.; Liu, Q.; Li, L.; Kong, J. Electrodeposition of Three-Dimensional Network Nanostructure PEDOT/PANI for Simultaneous Voltammetric Detection of Ascorbic Acid, Dopamine and Uric Acid. Chem. Sel. 2020, 5, 1288–1293. [Google Scholar] [CrossRef]
- Karaboduk, K. Electrochemical Determination of Ascorbic Acid Based on AgNPs/PVP-Modified Glassy Carbon Electrode. Chem. Sel. 2019, 4, 6361–6369. [Google Scholar] [CrossRef]
- Majer, D.; Mastnak, T.; Finšgar, M. An Advanced Statistical Approach Using Weighted Linear Regression in Electroanalytical Method Development for Epinephrine, Uric Acid and Ascorbic Acid Determination. Sensors 2020, 20, 7056. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Deng, P.; Tian, Y.; Feng, J.; Xiao, J.; Li, J.; Liu, J.; Li, G.; He, Q. Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite. J. Nanobiotechnol. 2020, 18, 112. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Rong, Y.; Fan, L.; Zhang, C.; Dong, W.; Li, J.; Niu, J.; Yang, C.; Shuang, S.; Dong, C.; et al. Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin. Microchim. Acta 2019, 186, 751. [Google Scholar] [CrossRef] [PubMed]
- Kucukkolbasi, S.; Erdogan, Z.O.; Baslak, C.; Sogut, D.; Kus, M. A Highly Sensitive Ascorbic Acid Sensor Based on Graphene Oxide/CdTe Quantum Dots-Modified Glassy Carbon Electrode. Rus. J. Electrochem. 2019, 55, 107–114. [Google Scholar] [CrossRef]
- Tian, K.J.; Hu, L.; Dong, Y.P.; Chu, X.F. Application of Black Phosphorus Nanosheets Modified Electrode for Electrochemical Determination of Ascorbic Acid. Rus. J. Electrochem. 2019, 55, 1221–1228. [Google Scholar] [CrossRef]
- Buledi, J.A.; Ameen, S.; Khand, N.H.; Solangi, A.R.; Taqvi, I.H.; Agheem, M.H.; Wajdan, Z. CuO Nanostructures Based Electrochemical Sensor for Simultaneous Determination of Hydroquinone and Ascorbic Acid. Electroanalysis 2020, 32, 1600–1607. [Google Scholar] [CrossRef]
- Fredj, Z.; Ali, M.B.; Abbas, M.N.; Dempsey, E. Simultaneous determination of ascorbic acid, uric acid and dopamine using silver nanoparticles and copper monoamino-phthalocyanine functionalised acrylate polymer. Anal. Methods 2020, 12, 3883–3891. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Liu, Y.; Xin, G.; Wang, M.; Zhang, Z.; Liu, Z. Electrochemical sensor based on a three-dimensional nanostructured MoS2 nanosphere-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid. RSC Adv. 2019, 9, 2997–3003. [Google Scholar] [CrossRef] [Green Version]
- Asif, M.; Aziz, A.; Wang, H.; Wang, Z.; Wang, W.; Ajmal, M.; Xiao, F.; Chen, X.; Liu, H. Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Microchim. Acta 2019, 186, 61. [Google Scholar] [CrossRef]
- Hatefi-Mehrjardi, A.; Karimi, M.A.; Soleymanzadeh, M.; Barani, A. Highly Sensitive Detection of Dopamine, Ascorbic and Uric Acids using Dianix Yellow/Multi-walled Carbon Nanotubes Modified Electrode. J. Anal. Chem. 2020, 75, 366–377. [Google Scholar] [CrossRef]
- Broncová, G.; Prokopec, V.; Shishkanova, T.V. Potentiometric Electronic Tongue for Pharmaceutical Analytics: Determination of Ascorbic Acid Based on Electropolymerized Films. Chemosensors 2021, 9, 110. [Google Scholar] [CrossRef]
- Kunpatee, K.; Traipop, S.; Chailapakul, O.; Chuanuwatanakul, S. Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode. Sens. Actuators B. Chem. 2020, 314, 128059. [Google Scholar] [CrossRef]
- Shaidarova, L.G.; Chelnokova, I.A.; Leksina, Y.A.; Gedmina, A.V.; Budnikov, H.C. In situ Voltammetry Determination of Ascorbic and Oxalic Acids in Juices and Fruits Using an Electrode Modified by a Gold–Palladium Bimetallic System. J. Anal. Chem. 2021, 76, 365–370. [Google Scholar] [CrossRef]
- Ortiz-Aguayo, D.; Bonet-San-Emeterio, M.; del Valle, M. Simultaneous Voltammetric Determination of Acetaminophen, Ascorbic Acid and Uric Acid by Use of Integrated Array of Screen-Printed Electrodes and Chemometric Tools. Sensors 2019, 19, 3286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedenyapina, M.D.; Kazakova, M.M.; Skundin, A.M. Voltammetric Determination of Ascorbic Acid in Pharmaceutical Formulations on a Boron Doped Diamond Electrode. Rus. J. Phys. Chem. A 2019, 93, 1178–1181. [Google Scholar] [CrossRef]
- Freeman, C.J.; Ullah, B.; Islam, M.S.; Collinson, M.M. Potentiometric Biosensing of Ascorbic Acid, Uri c Acid, and Cysteine in Microliter Volumes Using Miniaturized Nanoporous Gold Electrodes. Biosensors 2021, 11, 10. [Google Scholar] [CrossRef]
- Monti, P.; Migheli, Q.; Bartiromo, A.R.; Pauciulo, A.; Gliubizzi, R.; Marceddu, S.; Serra, P.A.; Delogu, G. A Storage-Dependent Platinum Functionalizatio with a Commercial Pre-Polymer Useful for Hydrogen Peroxide and Ascorbic Acid Detection. Sensors 2019, 19, 2435. [Google Scholar] [CrossRef] [Green Version]
- Hatamie, A.; Rahmati, R.; Rezvani, E.; Angizi, S.; Simchi, A. Yttrium hexacyanoferrate microflowers on freestanding three-dimensional graphene substrates for ascorbic acid detection. ACS Appl. Nano Mater. 2019, 2, 2212–2221. [Google Scholar] [CrossRef]
- Cunja, V.; Miculic-Petkovsek, M.; Zupan, A.; Stampar, F.; Schmitzer, V. Frost decreases content of sugars, ascorbic acid, and some quercetin glycosides but stimulates selected carotenes in Rosa canina hips. J. Plant Physiol. 2015, 178, 55–63. [Google Scholar] [CrossRef]
- Nojavan, S.; Khalilian, F.; Klaie, F.M.; Rahimi, A.; Arabanian, A.; Chalavi, S. Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. J. Food Compos. Anal. 2008, 21, 300–305. [Google Scholar] [CrossRef]
- Salminen, J.-P.; Karonen, M.; Lempa, K.; Liimatainen, J.; Sinkkonen, J.; Lukkarinen, M.; Pihlaja, K. Characterisation of proanthocyanidin aglycones and glycosides from rose hips by high performance liquid chromatography-mass spectrometry, and their rapid quantification together with Vitamin, C. J. Chromatogr. A 2005, 1077, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Pekin, M.; Eskiköy Bayraktepe, D.; Yazan, Z. Electrochemical sensor based on a sepiolite clay nanoparticle-based electrochemical sensor for ascorbic acid detection in real-life samples. Ionics 2017, 23, 3487–3495. [Google Scholar] [CrossRef]
- Erdurak-Kiliç, C.S.; Uslu, B.; Dogan, B.; Ozgen, U.; Ozkan, S.A.; Coskun, M. Anodic voltammetric behavior of ascorbic acid and its selective determination in pharmaceutical dosage forms and some Rosa species of Turkey. J. Anal. Chem. 2006, 61, 1113–1120. [Google Scholar]
- Karastogianni, S.; Girousi, S. Square Wave Voltammetric (SWV) Determination of Cyanocobalamin (Vitamin B12) in Pharmaceuticals and Supplements on a Carbon Paste Electrode (CPE) Modified by a Manganese(II) Polymeric Film. Anal. Lett. 2021. [Google Scholar] [CrossRef]
- Dimitropoulou, G.; Karastogianni, S.; Girousi, S. Development of an electrochemical DNA biosensor for the detection of vitamin B12 (cyanocobalamin) at a carbon paste modified electrode with a manganese(II) complex. J. Appl. Bioanal. 2017, 3, 70–80. [Google Scholar] [CrossRef]
- Karastogianni, S.; Dendrinou-Samara, C.; Ioannou, E.; Raptopoulou, C.P.; Hadjipavlou-Litina, D.; Girousi, S. Synthesis, characterization, DNA binding properties and antioxidant activity of a manganese(II) complex with NO6 chromophore. J. Inorg. Biochem. 2013, 118, 48–58. [Google Scholar] [CrossRef]
- Karastogianni, S.; Girousi, S. Electrochemical Behavior and Voltammetric Determination of a Manganese(II) Complex at a Carbon Paste Electrode. Anal. Chem. Insights 2016, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Abd-El-Aziz, A.S.; Sezgin Dalgakiran, S.; Bichler, L. Novel synthesis and electropolymerization of metallo-conjugatedthiophene derivatives. Eur. Polym. J. 2012, 48, 1901–1913. [Google Scholar] [CrossRef]
- Tanaka, K.; Shichiri, T.; Wang, S.; Yamabe, T. A STUDY OF THE ELECTROPOLYMERIZATION OF THIOPHENE. Synth. Met. 1998, 24, 203–215. [Google Scholar] [CrossRef]
- Hu, G.; Ma, Y.; Guo, Y.; Shao, S. Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochim. Acta 2008, 53, 6610–6615. [Google Scholar] [CrossRef]
- Song, J.; Xu, L.; Xing, R.; Li, Q.; Zhou, C.; Liu, D.; Song, H. Synthesis of Au/Graphene Oxide Composites for Selective and Sensitive Electrochemical Detection of Ascorbic Acid. Sci. Rep. 2014, 4, 7515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, W.; Hu, Q.; Liu, G.; Sun, D. Electrochemical behavior of ascorbic acid and rutin on poly(L-arginine)-graphene oxide modified electrode. Indian J. Chem. 2015, 53A, 187–192. [Google Scholar]
- Sienkiewicz, A.; Szymula, M.; Narkiewicz-Michałek, J. Studies of ascorbic acid electroactivity in the H2O/ACN(EtOH) solutions containing SDS. Colloids and Surfaces A: Physicochem. Eng. Asp. 2012, 413, 44–49. [Google Scholar] [CrossRef]
Analytes | Electrode | Modifier | Detection Limit | Linear Range | Sample | Analytical Technique | Reference |
---|---|---|---|---|---|---|---|
Ascorbic acid | GCE | CNFs, NDs, and P(L-Asp) | 0.1 μM | 0.2–1800 μM | Vitamin C and effervescent tablet and pharmaceutical powder | CV | [2] |
Ascorbic acid | Au-gr/CVE | Carbon veil (CV) and phytosynthesized gold nanoparticles (Au-gr) | 0.05 μM | 1 M–5.75 mM | Fruit juice | Cyclic and linear sweep voltammetry, chronoamperometry | [11] |
Ascorbic acid | CPE | MIL−101 | 6 mM | 0.01–10 mM | Pharmaceuticals | CV, EIS, and SWV | [12] |
Ascorbic acid | GCE | Graphene oxide, multi-walled carbon nanotubes and gold nanorods | 0.85 nM | 1 nM–0.5 μM and 1 μM–0.8 mM | Serum | Cyclic voltammetry (CV), Differential Pulse Voltammetry (DPV) | [20] |
Ascorbic acid, dopamine and uric acid | GCE | Porous g-C3N4 assembled with graphene oxide (GO) | 3.7–39 μM | 5–1300 μM | Serum | CV, DPV | [21] |
Ascorbic acid, dopamine and uric acid | GCE | poly(3,4-ethylenedioxythiophene) (PEDOT) and polyaniline (PANI) | 24.2 μM | 100 to 10,000 μM | Serum | CV | [22] |
Ascorbic acid | GCE | Silver nanoparticles (AgNPs): Polyvinylpyrrolidone (PVP) | 0.047 μM | 0.2–1200 μM | Fruits | DPV | [23] |
Epinephrine, uric acid and ascorbic acid | GCE | - | 0.5 mg/L | 4.98–578.95 mg/L | Dietary supplement | SWV | [24] |
Ascorbic acid, dopamine and uric acid | GCE | Polyvinylpyrrolidone (PVP)—GR | 0.8 μM | 4.0 μM–1.0 mM | Urine | CV | [25] |
Ascorbic acid | GCE | Black phosphorus nanosheets (BPNS) | 0.3 nM | 1–35 nM | - | DPV | [28] |
Ascorbic acid | Pt | 4-amino−2,1,3-benzothiadiazole, 3,4-diaminobenzoic acid, and neutral red | - | - | Tablets | CV, columetric titration | [34] |
Ascorbic and oxalic acids | SPE, GCE | Au and Pd particles | 1.0 × 10−8 to 5.0 × 10–3 M | juices and fruits | CV | [36] | |
Acetaminophen, Ascorbic acid and Uric acid | multi screen-printed electrode | - | - | - | - | CV | [37] |
Ascorbic acid | Boron doped diamond electrode (BDD) | - | 1.87 μM | - | Tablets | CV, Square Wave Voltammetry (SWV) | [38] |
Ascorbic acid | CPE | Sepiolite clay (SC) nanoparticles | 4.2 × 10−9 M | 1.4 × 10−8–9.0 × 10−7 M | Pharmaceutical formulations but also natural products such as vitamin C-rich fruit Rosa canina and mineral waters | - | [45] |
Interferents | Recovery/% |
---|---|
Riboflavin | 102.0 |
Biotin | 103.59 |
Pyridoxal | 100.9 |
Niacin | 104.4 |
Pantothenic acid | 102.3 |
Thiamin | 100.7 |
Folic acid | 99.8 |
Caffeic acid | 102.7 |
Gallic acid | 103.5 |
Glucose | 98.4 |
Fructose | 98.7 |
Fe | 102.0 |
Cu | 101.0 |
Al | 99.8 |
Zn | 103.7 |
Mg | 98.0 |
Ni | 99.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karastogianni, S.; Diamantidou, D.; Girousi, S. Selective Voltammetric Detection of Ascorbic Acid from Rosa Canina on a Modified Graphene Oxide Paste Electrode by a Manganese(II) Complex. Biosensors 2021, 11, 294. https://doi.org/10.3390/bios11090294
Karastogianni S, Diamantidou D, Girousi S. Selective Voltammetric Detection of Ascorbic Acid from Rosa Canina on a Modified Graphene Oxide Paste Electrode by a Manganese(II) Complex. Biosensors. 2021; 11(9):294. https://doi.org/10.3390/bios11090294
Chicago/Turabian StyleKarastogianni, Sophia, Dimitra Diamantidou, and Stella Girousi. 2021. "Selective Voltammetric Detection of Ascorbic Acid from Rosa Canina on a Modified Graphene Oxide Paste Electrode by a Manganese(II) Complex" Biosensors 11, no. 9: 294. https://doi.org/10.3390/bios11090294
APA StyleKarastogianni, S., Diamantidou, D., & Girousi, S. (2021). Selective Voltammetric Detection of Ascorbic Acid from Rosa Canina on a Modified Graphene Oxide Paste Electrode by a Manganese(II) Complex. Biosensors, 11(9), 294. https://doi.org/10.3390/bios11090294