Glycated Hemoglobin Electrochemical Immunosensor Based on Screen-Printed Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Instrumentation
2.2. HbA1c Electrochemical Immunoassay Scheme
2.2.1. Pretreatment and Modification of the SPE
2.2.2. Immobilization of Antibodies on the Electrode and Specific Binding of Antigens
2.2.3. Parameters Setup for Electrochemical Measurement
3. Results
3.1. Electrode Performance Evaluation and Analysis
3.2. Electrochemical Measurement of the Concentration of HbA1c Solution
3.3. Evaluation of HbA1c Measurement Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhan, Z.; Zhang, H.; Niu, X.; Yu, X.; Sun, H.; Sha, X.; Zhao, Y.; Wang, Y.; Li, W.J. Microliter Sample Insulin Detection Using a Screen-Printed Electrode Modified by Nickel Hydroxide. ACS Omega 2020, 5, 6169–6176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutte, E.; Lambers Heerspink, H.J.; Lutgers, H.L.; Bakker, S.J.L.; Vart, P.; Wolffenbuttel, B.H.R.; Umanath, K.; Lewis, J.B.; De Zeeuw, D.; Gansevoort, R.T. Serum Bicarbonate and Kidney Disease Progression and Cardiovascular Outcome in Patients with Diabetic Nephropathy: A Post Hoc Analysis of the RENAAL (Reduction of End Points in Non-Insulin-Dependent Diabetes with the Angiotensin II Antagonist Losartan) St. Am. J. Kidney Dis. 2015, 66, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Chou, T.C.; Chen, L.C.; Ho, K.C. Using Poly(3-Aminophenylboronic Acid) Thin Film with Binding-Induced Ion Flux Blocking for Amperometric Detection of Hemoglobin A1c. Biosens. Bioelectron. 2015, 63, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, H.; Li, Y.; Yu, X.; Cai, Y.; Sha, X.; Wang, S.; Zhan, Z.; Xu, J.; Liu, L. AI Powered Electrochemical Multi-Component Detection of Insulin and Glucose in Serum. Biosens. Bioelectron. 2021, 186, 113291. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Ren, L.J.; Chen, Q.H.; Cui, G.Z. Research of Electrochemistry Measuring System Based on Saliva Glucose. Adv. Mater. Res. 2011, 301–303, 1139–1144. [Google Scholar] [CrossRef]
- Song, S.Y.; Han, Y.D.; Park, Y.M.; Jeong, C.Y.; Yang, Y.J.; Kim, M.S.; Ku, Y.; Yoon, H.C. Bioelectrocatalytic Detection of Glycated Hemoglobin (HbA 1c) Based on the Competitive Binding of Target and Signaling Glycoproteins to a Boronate-Modified Surface. Biosens. Bioelectron. 2012, 35, 355–362. [Google Scholar] [CrossRef]
- Wang, X.; Su, J.; Zeng, D.; Liu, G.; Liu, L.; Xu, Y.; Wang, C.; Liu, X.; Wang, L.; Mi, X. Gold Nano-Flowers (Au NFs) Modified Screen-Printed Carbon Electrode Electrochemical Biosensor for Label-Free and Quantitative Detection of Glycated Hemoglobin. Talanta 2019, 201, 119–125. [Google Scholar] [CrossRef]
- Song, S.Y.; Yoon, H.C. Boronic Acid-Modified Thin Film Interface for Specific Binding of Glycated Hemoglobin (HbA1c) and Electrochemical Biosensing. Sens. Actuators B Chem. 2009, 140, 233–239. [Google Scholar] [CrossRef]
- Kim, D.M.; Shim, Y.B. Disposable Amperometric Glycated Hemoglobin Sensor for the Finger Prick Blood Test. Anal. Chem. 2013, 85, 6536–6543. [Google Scholar] [CrossRef]
- Pandey, I.; Tiwari, J.D. A Novel Dual Imprinted Conducting Nanocubes Based Flexible Sensor for Simultaneous Detection of Hemoglobin and Glycated Haemoglobin in Gestational Diabetes Mellitus Patients. Sens. Actuators B Chem. 2019, 285, 470–478. [Google Scholar] [CrossRef]
- Přibyl, J.; Skládal, P. Quartz Crystal Biosensor for Detection of Sugars and Glycated Hemoglobin. Anal. Chim. Acta 2005, 530, 75–84. [Google Scholar] [CrossRef]
- Lenters-Westra, E.; Schindhelm, R.K.; Bilo, H.J.; Slingerland, R.J. Haemoglobin A1c: Historical Overview and Current Concepts. Diabetes Res. Clin. Pract. 2013, 99, 75–84. [Google Scholar] [CrossRef] [PubMed]
- John, W.G. Use of HbA 1c in the Diagnosis of Diabetes Mellitus in the UK. The Implementation of World Health Organization Guidance 2011. Diabet. Med. 2012, 29, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- del Castillo, E.; Montes-Bayón, M.; Añón, E.; Sanz-Medel, A. Quantitative Targeted Biomarker Assay for Glycated Haemoglobin by Multidimensional LC Using Mass Spectrometric Detection. J. Proteom. 2011, 74, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Koval, D.; Kašička, V.; Cottet, H. Analysis of Glycated Hemoglobin A1c by Capillary Electrophoresis and Capillary Isoelectric Focusing. Anal. Biochem. 2011, 413, 8–15. [Google Scholar] [CrossRef]
- Li, Y.C.; Jeppsson, J.O.; Jörntén-Karlsson, M.; Linné Larsson, E.; Jungvid, H.; Galaev, I.Y.; Mattiasson, B. Application of Shielding Boronate Affinity Chromatography in the Study of the Glycation Pattern of Haemoglobin. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 776, 149–160. [Google Scholar] [CrossRef]
- Thevarajah, M.; Nadzimah, M.N.; Chew, Y.Y. Interference of HemoglobinA1c (HbA1c) Detection Using Ion-Exchange High Performance Liquid Chromatography (HPLC) Method by Clinically Silent Hemoglobin Variant in University Malaya Medical Centre (UMMC)-A Case Report. Clin. Biochem. 2009, 42, 430–434. [Google Scholar] [CrossRef]
- Sirén, H.; Laitinen, P.; Turpeinen, U.; Karppinen, P. Direct Monitoring of Glycohemoglobin A1c in the Blood Samples of Diabetic Patients by Capillary Electrophoresis: Comparison with an Immunoassay Method. J. Chromatogr. A 2002, 979, 201–207. [Google Scholar] [CrossRef]
- Moon, J.M.; Kim, D.M.; Kim, M.H.; Han, J.Y.; Jung, D.K.; Shim, Y.B. A Disposable Amperometric Dual-Sensor for the Detection of Hemoglobin and Glycated Hemoglobin in a Finger Prick Blood Sample. Biosens. Bioelectron. 2017, 91, 128–135. [Google Scholar] [CrossRef]
- Liu, S.; Wollenberger, U.; Katterle, M.; Scheller, F.W. Ferroceneboronic Acid-Based Amperometric Biosensor for Glycated Hemoglobin. Sens. Actuators B Chem. 2006, 113, 623–629. [Google Scholar] [CrossRef]
- Han, G.C.; Su, X.; Hou, J.; Ferranco, A.; Feng, X.Z.; Zeng, R.; Chen, Z.; Kraatz, H.B. Disposable Electrochemical Sensors for Hemoglobin Detection Based on Ferrocenoyl Cysteine Conjugates Modified Electrode. Sens. Actuators B Chem. 2019, 282, 130–136. [Google Scholar] [CrossRef]
- Bunyarataphan, S.; Dharakul, T.; Fucharoen, S.; Paiboonsukwong, K.; Japrung, D. Glycated Albumin Measurement Using an Electrochemical Aptasensor for Screening and Monitoring of Diabetes Mellitus. Electroanalysis 2019, 31, 2254–2261. [Google Scholar] [CrossRef]
- Eissa, S.; Almusharraf, A.Y.; Zourob, M. A Comparison of the Performance of Voltammetric Aptasensors for Glycated Haemoglobin on Different Carbon Nanomaterials-Modified Screen Printed Electrodes. Mater. Sci. Eng. C 2019, 101, 423–430. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Alexander, S. A Potentiometric Sensor for the Trace Level Determination of Hemoglobin in Real Samples Using Multiwalled Carbon Nanotube Based Molecular Imprinted Polymer. Eur. Polym. J. 2017, 97, 84–93. [Google Scholar] [CrossRef]
- Hsieh, K.M.; Lan, K.C.; Hu, W.L.; Chen, M.K.; Jang, L.S.; Wang, M.H. Glycated Hemoglobin (HbA1c) Affinity Biosensors with Ring-Shaped Interdigital Electrodes on Impedance Measurement. Biosens. Bioelectron. 2013, 49, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Jain, U.; Singh, A.; Kuchhal, N.K.; Chauhan, N. Glycated Hemoglobin Biosensing Integration Formed on Au Nanoparticle-Dotted Tubular TiO2 Nanoarray. Anal. Chim. Acta 2016, 945, 67–74. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Hu, S. Nanocomposites of Graphene and Graphene Oxides: Synthesis, Molecular Functionalization and Application in Electrochemical Sensors and Biosensors. A Review. Microchim. Acta 2017, 184, 1–44. [Google Scholar] [CrossRef]
- Torres-rivero, K.; Florido, A.; Bastos-arrieta, J. Recent Trends in the Improvement of the Electrochemical Response of Screen-printed Electrodes by Their Modification with Shaped Metal Nanoparticles. Sensors 2021, 21, 2596. [Google Scholar] [CrossRef]
- Liu, A.; Xu, S.; Deng, H.; Wang, X. A New Electrochemical HbA1c Biosensor Based on Flow Injection and Screen-Printed Electrode. Int. J. Electrochem. Sci. 2016, 11, 3086–3094. [Google Scholar] [CrossRef]
- Chopra, A.; Rawat, S.; Bhalla, V.; Suri, C.R. Point-of-Care Amperometric Testing of Diabetic Marker (HbA1c) Using Specific Electroactive Antibodies. Electroanalysis 2014, 26, 469–472. [Google Scholar] [CrossRef]
- Sayin, S.; Ozbek, C.; Okur, S.; Yilmaz, M. Preparation of the Ferrocene-Substituted 1,3-Distal p-Tert-Butylcalix[4]Arene Based QCM Sensors Array and Utilization of Its Gas-Sensing Affinities. J. Organomet. Chem. 2014, 771, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Duanghathaipornsuk, S.; Reaver, N.G.F.; Cameron, B.D.; Kim, D.S. Adsorption Kinetics of Glycated Hemoglobin on Aptamer Microarrays with Antifouling Surface Modification. Langmuir 2021, 37, 4647–4657. [Google Scholar] [CrossRef]
- Özge Karaşallı, M. Derya Koyuncu Zeybek A Novel Label-Free Immunosensor Based on Electrochemically Reduced Graphene Oxide for Determination of Hemoglobin A1c. Russ. J. Electrochem. 2020, 56, 715–723. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, H.; Liu, L.; Hao, Y.; Chang, Z.; Xu, M. Fabrication of Electrochemical Interface Based on Boronic Acid-Modified Pyrroloquinoline Quinine/Reduced Graphene Oxide Composites for Voltammetric Determination of Glycated Hemoglobin. Biosens. Bioelectron. 2015, 64, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Zourob, M. Aptamer- Based Label-Free Electrochemical Biosensor Array for the Detection of Total and Glycated Hemoglobin in Human Whole Blood. Sci. Rep. 2017, 7, 1016. [Google Scholar] [CrossRef] [Green Version]
- Bian, C.; Xue, Q.; Sun, J.; Zhang, H.; Xia, S. Micro Potentiometric Label-Free Immunosensor for Glycated Hemoglobin. Chin. J. Anal. Chem. 2010, 3, 332–336. [Google Scholar] [CrossRef]
- Xiao, W.; Xianqiang, M.I.; Sciences, L.; Academy, C. Construction of a 16 Channel Label-Free Electrochemical Immunosensor for Glycated Hemoglobin A1c Detection. Lab. Med. 2019, 34, 835–840. [Google Scholar]
- Molazemhosseini, A.; Magagnin, L.; Vena, P.; Liu, C.-C. Single-Use Disposable Electrochemical Label-Free Immunosensor for Detection of Glycated Hemoglobin (HbA1c) Using Differential Pulse Voltammetry (DPV). Sensors 2016, 16, 1024. [Google Scholar] [CrossRef] [Green Version]
- Avelino, K.Y.P.S.; Oliveira, L.S.; Lucena-Silva, N.; Andrade, C.A.S.; Oliveira, M.D.L. Flexible Sensor Based on Conducting Polymer and Gold Nanoparticles for Electrochemical Screening of HPV Families in Cervical Specimens. Talanta 2021, 226, 122118. [Google Scholar] [CrossRef]
- Villa, M.L.; Rappocciolo, G.; Piazza, P.; Clerici, E. The Interference of Antibiotics with Antigen-Specific Antibody Responses in Man. Int. J. Immunopharmacol. 1986, 8, 805–809. [Google Scholar] [CrossRef]
- Hadi, M.; Honarmand, E. Application of Anodized Edge-Plane Pyrolytic Graphite Electrode for Analysis of Clindamycin in Pharmaceutical Formulations and Human Urine Samples. Russ. J. Electrochem. 2017, 53, 380–390. [Google Scholar] [CrossRef]
- Mehrabi, A.; Rahimnejad, M.; Mohammadi, M.; Pourali, M. Electrochemical Detection of Flutamide as an Anticancer Drug with Gold Nanoparticles Modified Glassy Carbon Electrode in the Presence of Prostate Cancer Cells. J. Appl. Electrochem. 2021, 51, 597–606. [Google Scholar] [CrossRef]
- Koga, M.; Suzuki, S.; Matsuo, K.; Tanahashi, Y.; Azuma, H.; Kasayama, S. Calculation of HbA1c and Glycated Albumin from Serially Measured Self-Monitored Blood Glucose in Patients with Type 1 Diabetes Mellitus. Clin. Chim. Acta 2013, 425, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Anzai, J.I. Recent Progress in Electrochemical HbA1c Sensors: A Review. Materials 2015, 8, 1187–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, S.U.; Seo, J.H.; Choi, Y.H.; Lee, S.S. Fabrication of a Disposable Biochip for Measuring Percent Hemoglobin A1c (%HbA1c). Sens. Actuators A Phys. 2006, 130–131, 267–272. [Google Scholar] [CrossRef]
- Rafiee, B.; Fakhari, A.R. Electrocatalytic Oxidation and Determination of Insulin at Nickel Oxide Nanoparticles-Multiwalled Carbon Nanotube Modified Screen Printed Electrode. Biosens. Bioelectron. 2013, 46, 130–135. [Google Scholar] [CrossRef]
- Boonyasit, Y.; Chailapakul, O.; Laiwattanapaisal, W. A Multiplexed Three-Dimensional Paper-Based Electrochemical Impedance Device for Simultaneous Label-Free Affinity Sensing of Total and Glycated Haemoglobin: The Potential of Using a Specific Single-Frequency Value for Analysis. Anal. Chim. Acta 2016, 936, 1–11. [Google Scholar] [CrossRef]
- Jampilek, J.; Dolowy, M.; Pyka-Pajak, A. Estimating Limits of Detection and Quantification of Ibuprofen by TLC-Densitometry at Different Chromatographic Conditions. Processes 2020, 8, 919. [Google Scholar] [CrossRef]
Electrode Materials | Method | Sensitivity | Detection Range | LOD | Interference | Reference |
---|---|---|---|---|---|---|
GCa/RGOb/PBA-PQQc | DPV | 0.1255 µA/µg·mL−1 | 9.4–65.8 µg/mL | 1.25 µg/mL | Hb, glucose, fructose, galactose | [34] |
Array SPCE/AuNPs, thiol-modified aptamer | SWV | — | 0.1–1000 ng/mL | 0.2 ng/mL | — | [35] |
SPE/anti-HbA1c/HbA1c | CV | 0.199 µA/µg·mL−1 | 1–50 µg/mL | 0.88 µg/mL | BSA, PSA, glucose | [37] |
Test strip/AuNPs/dithiolate/anti-HbA1c | Potential | 90.6 mV/log(C(HbA1c)) | 4–24 µg/mL | — | — | [36] |
Gold electrode/MPA/anti-HbA1c/HbA1c | DPV | 0.137 µA/µg·mL−1 | 7.5–20 µg/mL (PBS) 100–250 µg/mL (serum) | 7.5 µg/mL | — | [38] |
SPE/AuNPs/anti-HbA1c/HbA1c | DPV/CV | 0.0938 µA/µg·mL−1 0.1258 µA/µg·mL−1 | 20–200 µg/mL 12.5–200 µg/mL | 15.5 µg/mL — | BSA, glucose, fructose, VC/— | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, H.; Li, Y.; Wang, X.; Zhao, L.; Xu, J.; Zhan, Z.; Zhang, G.; Li, W.J. Glycated Hemoglobin Electrochemical Immunosensor Based on Screen-Printed Electrode. Biosensors 2022, 12, 902. https://doi.org/10.3390/bios12100902
Zhao Y, Zhang H, Li Y, Wang X, Zhao L, Xu J, Zhan Z, Zhang G, Li WJ. Glycated Hemoglobin Electrochemical Immunosensor Based on Screen-Printed Electrode. Biosensors. 2022; 12(10):902. https://doi.org/10.3390/bios12100902
Chicago/Turabian StyleZhao, Yuliang, Hongyu Zhang, Yang Li, Xiaoai Wang, Liang Zhao, Jianghong Xu, Zhikun Zhan, Guanglie Zhang, and Wen Jung Li. 2022. "Glycated Hemoglobin Electrochemical Immunosensor Based on Screen-Printed Electrode" Biosensors 12, no. 10: 902. https://doi.org/10.3390/bios12100902
APA StyleZhao, Y., Zhang, H., Li, Y., Wang, X., Zhao, L., Xu, J., Zhan, Z., Zhang, G., & Li, W. J. (2022). Glycated Hemoglobin Electrochemical Immunosensor Based on Screen-Printed Electrode. Biosensors, 12(10), 902. https://doi.org/10.3390/bios12100902