Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis
Abstract
:1. Introduction
2. Common Construction Methods
3. Categories of Solid SERS Substrates
3.1. Membrane Substrate
3.1.1. Paper Membrane Substrates
3.1.2. Polymer Membrane Substrate
3.1.3. Non-Support Membrane Substrate
3.2. Self-Assembled Substrate
3.2.1. Liquid Self-Assembly Substrate
3.2.2. Solid Self-Assembly Substrate
3.3. Chip Substrate
3.4. Magnetic Substrate
3.5. Other Solid Substrate
4. The Applications of Solid SERS Substrates
4.1. Bio-Analysis
4.2. Food Safety Analysis
4.3. Environment Analysis
4.4. Other Analysis
5. Challenges and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, L.; Dong, J.; Wang, Y.; Chen, X. A review of developments and applications of thin-film microextraction coupled to surface-enhanced Raman scattering. Electrophoresis 2019, 40, 2041–2049. [Google Scholar] [CrossRef]
- Zhang, D.; Liang, P.; Yu, Z.; Xia, J.; Ni, D.; Wang, D.; Zhou, Y.; Cao, Y.; Chen, J.; Chen, J.; et al. Self-assembled “bridge” substance for organochlorine pesticides detection in solution based on surface enhanced raman scattering. J. Hazard. Mater. 2020, 382, 121023. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Chen, X.; Wang, Y.; Fang, E.; Zhang, Z.; Chen, X. Headspace thin-film microextraction coupled with surface-enhanced Raman scattering as a facile method for reproducible and specific detection of sulfur dioxide in wine. Anal. Chem. 2015, 87, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Zhao, B.C.; Hao, R.; Wang, Z.; Hao, Y.W.; Zhao, B.; Liu, Y.Q. Graphene oxide-highly anisotropic noble metal hybrid systems for intensified surface enhanced Raman scattering and direct capture and sensitive discrimination in PCBs monitoring. J. Hazard. Mater. 2020, 385, 121510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Shanmugasundaram, K.B.; Yeo, B.; Moller, A.; Wuethrich, A.; Lin, L.L.; Trau, M. Tracking drug-induced epithelial-mesenchymal transition in breast cancer by a microfluidic surface-enhanced raman spectroscopy immunoassay. Small 2020, 16, e1905614. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Lee, Y.H.; Koh, C.S.L.; Phan-Quang, G.C.; Han, X.; Lay, C.L.; Sim, H.Y.F.; Kao, Y.C.; An, Q.; Ling, X.Y. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev. 2019, 48, 731–756. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.; Chen, X.J.; Huang, Y.F.; Wu, D.Y.; Tian, Z.Q. Plasmon-mediated chemical reactions on nanostructures unveiled by surface-enhanced raman spectroscopy. Acc. Chem. Res. 2019, 52, 2784–2792. [Google Scholar] [CrossRef]
- Karthick Kannan, P.; Shankar, P.; Blackman, C.; Chung, C.H. Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater. 2019, 31, e1803432. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Duan, S.; Radjenovic, P.M.; Tian, Z.Q.; Li, J.F. Core-shell nanostructure-enhanced raman spectroscopy for surface catalysis. Acc. Chem. Res. 2020, 53, 729–739. [Google Scholar] [CrossRef]
- Hu, Y.; Liao, J.; Wang, D.; Li, G. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Anal. Chem. 2014, 86, 955–963. [Google Scholar] [CrossRef]
- Li, J.F.; Tian, X.D.; Li, S.B.; Anema, J.R.; Yang, Z.L.; Ding, Y.; Wu, Y.F.; Zeng, Y.M.; Chen, Q.Z.; Ren, B.; et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Protoc. 2013, 8, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Renard, D.; Tian, S.; Ahmadivand, A.; DeSantis, C.J.; Clark, B.D.; Nordlander, P.; Halas, N.J. Polydopamine-Stabilized Aluminum Nanocrystals: Aqueous Stability and Benzo[a]pyrene Detection. ACS Nano 2019, 13, 3117–3124. [Google Scholar] [CrossRef] [PubMed]
- Phan-Quang, G.C.; Yang, N.; Lee, H.K.; Sim, H.Y.F.; Koh, C.S.L.; Kao, Y.C.; Wong, Z.C.; Tan, E.K.M.; Miao, Y.E.; Fan, W.; et al. Tracking airborne molecules from afar: Three-dimensional metal-organic framework-surface-enhanced Raman scattering platform for stand-off and real-time atmospheric monitoring. ACS Nano 2019, 13, 12090–12099. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Carrion, C.; Martinez, R.; Navarro Poupard, M.F.; Pelaz, B.; Polo, E.; Arenas-Vivo, A.; Olgiati, A.; Taboada, P.; Soliman, M.G.; Catalan, U.; et al. Aqueous stable gold nanostar/ZIF-8 nanocomposites for light-triggered release of active cargo inside living cells. Angew. Chem. Int. Ed. 2019, 58, 7078–7082. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zheng, T.; Tian, Y. Functionalized h-BN nanosheets as a Theranostic platform for SERS real-time monitoring of MicroRNA and photodynamic therapy. A Angew. Chem. Int. Ed. 2019, 58, 7757–7761. [Google Scholar] [CrossRef]
- Quan, J.; Zhang, J.; Li, J.; Zhang, X.; Wang, M.; Wang, N.; Zhu, Y. Three-dimensional AgNPs-graphene-AgNPs sandwiched hybrid nanostructures with sub-nanometer gaps for ultrasensitive surface-enhanced Raman spectroscopy. Carbon 2019, 147, 105–111. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Pan, F.; Liu, J.; Wang, K.; Zhang, C.; Cheng, S.; Lu, L.; Zhang, W.; Zhang, Z.; et al. Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons. ACS Nano 2016, 10, 8169–8179. [Google Scholar] [CrossRef]
- Tang, W.; An, Y.; Ho Row, K. Fabrication of Au nanoparticles embedded holey g-C3N4 as SERS substrates for sensitive and reliable detection. Chem. Eng. J. 2020, 402, 126194. [Google Scholar] [CrossRef]
- Martins, N.C.T.; Fateixa, S.; Fernandes, T.; Nogueira, H.I.S.; Trindade, T. Inkjet printing of Ag and polystyrene nanoparticle emulsions for the one-step fabrication of hydrophobic paper-based surface-enhanced Raman scattering substrates. ACS Appl. Nano Mater. 2021, 4, 4484–4495. [Google Scholar] [CrossRef]
- Duan, J.; Qiu, Z.; Li, L.; Feng, L.; Huang, L.; Xiao, G. Inkjet printed silver nanoparticles on hydrophobic papers for efficient detection of thiram. Spectrochim. Acta A 2020, 243, 118811. [Google Scholar] [CrossRef]
- Pan, X.; Li, L.; Lin, H.; Tan, J.; Wang, H.; Liao, M.; Chen, C.; Shan, B.; Chen, Y.; Li, M. A graphene oxide-gold nanostar hybrid based-paper biosensor for label-free SERS detection of serum bilirubin for diagnosis of jaundice. Biosens. Bioelectron. 2019, 145, 111713. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Hu, Y.; Li, G. A dual-functional membrane for bisphenol A enrichment and resonance amplification by surface-enhanced Raman scattering. Chin. Chem. Lett. 2018, 29, 509–512. [Google Scholar] [CrossRef]
- Li, J.; Yi, W.; Li, Y.; Liu, W.; Bai, H.; Jiao, Z.; Zhang, Y.; Wang, X.; Zou, M.; Xi, G. Nitrogen-doped titanium monoxide flexible membrane for a low-cost, biocompatible, and durable Raman scattering substrate. Anal. Chem. 2021, 93, 12776–12785. [Google Scholar] [CrossRef]
- Cao, Z.; He, P.; Huang, T.; Yang, S.; Han, S.; Wang, X.; Ding, G. Plasmonic coupling of AgNPs near graphene edges: A cross-section strategy for high-performance SERS sensing. Chem. Mater. 2020, 32, 3813–3822. [Google Scholar] [CrossRef]
- Lim, S.H.; Lee, M.J.; Kang, S.H.; Dey, J.; Umar, A.; Lee, S.J.; Choi, S.M. Individually silica-embedded gold nanorod superlattice for high thermal and solvent stability and recyclable SERS application. Adv. Mater. Interfaces 2019, 6, 1900986. [Google Scholar] [CrossRef]
- Xing, C.; Liu, D.; Chen, J.; Fan, Y.; Zhou, F.; Kaur, K.; Cai, W.; Li, Y. Convective self-assembly of 2D nonclose-packed binary au nanoparticle arrays with tunable optical properties. Chem. Mater. 2020, 33, 310–319. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.W.; Pu, H.; Wei, Q. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chem. 2020, 310, 125923. [Google Scholar] [CrossRef]
- Kim, S.; Kim, T.G.; Lee, S.H.; Kim, W.; Bang, A.; Moon, S.W.; Song, J.; Shin, J.H.; Yu, J.S.; Choi, S. Label-free surface-enhanced raman spectroscopy biosensor for on-site breast cancer detection using human tears. ACS Appl. Mater. Interfaces 2020, 12, 7897–7904. [Google Scholar] [CrossRef]
- Zhu, A.; Zhao, X.; Cheng, M.; Chen, L.; Wang, Y.; Zhang, X.; Zhang, Y.; Zhang, X. Nanohoneycomb surface-enhanced raman spectroscopy-active chip for the determination of biomarkers of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2019, 11, 44617–44623. [Google Scholar] [CrossRef]
- Huang, J.; He, Z.; Liu, Y.; Liu, L.; He, X.; Wang, T.; Yi, Y.; Xie, C.; Du, K. Large surface-enhanced Raman scattering from nanoporous gold film over nanosphere. Appl. Surf. Sci. 2019, 478, 793–801. [Google Scholar] [CrossRef]
- Castro-Grijalba, A.; Montes-Garcia, V.; Cordero-Ferradas, M.J.; Coronado, E.; Perez-Juste, J.; Pastoriza-Santos, I. SERS-based molecularly imprinted plasmonic sensor for highly sensitive PAH detection. ACS Sens. 2020, 5, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Hao, R.; Wang, Z.; Zhang, H.; Hao, Y.; Zhang, C.; Liu, Y. Green synthesis of multi-dimensional plasmonic coupling structures: Graphene oxide gapped gold nanostars for highly intensified surface enhanced Raman scattering. Chem. Eng. J. 2018, 349, 581–587. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H. Cauliflower-inspired 3D SERS substrate for multiple mycotoxins detection. Anal. Chem. 2019, 91, 3885–3892. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Wang, M.; Zhu, Y.; Wang, Y.; Xu, H. A novel natural SERS system for crystal violet detection based on graphene oxide wrapped Ag micro-islands substrate fabricated from Lotus leaf as a template. Appl. Surf. Sci. 2018, 459, 802–811. [Google Scholar] [CrossRef]
- Cai, Z.; Hu, Y.; Sun, Y.; Gu, Q.; Wu, P.; Cai, C.; Yan, Z. Plasmonic SERS Biosensor Based on Multibranched Gold Nanoparticles Embedded in Polydimethylsiloxane for Quantification of Hematin in Human Erythrocytes. Anal. Chem. 2021, 93, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Panikar, S.S.; Ramirez-Garcia, G.; Sidhik, S.; Lopez-Luke, T.; Rodriguez-Gonzalez, C.; Ciapara, I.H.; Castillo, P.S.; Camacho-Villegas, T.; De la Rosa, E. Ultrasensitive SERS substrate for label-free therapeutic-drug monitoring of paclitaxel and cyclophosphamide in blood serum. Anal. Chem. 2019, 91, 2100–2111. [Google Scholar] [CrossRef]
- Ge, K.; Hu, Y.; Zheng, Y.; Jiang, P.; Li, G. Aptamer/derivatization-based surface-enhanced Raman scattering membrane assembly for selective analysis of melamine and formaldehyde in migration of melamine kitchenware. Talanta 2021, 235, 122743. [Google Scholar] [CrossRef]
- Das, D.; Senapati, S.; Nanda, K.K. “Rinse, repeat”: An efficient and reusable SERS and catalytic platform fabricated by controlled deposition of silver nanoparticles on cellulose paper. S Sustain. Chem. Eng. 2019, 7, 14089–14101. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, H.; Bae, S.H.; Cao, S.; Wang, Z.; Raman, B.; Singamaneni, S. Gold-nanorod-based plasmonic nose for analysis of chemical mixtures. ACS Appl. Nano Mater. 2019, 2, 3897–3905. [Google Scholar] [CrossRef]
- Kumar, A.; Santhanam, V. Paper swab based SERS detection of non-permitted colourants from dals and vegetables using a portable spectrometer. Anal. Chim. Acta 2019, 1090, 106–113. [Google Scholar] [CrossRef]
- Zhang, C.; You, T.; Yang, N.; Gao, Y.; Jiang, L.; Yin, P. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine. Food Chem. 2019, 287, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Ko, Y.; Kwon, G.; Choo, Y.-M.; You, J. Low-cost, high-performance plasmonic nanocomposites for hazardous chemical detection using surface enhanced Raman scattering. Sens. Actuat. B Chem. 2018, 274, 30–36. [Google Scholar] [CrossRef]
- Huang, D.; Zhuang, Z.; Wang, Z.; Li, S.; Zhong, H.; Liu, Z.; Guo, Z.; Zhang, W. Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria. Appl. Surf. Sci. 2019, 497, 143825. [Google Scholar] [CrossRef]
- Fu, J.; Lai, H.; Zhang, Z.; Li, G. UiO-66 metal-organic frameworks/gold nanoparticles based substrates for SERS analysis of food samples. Anal. Chim. Acta 2021, 1161, 338464. [Google Scholar] [CrossRef]
- Ge, K.; Hu, Y.; Li, G. Fabrication of branched gold copper nanoalloy doped mesoporous graphitic carbon nitride hybrid membrane for surface-enhanced Raman spectroscopy analysis of carcinogens. J. Hazard. Mater. 2022, 432, 128742. [Google Scholar] [CrossRef]
- Kim, H.; Trinh, B.T.; Kim, K.H.; Moon, J.; Kang, H.; Jo, K.; Akter, R.; Jeong, J.; Lim, E.K.; Jung, J.; et al. Au@ZIF-8 SERS paper for food spoilage detection. Biosens. Bioelectron. 2021, 179, 113063. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, H.; Tian, Y.; Chen, Y.; Niu, Z.; Zhou, C.; Wang, F.; Gu, C.; Tang, S.; Jiang, T.; et al. Synergistic effect of a “stellate” mesoporous SiO2@Au nanoprobe and coffee-ring-free hydrophilic–hydrophobic substrate assembly in an ultrasensitive SERS-based immunoassay for a tumor marker. J. Mater. Chem. C 2020, 8, 2142–2154. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Xu, Y.; Chen, Y.; Huang, S.; Lyu, Y.; Duan, H.; Chen, Z.; Tan, W. Portable and label-free detection of blood bilirubin with graphene-isolated-au-nanocrystals paper strip. Anal. Chem. 2018, 90, 13687–13694. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, L.; Zhang, Z.; Li, G. Simultaneous and accurate quantification of multiple antibiotics in aquatic samples by surface-enhanced raman scattering using a Ti3C2Tx/DNA/Ag membrane substrate. Anal. Chem. 2021, 93, 13072–13079. [Google Scholar] [CrossRef]
- Wu, S.; Duan, N.; Shen, M.; Wang, J.; Wang, Z. Surface-enhanced Raman spectroscopic single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles. Microchim. Acta 2019, 186, 401. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Chen, Y.; Du, Y.; Gu, C.; Zhao, Z.; Si, H.; Wei, G.; Jiang, T.; Zhou, J. Quantitative and recyclable surface-enhanced raman spectroscopy immunoassay based on Fe3O4@TiO2@Ag core–shell nanoparticles and au nanowire/polydimethylsiloxane substrates. ACS Appl. Nano Mater. 2020, 3, 4610–4622. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Qiao, Y.; Wei, M.; Gao, L.; Wang, L.; Yan, Y.; Li, H. High-sensitive imprinted membranes based on surface-enhanced Raman scattering for selective detection of antibiotics in water. Spectrochim. Acta A 2019, 222, 117116. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhong, Z.; Li, Y.; Liu, Y.; Wang, R.; Ju, H. “Three-in-one” SERS adhesive tape for rapid sampling, release, and detection of wound infectious pathogens. ACS Appl. Mater. Interfaces 2019, 11, 36399–36408. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Ji, J.; Zhang, H.; Zhang, K.; Liu, B.; Yang, P. Three-Dimensional plasmonic trap array for ultrasensitive surface-enhanced Raman scattering analysis of single cells. Anal. Chem. 2018, 90, 10394–10399. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Wang, N.; Xu, H.; Wang, W.; Liu, Y.; Kuo, L.; Yadav, T.P.; Wu, J.; Joyner, J.; Song, Y.; et al. Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering. Adv. Funct. Mater. 2017, 27, 1701714. [Google Scholar] [CrossRef]
- Guan, H.; Yi, W.; Li, T.; Li, Y.; Li, J.; Bai, H.; Xi, G. Low temperature synthesis of plasmonic molybdenum nitride nanosheets for surface enhanced Raman scattering. Nat. Commun. 2020, 11, 3889. [Google Scholar] [CrossRef]
- Hanske, C.; Hill, E.H.; Vila-Liarte, D.; Gonzalez-Rubio, G.; Matricardi, C.; Mihi, A.; Liz-Marzan, L.M. Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures. ACS Appl. Mater. Interfaces 2019, 11, 11763–11771. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, R.; Sikdar, D.; Wu, L.; Sun, J.; Gu, N.; Chen, Y. Plasmonic superlattice membranes based on bimetallic nano-sea urchins as high-performance label-free surface-enhanced Raman spectroscopy platforms. ACS Sens. 2022, 7, 622–631. [Google Scholar] [CrossRef]
- Tian, T.; Yi, J.; Liu, Y.; Li, B.; Liu, Y.; Qiao, L.; Zhang, K.; Liu, B. Self-assembled plasmonic nanoarrays for enhanced bacterial identification and discrimination. Biosens. Bioelectron. 2022, 197, 113778. [Google Scholar] [CrossRef]
- Deng, Z.; Wen, P.; Wang, N.; Peng, B. Preparation of hierarchical superhydrophobic melamine-formaldehyde/Ag nanocomposite arrays as surface-enhanced Raman scattering substrates for ultrasensitive and reproducible detection of biomolecules. Sens. Actuat. B Chem. 2019, 288, 20–26. [Google Scholar] [CrossRef]
- Mao, P.; Liu, C.; Favraud, G.; Chen, Q.; Han, M.; Fratalocchi, A.; Zhang, S. Broadband single molecule SERS detection designed by warped optical spaces. Nat. Commun. 2018, 9, 5428. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Wang, Y.; Liu, Z.; Zhang, W.; Yi, K.; Zhang, X.; Zhang, X.; Jiang, C.; Yang, S.; Wang, F.; et al. Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma. ACS Appl. Mater. Interfaces 2020, 12, 5136–5146. [Google Scholar] [CrossRef]
- Zukovskaja, O.; Agafilushkina, S.; Sivakov, V.; Weber, K.; Cialla-May, D.; Osminkina, L.; Popp, J. Rapid detection of the bacterial biomarker pyocyanin in artificial sputum using a SERS-active silicon nanowire matrix covered by bimetallic noble metal nanoparticles. Talanta 2019, 202, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Wang, W.; Li, X.; Chen, T. Spontaneous growth of 3D silver mesoflowers on poly(4-vinylpyridine) brushes-grafted-graphene oxide films and facile creation of nanoporosities over their surface. Chemistry 2019, 25, 16377–16381. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, Y.; Zhou, X.; Wang, Y. A paper-based SERS assay for sensitive duplex cytokine detection towards the atherosclerosis-associated disease diagnosis. J. Mater. Chem.B 2019, 8, 582–3589. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Chen, J.; Kannan, P.; Zeng, Y.; Qiu, B.; Guo, L.; Lin, Z. Rapid synthesis of a highly active and uniform 3-dimensional SERS substrate for on-spot sensing of dopamine. Microchim. Acta 2019, 186, 60. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Xing, Y.; Guo, X.; Ying, Y.; Wu, Y.; Wen, Y.; Yang, H. Magnetically three-dimensional Au nanoparticles/reduced graphene/ nickel foams for Raman trace detection. S ens. Actuat. B Chem. 2018, 273, 884–890. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Zhang, L.; Ge, Z.; Wang, X.; Hu, X.; Xu, T.; Li, P.; Xu, W. HS-beta-cyclodextrin-functionalized Ag@Fe3O4@Ag nanoparticles as a surface-enhanced Raman spectroscopy substrate for the sensitive detection of butyl benzyl phthalate. Anal. Bioanal. Chem. 2019, 411, 5691–5701. [Google Scholar] [CrossRef]
- Zhang, H.; Lai, H.; Wu, X.; Li, G.; Hu, Y. CoFe2O4@HNTs/AuNPs Substrate for rapid magnetic solid-phase extraction and efficient SERS detection of complex samples all-in-one. Anal. Chem. 2020, 92, 4607–4613. [Google Scholar] [CrossRef]
- Witkowska, E.; Lasica, A.M.; Nicinski, K.; Potempa, J.; Kaminska, A. In search of spectroscopic signatures of Periodontitis: A SERS-based magnetomicrofluidic sensor for detection of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. ACS Sens. 2021, 6, 1621–1635. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Seo, H.W.; Kang, B.; Moon, J.; Lee, K.G.; Yong, D.; Kang, H.; Jung, J.; Lim, E.K.; et al. Clustered regularly interspaced short palindromic repeats-mediated surface-enhanced Raman scattering assay for multidrug-resistant bacteria. ACS Nano 2020, 14, 17241–17253. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhou, X.; Li, P.; Lin, X.; Wang, J.; Hu, Z.; Zhang, P.; Chen, D.; Cai, H.; Niessner, R.; et al. Ultrasensitive and simultaneous SERS Detection of multiplex MicroRNA using fractal gold nanotags for early diagnosis and prognosis of Hepatocellular Carcinoma. Anal. Chem. 2021, 93, 8799–8809. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Koh, E.H.; Mun, C.; Min, J.; Sohng, W.; Chung, H.; Yang, J.-Y.; Lee, S.; Kim, H.J.; Park, S.-G.; et al. Hydrophobic hBN-coated surface-enhanced Raman scattering sponge sensor for simultaneous separation and detection of organic pollutants. J. Mater. Chem. C 2019, 7, 13059–13069. [Google Scholar] [CrossRef]
- Zhou, B.; Shen, J.; Li, P.; Ge, M.; Lin, D.; Li, Y.Y.; Lu, J.; Yang, L. Gold nanoparticle-decorated silver needle for surface-enhanced Raman spectroscopy screening of residual malachite green in aquaculture products. ACS Appl. Nano Mater. 2019, 2, 2752–2757. [Google Scholar] [CrossRef]
- Ankudze, B.; Asare, B.; Goffart, S.; Koistinen, A.; Nuutinen, T.; Matikainen, A.; Andoh, S.S.; Roussey, M.; Pakkanen, T.T. Hydraulically pressed silver nanowire-cotton fibers as an active platform for filtering and surface-enhanced Raman scattering detection of bacteria from fluid. Appl. Surf. Sci. 2019, 479, 663–668. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Ko, H. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film. ACS Appl. Mater. Interfaces 2017, 9, 44088–44095. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Y.; Tian, Y.; Gu, C.; Jiang, T. Contrastive Study of in situ sensing and swabbing detection based on SERS-active gold nanobush-PDMS hybrid film. J. Agric. Food Chem. 2021, 69, 1975–1983. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Liu, W.; Hao, R.; Jia, H.; Dai, Y.; Usman Amin, M.; You, H.; Li, T.; Fang, J. Highly active Au NP microarray films for direct SERS detection. J. Mater. Chem. C 2019, 7, 15259–15268. [Google Scholar] [CrossRef]
- Li, L.; Chin, W.S. Rapid fabrication of a flexible and transparent Ag nanocubes@PDMS film as a SERS substrate with high performance. ACS Appl. Mater. Interfaces 2020, 12, 37538–37548. [Google Scholar] [CrossRef]
- Ma, Y.; Du, Y.; Chen, Y.; Gu, C.; Jiang, T.; Wei, G.; Zhou, J. Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chem. Eng. J. 2020, 381, 122710. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Gu, C.; Zhang, J.; Jiang, T. PDMS/TiO2/Ag hybrid substrate with intrinsic signal and clean surface for recyclable and quantitative SERS sensing. Sens. Actuat. B Chem. 2022, 351, 130886. [Google Scholar] [CrossRef]
- Li, H.; Dai, H.; Zhang, Y.; Lee, Y.H.; Koh, C.S.L.; Phan-Quang, G.C.; Tong, W.; Zhang, Y.; Gao, H.; Ling, X.Y.; et al. Triboelectrically boosted SERS on sea-urchin-like gold clusters facilitated by a high dielectric substrate. Nano Energy 2019, 64, 130959. [Google Scholar] [CrossRef]
- Li, H.; Dai, H.; Zhang, Y.; Tong, W.; Gao, H.; An, Q. Surface-enhanced Raman spectra promoted by a finger press in an all-solid-state flexible energy conversion and storage film. Angew. Chem. Int. Ed. 2017, 56, 2649–2654. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Guo, J.; Wang, M.; Ji, S.; Cao, M.; Padhiar, M.A.; Bhatti, A.S. Reduced graphene oxide supporting Ag meso-flowers and phenyl-modified graphitic carbon nitride as self-cleaning flexible SERS membrane for molecular trace-detection. Colloid. Surface. A 2019, 560, 9–19. [Google Scholar] [CrossRef]
- Song, X.; Yi, W.; Li, J.; Kong, Q.; Bai, H.; Xi, G. Selective Preparation of Mo2N and MoN with High Surface Area for Flexible SERS Sensing. Nano Lett. 2021, 21, 4410–4414. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yao, L.; Mao, X.; Wang, K.; Zhu, L.; Zhu, J. Gold nanoparticle superlattice monolayer with tunable interparticle gap for surface-enhanced Raman spectroscopy. Nanoscale 2019, 11, 13917–13923. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Sun, D.W.; Pu, H.; Wei, Q. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Talanta 2020, 217, 120998. [Google Scholar] [CrossRef]
- Kim, J.; Song, X.; Ji, F.; Luo, B.; Ice, N.F.; Liu, Q.; Zhang, Q.; Chen, Q. Polymorphic assembly from beveled gold triangular nanoprisms. Nano Lett. 2017, 17, 3270–3275. [Google Scholar] [CrossRef]
- Karabel Ocal, S.; Patarroyo, J.; Kiremitler, N.B.; Pekdemir, S.; Puntes, V.F.; Onses, M.S. Plasmonic assemblies of gold nanorods on nanoscale patterns of poly(ethylene glycol): Application in surface-enhanced Raman spectroscopy. J. Colloid. Interface Sci. 2018, 532, 449–455. [Google Scholar] [CrossRef]
- Velazquez-Salazar, J.J.; Bazan-Diaz, L.; Zhang, Q.; Mendoza-Cruz, R.; Montano-Priede, L.; Guisbiers, G.; Large, N.; Link, S.; Jose-Yacaman, M. Controlled overgrowth of five-fold concave nanoparticles into plasmonic nanostars and their single-particle scattering properties. ACS Nano 2019, 13, 10113–10128. [Google Scholar] [CrossRef]
- Zhang, Z.; Bando, K.; Mochizuki, K.; Taguchi, A.; Fujita, K.; Kawata, S. Quantitative evaluation of surface-enhanced Raman scattering nanoparticles for intracellular pH sensing at a single particle level. Anal. Chem. 2019, 91, 53254–53262. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zheng, C.; Yin, Z.; Wang, Z.; Wang, J.; Liu, J.; Luo, D.; Liu, Y.J. Hierarchically ordered silicon metastructures from improved self-assembly-based nanosphere lithography. ACS Appl. Mater. Interfaces 2020, 12, 12345–12352. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, B.Q.; Jiang, X.; Shao, J. Hybrid nanostructure of SiO2@Si with Au-nanoparticles for surface enhanced Raman spectroscopy. Nanoscale 2019, 11, 13484–13493. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Wang, Z.; Gu, P.; Wang, Y.; Zhang, W.; Zhang, G. An in situ SERS study of plasmonic nanochemistry based on bifunctional “hedgehog-like” arrays. Nanoscale 2019, 11, 9422–9428. [Google Scholar] [CrossRef]
- Dong, X.; Ohnoutek, L.; Yang, Y.; Feng, Y.; Wang, T.; Tahir, M.A.; Valev, V.K.; Zhang, L. Cu/Ag sphere segment void array as efficient surface enhanced Raman spectroscopy substrate for detecting individual atmospheric aerosol. Anal. Chem. 2019, 91, 13647–13657. [Google Scholar] [CrossRef]
- Zhu, A.; Zhang, F.; Gao, R.; Zhao, X.; Chen, L.; Zhang, Y.; Zhang, X.; Wang, Y. Increasing polarization-dependent SERS effects by optimizing the axial symmetry of plasmonic nanostructures. Appl. Surf. Sci. 2019, 494, 87–93. [Google Scholar] [CrossRef]
- Nie, B.; Luo, Y.; Shi, J.; Gao, L.; Duan, G. Bowl-like Pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder. Sens. Actuat. B Chem. 2019, 301, 127087. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Luo, C.; Liu, Z.; Chen, Y.; Dong, S.; Jiang, C.; Yang, S.; Wang, F.; Xiao, X. Volume-enhanced Raman scattering detection of viruses. Small 2019, 15, e1805516. [Google Scholar] [CrossRef]
- Meng, T.; Shi, M.; Guo, Y.; Wang, H.; Fu, N.; Liu, Z.; Huang, B.; Lei, C.; Su, X.; Peng, B.; et al. Multifunctional Ag-coated CuO microbowl arrays for highly efficient, ultrasensitive, and recyclable surface-enhanced Raman scattering. Sens. Actuat. B Chem. 2022, 354, 131097. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, F. Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering. Nano Res. 2019, 12, 2788–2795. [Google Scholar] [CrossRef]
- Kim, N.; Thomas, M.R.; Bergholt, M.S.; Pence, I.J.; Seong, H.; Charchar, P.; Todorova, N.; Nagelkerke, A.; Belessiotis-Richards, A.; Payne, D.J.; et al. Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting. Nat. Commun. 2020, 11, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Sun, H.; Chen, X.; Yang, J.; Shi, L.; Chen, T.; Bao, Z.; Liu, J.; Wu, Y. Highly efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from plasmonic nanoparticles decorated 3D Semiconductor arrays for ultrasensitive, portable, and recyclable detection of organic pollutants. ACS Sens. 2019, 4, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; You, T.; Yang, N.; Zhang, C.; Yin, P. Superhydrophobic 3D forest-like Ag microball/nanodendrite hierarchical structure as SERS sensor for rapid droplets detection. Adv. Mater. Inter. 2019, 6, 1801966. [Google Scholar] [CrossRef]
- Mhlanga, N.; Domfe, T.; Skepu, A. Fabrication of surface enhanced Raman spectroscopy substrates on solid supports. Appl. Surf. Sci. 2019, 476, 1108–1117. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, L.; Yan, H.; Lu, Z.; Yin, W.; Han, H. Enzyme induced molecularly imprinted polymer on SERS substrate for ultrasensitive detection of patulin. Anal. Chim. Acta 2020, 1101, 111–119. [Google Scholar] [CrossRef]
- Kim, N.Y.; Leem, Y.C.; Hong, S.H.; Park, J.H.; Yim, S.Y. Ultrasensitive and stable plasmonic surface-enhanced Raman scattering substrates covered with atomically thin monolayers: Effect of the insulating property. ACS Appl. Mater. Interfaces 2019, 11, 6363–6373. [Google Scholar] [CrossRef]
- Li, Y.; Duan, W.; Wei, J. CoFe2O4/Ag Nanostructures as highly sensitive surface-enhanced Raman scattering substrates. ACS Appl. Nano Mater. 2021, 4, 4181–4188. [Google Scholar] [CrossRef]
- Ma, X.; Wen, S.; Xue, X.; Guo, Y.; Jin, J.; Song, W.; Zhao, B. Controllable synthesis of SERS-active magnetic metal-organic framework-based nanocatalysts and their application in photoinduced enhanced catalytic oxidation. ACS Appl. Mater. Interfaces 2018, 10, 25726–25736. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Sabharwal, P.K.; Jain, S.; Kaur, A.; Singh, H. Functionalized polymeric magnetic nanoparticle assisted SERS immunosensor for the sensitive detection of S. typhimurium. Anal. Chim. Acta 2019, 1067, 98–106. [Google Scholar] [CrossRef]
- Xu, Y.; Hassan, M.M.; Ali, S.; Li, H.; Chen, Q. SERS-based rapid detection of 2,4-dichlorophenoxyacetic acid in food matrices using molecularly imprinted magnetic polymers. Microchim. Acta 2020, 187, 454. [Google Scholar] [CrossRef]
- Huang, W.-R.; Yu, C.-X.; Lu, Y.-R.; Muhammad, H.; Wang, J.-L.; Liu, J.-W.; Yu, S.-H. Mass-production of flexible and transparent Te-Au nylon SERS substrate with excellent mechanical stability. Nano Res. 2019, 12, 1483–1488. [Google Scholar] [CrossRef]
- Ding, Q.; Kang, Z.; He, X.; Wang, M.; Lin, M.; Lin, H.; Yang, D.P. Eggshell membrane-templated gold nanoparticles as a flexible SERS substrate for detection of thiabendazole. Mikrochim. Acta 2019, 186, 453. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, M.; Feng, L.; Dong, B.; Xu, T.; Li, D.; Jiang, L.; Chi, L. Tape-Imprinted Hierarchical Lotus Seedpod-Like Arrays for Extraordinary Surface-Enhanced Raman Spectroscopy. Small 2019, 15, e1804527. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Du, J.; Sun, Z.; Jing, C. Hairpin-structured magnetic SERS sensor for tetracycline resistance gene tetA detection. Anal. Chem. 2020, 92, 16229–16235. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, D.; Zhou, T.; Huang, J.; Wang, Y.; Li, B.; Chen, L.; Yang, J.; Liu, Y. Aptamer-conjugated magnetic Fe3O4@Au core-shell multifunctional nanoprobe: A three-in-one aptasensor for selective capture, sensitive SERS detection and efficient near-infrared light triggered photothermal therapy of Staphylococcus aureus. Sens. Actuat. B Chem. 2022, 350, 130879. [Google Scholar] [CrossRef]
- Jalalvand, A.R. Fabrication of a novel and high-performance amperometric sensor for highly sensitive determination of ochratoxin A in juice samples. Talanta 2018, 188, 225–231. [Google Scholar] [CrossRef]
- Li, D.; Duan, H.; Ma, Y.; Deng, W. Headspace-sampling paper-based analytical device for colorimetric/surface-enhanced Raman scattering dual sensing of sulfur dioxide in wine. Anal. Chem. 2018, 90, 5719–5727. [Google Scholar] [CrossRef]
- Picardo, M.; Filatova, D.; Nuñez, O.; Farré, M. Recent advances in the detection of natural toxins in freshwater environments. TrAC-Trend. Anal. Chem. 2019, 112, 75–86. [Google Scholar] [CrossRef]
- Wu, Z.; Pu, H.; Sun, D.-W. Fingerprinting and tagging detection of mycotoxins in agri-food products by surface-enhanced Raman spectroscopy: Principles and recent applications. Trends Food Sci. Tech. 2021, 110, 393–404. [Google Scholar] [CrossRef]
- Shao, B.; Ma, X.; Zhao, S.; Lv, Y.; Hun, X.; Wang, H.; Wang, Z. Nanogapped Au(core)@Au-Ag(shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A. Anal. Chim. Acta 2018, 1033, 165–172. [Google Scholar] [CrossRef]
- Rostami, S.; Zór, K.; Zhai, D.S.; Viehrig, M.; Morelli, L.; Mehdinia, A.; Smedsgaard, J.; Rindzevicius, T.; Boisen, A. High-throughput label-free detection of Ochratoxin A in wine using supported liquid membrane extraction and Ag-capped silicon nanopillar SERS substrates. Food Control 2020, 113, 107183. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Bai, Y.; Yao, S.; Wei, Z.; Zhang, M.; Wang, L.; Wang, L. Superhydrophobic SERS substrates based on silver dendrite-decorated filter paper for trace detection of nitenpyram. Anal. Chim. Acta 2019, 1049, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Cao, Z.; Li, Y.; Li, Z.; Zhang, F.L.; Gu, Y.; Han, C.; Yang, G.; Qu, L. Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues. Food Chem. 2022, 381, 132208. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wang, Z.; Li, Y.; Wang, C.; Sun, J.; Ye, W.; Wang, X.; Shao, B. Durable and flexible Ag-nanowire-embedded PDMS films for the recyclable swabbing detection of malachite green residue in fruits and fingerprints. Sens. Actuat. B Chem. 2021, 347, 130602. [Google Scholar] [CrossRef]
- Ji, S.; Kou, S.; Wang, M.; Qiu, H.; Sun, X.; Dou, J.; Yang, Z. Two-step synthesis of hierarchical Ag/Cu2O/ITO substrate for ultrasensitive and recyclable surface-enhanced Raman spectroscopy applications. Appl. Surf. Sci. 2019, 489, 1002–1009. [Google Scholar] [CrossRef]
- Ekmen, E.; Bilici, M.; Turan, E.; Tamer, U.; Zengin, A. Surface molecularly-imprinted magnetic nanoparticles coupled with SERS sensing platform for selective detection of malachite green. Sens. Actuat. B Chem. 2020, 325, 128787. [Google Scholar] [CrossRef]
- Tang, S.; Li, Y.; Huang, H.; Li, P.; Guo, Z.; Luo, Q.; Wang, Z.; Chu, P.K.; Li, J.; Yu, X.F. Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants. ACS Appl. Mater. Interfaces 2017, 9, 7472–7480. [Google Scholar] [CrossRef]
- Lin, B.; Chen, J.; Zeng, Y.; Li, L.; Qiu, B.; Lin, Z.; Guo, L. A facile approach for on-site evaluation of nicotine in tobacco and environmental tobacco smoke. ACS Sens. 2019, 4, 1844–1850. [Google Scholar] [CrossRef]
- Hu, R.; Tang, R.; Xu, J.; Lu, F. Chemical nanosensors based on molecularly-imprinted polymers doped with silver nanoparticles for the rapid detection of caffeine in wastewater. Anal. Chim. Acta 2018, 1034, 176–183. [Google Scholar] [CrossRef]
- Li, H.; Wang, M.; Shen, X.; Liu, S.; Wang, Y.; Li, Y.; Wang, Q.; Che, G. Rapid and sensitive detection of enrofloxacin hydrochloride based on surface enhanced Raman scattering-active flexible membrane assemblies of Ag nanoparticles. J. Environ. Manage. 2019, 249, 109387. [Google Scholar] [CrossRef]
- Berger, A.G.; Restaino, S.M.; White, I.M. Vertical-flow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal. Chim. Acta 2017, 949, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Liu, Z.; Wang, W.; Jin, L.; Xu, W.; Wu, Y. Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals. Talanta 2018, 178, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Si, T.; Zhang, Z. Mussel-inspired immobilization of silver nanoparticles toward sponge for rapid swabbing extraction and SERS detection of trace inorganic explosives. Talanta 2019, 204, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Liu, H.L.; Yang, J.M.; Li, Z.Q.; Yang, D.R.; Ji, L.N.; Wang, K.; Xia, X.H. SERS detection of nucleobases in single silver plasmonic nanopores. ACS Sens. 2020, 5, 2198–2204. [Google Scholar] [CrossRef]
- Huang, J.A.; Mousavi, M.Z.; Giovannini, G.; Zhao, Y.; Hubarevich, A.; Soler, M.A.; Rocchia, W.; Garoli, D.; De Angelis, F. Multiplexed discrimination of single amino acid residues in polypeptides in a single SERS hot spot. Angew. Chem. Int. Ed. 2020, 59, 11423–11431. [Google Scholar] [CrossRef]
- Shen, Q.; Zhou, P.-L.; Huang, B.-T.; Zhou, J.; Liu, H.-L.; Ahmed, S.A.; Ding, X.-L.; Li, J.; Zhai, Y.-M.; Wang, K. Mass transport through a sub-10 nm single gold nanopore: SERS and ionic current measurement. J. Electroanal. Chem. 2021, 894, 115373. [Google Scholar] [CrossRef]
- Hubarevich, A.; Huang, J.-A.; Giovannini, G.; Schirato, A.; Zhao, Y.; Maccaferri, N.; De Angelis, F.; Alabastri, A.; Garoli, D. λ-DNA through porous materials—Surface-enhanced Raman scattering in a simple plasmonic nanopore. J. Phys. Chem. C 2020, 124, 22663–22670. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Kerman, S.; Neutens, P.; Willems, K.; Cornelissen, S.; Lagae, L.; Stakenborg, T.; Van Dorpe, P. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun. 2018, 9, 733. [Google Scholar] [CrossRef]
Classification | Materials Used | Fabrication Method | Stability/Reproducibility | Targets | LOD | Samples | Refs. |
---|---|---|---|---|---|---|---|
Paper membrane substrates | Ag/sandpaper/filter paper | Deposition | RSD of 12.9% for 1600 points | Ferritin antigen | 31.6 pg/L | Water | [47] |
mpg-C3N4/AuCu | Filtration | RSD of 14 consecutive days (4.8%) and 25 batches (2.7%) | Benzidine | 0.14 μg/L | Tea bag | [45] | |
Zearalenone | 0.03 μg/L | Food sample | |||||
GO-Au | Immersing | / | Bilirubin | 7.0 μmol/L | Blood serum | [48] | |
GO-GNS | Filtration | reproducibility of 3.6-8.9% | Bilirubin | 0.44 μmol/L | Blood serum | [21] | |
Ti3C2Tx/DNA/Ag | Filtration | RSD of 4.1% for 42 days | Nitrofurantoin | 12.0 μg/L | Fish samples Shrimp samples | [49] | |
Ofloxacin | 35.0 μg/L | ||||||
Polymer membrane substrates | PDMS/Au | Surface growth | / | V. parahaemolyticus | 12 cfu/mL | Oyster, salmon | [50] |
Au NWs/PDMS | In-situ grown | mapping RSD values of 6.45% and 6.31% for PSA and AFP | Prostatespecific antigen α-fetoprotein | 0.49 ng/L 0.72 ng/L | Serum | [51] | |
PVDF/Ag/MIP | Mixed growth | / | Enrofloxacin hydrochloride | 0.1 μmol/L | Water | [52] | |
PMMA/GO/AuNSs | Immersing Spin coating | RSD less than 10.7% for SERS mapping; RSD of 4.7% for 600s irradiation | P. aeruginosa S. aureus | / | Skin burn wound | [53] | |
PDMS/Ag | Surface growth | RSD of 5.6% for 6 random points | 2,6-pyridinedicarboxylic acid | 1.2 pmol/L | B. subtilis | [54] | |
Non-support membrane substrates | GNPs/g-C3N4/GO | Filtration | RSD of 14.1% 16 points within 4 batches | R6G | 0.05 pmol/L | Water | [55] |
δ-MoN | Filtration | RSD less than 7.8% for 5000 measurement points | 2,5-dichlorophenol BPA | 0.1 nmol/L | Water | [56] | |
Liquid self-assembly substrates | AuNRs | Self-assembly | RSD of 12.9% for 10 reuse | R6G | 1.0 nmol/L | Water | [25] |
Au@Ag | Self-assembly | RSD of 10.5% for substrate-to-substrate | Thiram | 1.1 μg/L | Water | [27] | |
Thiabendazole | 51.0 μg/L | ||||||
AuNRs | Solvent-assisted self-assembly | / | Pyocyanin | 1.0 pmol/L | P. aeruginosa | [57] | |
Au core/Ag shell nanostar | Self-assembly | RSD of 14.9% for 10 random points; 23 days for storage | Dopamine | 0.1 nmol/L | Water | [58] | |
AuNPs | Self-assembly | RSD of 2.7% for SERS mapping; RSD of 2.7% for 10 batches | E. coli S. aureus | 50 cfu/mL | Serum | [59] | |
Solid self-assembly substrates | MF/Ag | Self-assembly; In-situ grown | Good repeatability and reproducibility for different random sites, consecutive days, extreme temperature, and UV exposure | Dopamine Lysozyme Hemoglobin | 2.69 fmol/L 62.0 pmol/L 6.83 pmol/L | Water | [60] |
Au NB | Template deposition; Etching; In-situ grown | / | R6G | 1.0 pmol/L | Water | [61] | |
Au/TiO2 | Template method; Sputtering | / | Exosomes | / | Plasma | [62] | |
Au/HCP-PS | Spin coating; Deposition | RSD less than 5% for reliability and reproducibility | Tyrosine Phenylalanine Tryptophan | / | Tears | [28] | |
AuNPs | Plasms etching Sputtering | / | alpha-fetoprotein- L3 | 3.0 ng/L | Water | [29] | |
AuNPs, AgNPs | Etching Deposition | RSD of 11.6% for 100 random points; RSD of 12% for 2000 spectra within 4 batches | Pyocyanin | 6.25 μmol/L | Artificial sputum | [63] | |
Chip-based substrate | P4VP-g-GO/Ag | Surface modification; In-situ grown | / | 4-aminothiophenol | 0.1 pmol/L | Water | [64] |
Au@MIP | Surface modification; Spin coating | RSD of 10.0–15.0% for SERS mapping | Pyrene | 1.0 nmol/L | Creek water; Seawater | [31] | |
Fluoranthene | |||||||
M-AuNP/PDMS/Au | Surface modification | RSD of 3.8% for 10 random points | Hematin | 0.03 nmol/L | Human erythrocytes | [35] | |
SAuNPs@GO | Surface modification | / | Paclitaxel Cyclophosphamide | 15.0 nmol/L 5.0 nmol/L | Blood serum | [36] | |
AuNPs | Surface modification | / | MCP-1 IL-10 | 0.1 ng/L | Human serum | [65] | |
AAO/Au NBPs | Diffusion | RSD of 9.4% for 5 random points; RSD of 9.6% for 5 batches | Dopamine | 6.5 nmol/L | Human serum | [66] | |
AuNPs/rGO/NFs | Surface reduction Surface growth | / | 6-mercaptopurine | 0.5 nmol/L | Human plasma | [67] | |
Magnetic substrates | Fe3O4@Au | Surface modification | RSD of 7.6% for 30 random points | Valosin-containing protein | 25.0 ng/L | Human tissues | [68] |
CoFe2O4@HNTs/AuNPs | Surface modification | RSD less than 10% for reproductive determination | 4,4′-thioaniline Nitrofurantoin | 26.0 μg/L 14.0 μg/L | Hair dyes | [69] | |
Fish feed; Aquatic samples | |||||||
Fe2O3@AgNPs | Thermal decomposition | / | P. gingivalis A. actinomycetemcomitans | / | Human saliva | [70] | |
Fe3O4@SiO2@Au | Surface modification | RSD less than 11.0% for reproductive determination | S. aureus A. baumannii K. pneumoniae | 14.1 fmol/L 9.7 fmol/L 8.1 fmol/L | MDR bacteria-infected mice | [71] | |
Fe3O4@Ag | Surface modification | RSD of 3.7% and 5.8% for 30 consecutive test in water and human serum | miRNA-122 miRNA-223 miRNA-21 | 349 amol/L 374 amol/L 311 amol/L | Human serum | [72] | |
Other solid substrate | hBN/AgNWs/sponge | Mixed modification | RSD of 8.0% for 30 random points | RhB | 10.0 nmol/L | Water | [73] |
Au-G-AgNs | Surface modification | RSD of 9.2% for 30 random points | MG | 0.1 nmol/L | Water | [74] | |
Ag-cotton | Surface modification Tabletting | RSD of 7.5% for 10 random points | E. coli | / | Urine | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, K.; Hu, Y.; Li, G. Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. Biosensors 2022, 12, 941. https://doi.org/10.3390/bios12110941
Ge K, Hu Y, Li G. Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. Biosensors. 2022; 12(11):941. https://doi.org/10.3390/bios12110941
Chicago/Turabian StyleGe, Kun, Yuling Hu, and Gongke Li. 2022. "Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis" Biosensors 12, no. 11: 941. https://doi.org/10.3390/bios12110941
APA StyleGe, K., Hu, Y., & Li, G. (2022). Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. Biosensors, 12(11), 941. https://doi.org/10.3390/bios12110941