Carnation-like Morphology of BiVO4-7 Enables Sensitive Photoelectrochemical Determination of Cr(VI) in the Food and Environment
Abstract
:1. Introduction
2. Experiments
2.1. Chemicals and Reagents
2.2. Synthesis and Characterization of BiVO4
2.3. PEC Sensor Preparation
2.4. Procedure for Using the PEC Sensor to Detect Cr(VI)
2.5. PEC Sensor Evaluation
2.6. Sample Pretreatment
3. Results and Discussion
3.1. Characterization of BiVO4-X
3.2. Photoelectrochemical Detection of Cr(VI)
3.3. Repeatability, Reproducibility, Stability, and Selectivity of the BiVO4-7 Sensor
3.4. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shellaiah, M.; Sun, K.W. Diamond-based electrodes for detection of metal ions and anions. Nanomaterials 2021, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; He, H.; Li, D.; Li, Y.; Li, J.; Li, W.Z. Photoelectrochemical reduction of Cr (VI) on plate-like WO3/BiVO4 composite electrodes under visible-light irradiation: Characteristics and kinetic study. J. Photochem. Photobiol. A 2018, 367, 438–445. [Google Scholar] [CrossRef]
- Liu, T.; Chu, Z.; Jin, W. Electrochemical mercury biosensors based on advanced nanomaterials. J. Mater. Chem. B 2019, 7, 3620–3632. [Google Scholar] [CrossRef]
- Almeida, D.S.; Cardoso, R.F.; Tavares, T.; Tito, V.; Carlos, P. Chromium removal from contaminated waters using nanomaterials—A review. TrAC Trends Anal. Chem. 2019, 118, 277–291. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.-X.; Zhang, Y.; Xu, N.; Wang, X.-L. A series of cobalt-based coordination polymer crystalline materials as highly sensitive electrochemical sensors for detecting Trace Cr(VI), Fe(III) Ions, and ascorbic acid. Cryst. Growth Des. 2021, 21, 4390–4397. [Google Scholar] [CrossRef]
- Yu, Y.; Xue, S.; Zhao, C.; Barnych, B.; Sun, G. Highly sensitive, selective, and reusable nanofibrous membrane-based carbon polymer dots sensors for detection of Cr(VI) in water. Appl. Surf. Sci. 2022, 582, 152392. [Google Scholar] [CrossRef]
- Zhang, J.F.; Li, S.L. Sensors for detection of Cr(VI) in water: A review. Int. J. Environ. Anal. Chem. 2021, 101, 1051–1073. [Google Scholar] [CrossRef]
- Pachkawade, V.; IEEE, M. State-of-the-Art in Mode-Localized MEMS coupled resonant sensors: A comprehensive review. IEEE Sens. J. 2021, 21, 8751–8779. [Google Scholar] [CrossRef]
- Kar, A.; Dey, S.; Burman, D.; Santra, S.; Guha, P.K. RGO/Ni2O3 heterojunction-based reusable, flexible device for Cr(VI) ion detection in water. IEEE Trans. Electron. Devices 2021, 68, 780–785. [Google Scholar] [CrossRef]
- Yatera, K.; Morimoto, Y.; Ueno, S.; Noguchi, S.; Kawaguchi, F.; Tanaka, H.; Suzuki, T. Cancer risks of hexavalent chromium in the respiratory tract. J. UOEH 2018, 40, 157–172. [Google Scholar] [CrossRef]
- Duran, A.; Tuzen, M.; Soylak, M. Speciation of Cr(III) and Cr(VI) in geological and water samples by ytterbium(III) hydroxide coprecipitation system and atomic absorption spectrometry. Food Chem. Toxicol. 2011, 49, 1633–1637. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ptacek, C.J.; Blowes, D.W.; Finfrock, Y.Z.; Liu, Y. Characterization of chromium species and distribution during Cr(VI) removal by biochar using confocal micro-X-ray fluorescence redox mapping and X-ray absorption spectroscopy. Environ. Int. 2020, 134, 105216. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; Chekri, R.; Leufroy, A.; Guérin, T.; Sloth, J.J.; Jitaru, P. Development and validation of a single run method based on species specific isotope dilution and HPLC-ICP-MS for simultaneous species interconversion correction and speciation analysis of Cr(III)/Cr(VI) in meat and dairy products. Talanta 2021, 222, 121538. [Google Scholar] [CrossRef]
- James, M.E.; Robert, J.J.; Peter, A.L.; Anthony, D.S. Response of chromium(V) to the diphenylcarbazide spectrophotometric method for the determination of chromium(VI). Anal. Chrmrca Acta 1991, 255, 31–33. [Google Scholar]
- Chen, G.; Wang, H.J.; Wei, X.Q.; Wu, Y.; Gu, W.L.; Hu, L.Y.; Xu, D.C.; Zhu, C.Z. Efficient Z-Scheme heterostructure based on TiO2/Ti3C2T /Cu2O to boost photoelectrochemical response for ultrasensitive biosensing. Sens. Actuators B Chem. 2020, 312, 127951. [Google Scholar] [CrossRef]
- Song, M.; Sun, H.; Yu, J.; Wang, Y.; Li, M.; Liu, M.; Zhao, G. Enzyme-free molecularly imprinted and graphene-functionalized photoelectrochemical sensor platform for pollutants. ACS Appl. Mater. Interfaces 2021, 13, 37212–37222. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zhao, Z.; Liang, Z.; Wu, W.; Wang, D.; Han, L. Niu. CdS/TiO2 Nanocomposite-based photoelectrochemical sensor for a sensitive determination of nitrite in principle of etching reaction. Anal. Chem. 2021, 93, 820–827. [Google Scholar] [CrossRef]
- Guo, L.; Yin, H.; Xu, M.; Zheng, Z.; Fang, X.; Chong, R.; Zhou, Y.; Xu, L.; Xu, Q.; Li, J.; et al. In situ generated plasmonic silver nanoparticle-sensitized amorphous titanium dioxide for ultrasensitive photoelectrochemical sensing of formaldehyde. ACS Sens. 2019, 4, 2724–2729. [Google Scholar] [CrossRef]
- Jalali, M.; Moakhar, R.S.; Abdelfattah, T.; Filine, E.; Mahshid, S.S.; Mahshid, S. Nanopattern-assisted direct growth of peony-like 3D MoS2/Au composite for nonenzymatic photoelectrochemical sensing. ACS Appl. Mater. Interfaces 2020, 12, 7411–7422. [Google Scholar] [CrossRef]
- Li, M.; Zhang, G.X.; Feng, C.Q.; Wu, H.M.; Mei, H. Highly sensitive detection of chromium (VI) by photoelectrochemical sensor under visible light based on Bi SPR-promoted BiPO4/BiOI heterojunction. Sens. Actuators B Chem. 2020, 305, 127449. [Google Scholar] [CrossRef]
- Wang, P.; Cao, L.; Wu, Y.; Di, J. A cathodic photoelectrochemical sensor for chromium(VI) based on the use of PbS quantum dot semiconductors on an ITO electrode. Mikrochim. Acta 2018, 185, 356. [Google Scholar] [CrossRef]
- Moakhar, R.S.; Goh, G.K.L.; Dolati, A.; Ghorbani, M. Sunlight-driven photoelectrochemical sensor for direct determination of hexavalent chromium based on Au decorated rutile TiO2 nanorods. Appl. Catal. B Environ. 2017, 201, 411–418. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, B.; Fan, L.; Liu, H.; Valvo, M.; Edström, K.; Cuartero, M.; De Marco, R.; Crespo, G.A.; Sun, L. Efficient BiVO4 photoanodes by postsynthetic treatment: Remarkable improvements in photoelectrochemical performance from facile borate modification. Angew. Chem. Int. Ed. 2019, 58, 19027–19033. [Google Scholar] [CrossRef]
- Lu, H.; Andrei, V.; Jenkinson, K.J.; Regoutz, A.; Li, N.; Creissen, C.E.; Wheatley, A.E.; Hao, H.; Reisner, E.; Wright, D.S.; et al. Single-source bismuth (Transition Metal) polyoxovanadate precursors for the scalable synthesis of doped BiVO4 photoanodes. Adv. Mater. 2018, 30, 1804033. [Google Scholar] [CrossRef]
- Phanichphant, S.; Nakaruk, A.; Chansaenpak, K.; Channei, D. Evaluating the photocatalytic efficiency of the BiVO4/rGO photocatalyst. Sci. Rep. 2019, 9, 16091. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Lin, L.-Y.; Chen, X.; Zhou, J.B.; Zhang, T.L.; Ding, L.D. Novel synthesis of highly ordered BiVO4 nanorod array for photoelectrochemical water oxidation using a facile solution process. J. Power Sources 2019, 436, 226842. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Zhang, T.; Ding, L. Enhanced degradation of tetracycline hydrochloride using photocatalysis and sulfate radical-based oxidation processes by Co/BiVO4 composites. J. Water Process. Eng. 2019, 32, 100918. [Google Scholar] [CrossRef]
- Li, X.; Jia, M.L.; Lu, Y.T.; Li, N.; Zheng, Y.Z.; Tao, X.; Huang, M.L. Co(OH)2/BiVO4 photoanode in tandem with a carbon-based perovskite solar cell for solar-driven overall water splitting. Electrochim. Acta 2020, 330, 135183. [Google Scholar] [CrossRef]
- Lin, L.; Xie, Q.; Zhang, M.; Liu, C.; Zhang, Y.; Wang, G.; Zou, P.; Zeng, J.; Chen, H.; Zhao, M. Construction of Z-scheme Ag-AgBr/BiVO4/graphene aerogel with enhanced photocatalytic degradation and antibacterial activities. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124978. [Google Scholar] [CrossRef]
- Sajid, M.M.; Khan, S.B.; Shad, N.A.; Amin, N.; Zhang, Z.J. Visible light assisted photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid using a BiVO4/FeVO4 heterojunction composite. RSC Adv. 2018, 8, 23489–23498. [Google Scholar] [CrossRef]
- Fakhravar, S.; Farhadian, M.; Tangestaninejad, S. Excellent performance of a novel dual Z-scheme Cu2S/Ag2S/BiVO4 heterostructure in metronidazole degradation in batch and continuous systems: Immobilization of catalytic particles on α-Al2O3 fiber. Appl. Surf. Sci. 2020, 505, 144599. [Google Scholar] [CrossRef]
- Song, J.; Zhou, H.; Gao, R.; Zhang, Y.; Zhang, H.; Zhang, Y.; Wang, G.; Wong, P.K.; Zhao, H. Selective determination of Cr(VI) by glutaraldehyde cross-linked chitosan polymer fluorophores. ACS Sens. 2018, 3, 792–798. [Google Scholar] [CrossRef]
- Dong, C.; Wu, G.; Wang, Z.; Ren, W.; Zhang, Y.; Shen, Z.; Li, T.; Wu, A. Selective colorimetric detection of Cr(iii) and Cr(vi) using gallic acid capped gold nanoparticles. Dalton Trans. 2016, 45, 8347–8354. [Google Scholar] [CrossRef]
- Aguirre, M.D.C. Nucleation and growth mechanisms of palladium, nanoflower-shaped, and its performance as electrocatalyst in the reduction of Cr(VI). J. Appl. Electrochem. 2019, 49, 795–809. [Google Scholar] [CrossRef]
- Tan, Q.; An, X.; Pan, S.; Liu, H.; Hu, X. Hydrogen peroxide assisted synthesis of sulfur quantum dots for the detection of chromium (VI) and ascorbic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119122. [Google Scholar] [CrossRef]
- Zheng, X.; Ren, S.; Gai, Q.; Liu, W. Carbon dot/carbon nitride composites fluorescent probe for the highly selective detection of Cr(VI) ions. J. Photochem. Photobiol. A Chem. 2020, 400, 112711. [Google Scholar] [CrossRef]
- Wang, Y.; He, J.; Zheng, M.; Qin, M.; Wei, W. Dual-emission of Eu based metal-organic frameworks hybrids with carbon dots for ratiometric fluorescent detection of Cr(VI). Talanta 2019, 191, 519–525. [Google Scholar] [CrossRef]
Materials | Technique | Linear Range (μM) | LOD (μM) | Ref. |
---|---|---|---|---|
GCPF | Fluorescence | 0–50 | 0.22 | [32] |
GA-AuNPs | Colorimetry | 2–20 | 2.0 | [33] |
Pd/Ti | DPV | 19–100 | 0.1 | [34] |
SQDs | Fluorescence | 10–120 | 0.36 | [35] |
CDs/C3N4 | Fluorescence | 2–80 | 0.39 | [36] |
CDs@Eu-MOFs | Fluorescence | 2–100 | 0.21 | [37] |
BiVO4-7 | PEC | 2–210 | 0.01 | This work |
Samples | Original | Added (μM) | Found (μM) | RSD (%) | Recovery (%) | Flame Atomic Absorption Spectrometry (μM) |
---|---|---|---|---|---|---|
Peanut | Not found | 10 | 9.90 | 2.36 | 99.0 | 9.93 |
100 | 96.3 | 3.37 | 96.3 | 97.0 | ||
Rice | Not found | 10 | 9.41 | 2.44 | 94.1 | 9.45 |
100 | 97.2 | 2.57 | 97.2 | 98.0 | ||
Soil | Not found | 10 | 9.26 | 4.04 | 92.6 | 9.30 |
100 | 90.3 | 8.39 | 90.3 | 91.0 | ||
Tap water | Not found | 10 | 9.38 | 1.22 | 93.8 | 9.28 |
100 | 103.0 | 3.87 | 103.0 | 101.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Tan, Z.; Chen, X.; Chen, X.; Cheng, L.; Wu, H.; Li, P.; Zhang, Z. Carnation-like Morphology of BiVO4-7 Enables Sensitive Photoelectrochemical Determination of Cr(VI) in the Food and Environment. Biosensors 2022, 12, 130. https://doi.org/10.3390/bios12020130
Wu W, Tan Z, Chen X, Chen X, Cheng L, Wu H, Li P, Zhang Z. Carnation-like Morphology of BiVO4-7 Enables Sensitive Photoelectrochemical Determination of Cr(VI) in the Food and Environment. Biosensors. 2022; 12(2):130. https://doi.org/10.3390/bios12020130
Chicago/Turabian StyleWu, Wenqin, Zhao Tan, Xiao Chen, Xiaomei Chen, Ling Cheng, Huimin Wu, Peiwu Li, and Zhaowei Zhang. 2022. "Carnation-like Morphology of BiVO4-7 Enables Sensitive Photoelectrochemical Determination of Cr(VI) in the Food and Environment" Biosensors 12, no. 2: 130. https://doi.org/10.3390/bios12020130
APA StyleWu, W., Tan, Z., Chen, X., Chen, X., Cheng, L., Wu, H., Li, P., & Zhang, Z. (2022). Carnation-like Morphology of BiVO4-7 Enables Sensitive Photoelectrochemical Determination of Cr(VI) in the Food and Environment. Biosensors, 12(2), 130. https://doi.org/10.3390/bios12020130