Paving the Way for a Green Transition in the Design of Sensors and Biosensors for the Detection of Volatile Organic Compounds (VOCs)
Abstract
:1. Introduction
2. Section A: Environmental Analysis
2.1. Detection of Toluene
2.2. Detection of Dichloromethane
2.3. Detection of Limonene and α-Pinene
2.4. Detection of Dichlorobenzene
2.5. Detection of Styrene
2.6. Detection of Tetrachloroethylene
2.7. Detection of Formaldehyde
3. Section B: Food Packaging
3.1. VOCs Detection in Meat Products
3.2. VOCs Detection in Fish Products
4. Section C: Diagnostic
4.1. Diabetes Diagnosis
4.2. Cancer Diagnosis
5. Conclusions: Challenges and Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- What Are Volatile Organic Compounds (VOCs)? Available online: https://www.epa.gov/indoor-air-quality-iaq/what-are-volatile-organic-compounds-vocs (accessed on 1 December 2021).
- VOC. Available online: https://www.eea.europa.eu/themes/air/air-quality/resources/glossary/voc (accessed on 15 December 2021).
- Menezes, H.C.; Amorim, L.C.A.; Cardeal, Z.L. Sampling and Analytical Methods for Determining VOC in Air by Biomonitoring Human Exposure. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1–39. [Google Scholar] [CrossRef]
- Zhang, G.X.; Feizbakhshan, M.; Zheng, S.L.; Hashisho, Z.; Sun, Z.M.; Liu, Y.Y. Effects of properties of minerals adsorbents for the adsorption and desorption of volatile organic compounds (VOC). Appl. Clay Sci. 2019, 173, 88–96. [Google Scholar] [CrossRef]
- World Health Organization. Indoor Air Quality: Organic Pollutants. In Proceedings of the WHO Meeting, Berlin, Germany, 23–27 August 1987. [Google Scholar]
- Hu, Y.; Li, Z.Y.; Wang, Y.T.; Wang, L.; Zhu, H.T.; Chen, L.; Guo, X.B.; An, C.X.; Jiang, Y.J.; Liu, A.Q. Emission Factors of NOx, SO2, PM and VOCs in Pharmaceuticals, Brick and Food Industries in Shanxi, China. Aerosol Air Qual. Res. 2019, 19, 1785–1797. [Google Scholar] [CrossRef]
- Won, S.R.; Ghim, Y.S.; Kim, J.; Ryu, J.; Shim, I.K.; Lee, J. Volatile Organic Compounds in Underground Shopping Districts in Korea. Int. J. Environ. Res. Public Health 2021, 18, 5508. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, K.H.; Kim, D.K. Evaluation and comparison of the indoor air quality in different areas of the hospital. Medicine 2020, 99, e23942. [Google Scholar] [CrossRef] [PubMed]
- Lerner, J.E.C.; Gutierrez, M.D.; Mellado, D.; Giuliani, D.; Massolo, L.; Sanchez, E.Y.; Porta, A. Characterization and cancer risk assessment of VOCs in home and school environments in gran La Plata, Argentina. Environ. Sci. Pollut. Res. 2018, 25, 10039–10048. [Google Scholar] [CrossRef]
- Jung, C.R.; Nishihama, Y.; Nakayama, S.F.; Tamura, K.; Isobe, T.; Michikawa, T.; Iwai-Shimada, M.; Kobayashi, Y.; Sekiyama, M.; Taniguchi, Y.; et al. Indoor air quality of 5000 households and its determinants. Part B: Volatile organic compounds and inorganic gaseous pollutants in the Japan Environment and Children’s study. Environ. Res. 2021, 197, 111135. [Google Scholar] [CrossRef]
- Inoue, M.; Mizuguchi, A.; Ueta, I.; Takahashi, K.; Saito, Y. Rapid on-site air sampling with a needle extraction device for evaluating the indoor air environment in school facilities. Anal. Sci. 2013, 29, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Adamova, T.; Hradecky, J.; Panek, M. Volatile Organic Compounds (VOCs) from Wood and Wood-Based Panels: Methods for Evaluation, Potential Health Risks, and Mitigation. Polymers 2020, 12, 2289. [Google Scholar] [CrossRef]
- Ulker, O.C.; Ulker, O.; Hiziroglu, S. Volatile organic compounds (VOCs) emitted from coated furniture units. Coatings 2021, 11, 806. [Google Scholar] [CrossRef]
- Liang, W.H.; Yang, S.; Yang, X.D. Long-Term Formaldehyde Emissions from Medium-Density Fiberboard in a Full-Scale Experimental Room: Emission Characteristics and the Effects of Temperature and Humidity. Environ. Sci. Technol. 2015, 49, 10349–10356. [Google Scholar] [CrossRef] [PubMed]
- Rovelli, S.; Cattaneo, A.; Fazio, A.; Spinazze, A.; Borghi, F.; Campagnolo, D.; Dossi, C.; Cavallo, D.M. VOCs measurements in residential buildings: Quantification via thermal desorption and assessment of indoor concentrations in a case-study. Atmosphere 2019, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.C.; Wang, Y.; Li, H.L.; Yang, M.M.; Li, T.; Cao, F.F.; Chen, J.M.; Wang, Z. Influence of cloud/fog on atmospheric VOCs in the free troposphere: A case study at Mount Tai in Eastern China. Aerosol Air Qual. Res. 2017, 17, 2401–2412. [Google Scholar] [CrossRef] [Green Version]
- Xiang, W.; Zhang, X.Y.; Chen, K.Q.; Fang, J.N.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). Chem. Eng. J. 2020, 385, 123842. [Google Scholar] [CrossRef]
- Zhu, L.L.; Shen, D.K.; Luo, K.H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J. Hazard. Mater. 2020, 389, 122102. [Google Scholar] [CrossRef]
- Zhu, L.; Deng, B.Q.; Guo, Y. A unified model for VOCs emission/sorption from/on building materials with and without ventilation. Int. J. Heat Mass Transf. 2013, 67, 734–740. [Google Scholar] [CrossRef]
- Kang, I.S.; Xi, J.Y.; Hu, H.Y. Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms. Front. Environ. Sci. Eng. 2018, 12, 8. [Google Scholar] [CrossRef]
- Deng, B.Q.; Zhang, B.; Qiu, Y.F. Analytical solution of VOCs emission from wet materials with variable thickness. Build. Environ. 2016, 104, 145–151. [Google Scholar] [CrossRef]
- Liu, Z.W.; Yan, Y.S.; Liu, T.T.; Zhao, Y.C.; Huang, Q.F.; Huang, Z.C. How to predict emissions of volatile organic compounds from solid building materials? A critical review on mass transfer models. J. Environ. Manag. 2022, 302, 114054. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, X.Z.; Wang, Z.R.; Zhang, J.; Liu, X.; Zhao, Y. Improved speciation profiles and estimation methodology for VOCs emissions: A case study in two chemical plants in eastern China. Environ. Pollut. 2021, 291, 118192. [Google Scholar] [CrossRef] [PubMed]
- Hunt, S.; Grau-Bove, J.; Schofield, E.; Gaisford, S. Effect of polyethylene glycol treatment on acetic acid emissions from wood. Forests 2021, 12, 1629. [Google Scholar] [CrossRef]
- Even, M.; Girard, M.; Rich, A.; Hutzler, C.; Luch, A. Emissions of VOCs from polymer-based consumer products: From emission data of real samples to the assessment of inhalation exposure. Front. Public Health 2019, 7, 202. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.H.; Lee, M.H.; Kim, K.H.; Kumar, P. Characterization and flux assessment of airborne phthalates released from polyvinyl chloride consumer goods. Environ. Res. 2018, 165, 81–90. [Google Scholar] [CrossRef]
- Noguchi, M.; Yamasaki, A. Volatile and semivolatile organic compound emissions from polymers used in commercial products during thermal degradation. Heliyon 2020, 6, e03314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Yin, Y.Y.; Wen, J.H.; Huang, S.L.; Han, D.M.; Chen, X.J.; Cheng, J.P. Characteristics, reactivity and source apportionment of ambient volatile organic compounds (VOCs) in a typical tourist city. Atmos. Environ. 2019, 215, 116898. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wang, H.L.; Jing, S.G.; Gao, Y.Q.; Peng, Y.R.; Lou, S.R.; Cheng, T.T.; Tao, S.K.; Li, L.; Li, Y.J.; et al. Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport. Atmos. Environ. 2019, 215, 116902. [Google Scholar] [CrossRef]
- Chin, J.Y.; Batterman, S.A. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling. Chemosphere 2012, 86, 951–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tampio, E.A.; Blasco, L.; Vainio, M.M.; Kahala, M.M.; Rasi, S.E. Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes. Glob. Chang. Biol. Bioenergy 2019, 11, 72–84. [Google Scholar] [CrossRef]
- Vivaldo, G.; Masi, E.; Taiti, C.; Caldarelli, G.; Mancuso, S. The network of plants volatile organic compounds. Sci. Rep. 2017, 7, 11050. [Google Scholar] [CrossRef] [Green Version]
- Cova, C.M.; Zuliani, A.; Munoz-Batista, M.J.; Luque, R. Efficient Ru-based scrap waste automotive converter catalysts for the continuous-flow selective hydrogenation of cinnamaldehyde. Green Chem. 2019, 21, 4712–4722. [Google Scholar] [CrossRef]
- Zuliani, A.; Cova, C.M.; Manno, R.; Sebastian, V.; Romero, A.A.; Luque, R. Continuous flow synthesis of menthol via tandem cyclisation-hydrogenation of citronellal catalysed by scrap catalytic converters. Green Chem. 2020, 22, 379–387. [Google Scholar] [CrossRef]
- Brilli, F.; Loreto, F.; Baccelli, I. Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front. Plant Sci. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Boachon, B.; Lynch, J.H.; Ray, S.; Yuan, J.; Caldo, K.M.P.; Junker, R.R.; Kessler, S.A.; Morgan, J.A.; Dudareva, N. Natural fumigation as a mechanism for volatile transport between flower organs. Nat. Chem. Biol. 2019, 15, 583–588. [Google Scholar] [CrossRef]
- Rios-Navarro, A.; Gonzalez, M.; Carazzone, C.; Ramirez, A.M.C. Learning about microbial language: Possible interactions mediated by microbial volatile organic compounds (VOCs) and relevance to understanding Malassezia spp. metabolism. Metabolomics 2021, 17, 39. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Knoll, W.; Pelosi, P. Aphid odorant-binding protein 9 is narrowly tuned to linear alcohols and aldehydes of sixteen carbon atoms. Insects 2021, 12, 741. [Google Scholar] [CrossRef] [PubMed]
- Capuano, R.; Paba, E.; Mansi, A.; Marcelloni, A.M.; Chiominto, A.; Proietto, A.R.; Zampetti, E.; Macagnano, A.; Lvova, L.; Catini, A.; et al. Aspergillus species discrimination using a gas sensor array. Sensors 2020, 20, 4004. [Google Scholar] [CrossRef]
- Weisskopf, L.; Schulz, S.; Garbeva, P. Microbial volatile organic compounds in intra-kingdom and inter-Kingdom interactions. Nat. Rev. Microbiol. 2021, 19, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.W.; He, J.Z.; Yang, X.D. An experimental method for measuring VOC emissions from individual human whole-body skin under controlled conditions. Build. Environ. 2020, 181, 107137. [Google Scholar] [CrossRef]
- Janssens, E.; van Meerbeeck, J.P.; Lamote, K. Volatile organic compounds in human matrices as lung cancer biomarkers: A systematic review. Crit. Rev. Oncol. Hematol. 2020, 153, 103037. [Google Scholar] [CrossRef]
- Course, C.; Watkins, W.J.; Muller, C.; Odd, D.; Kotecha, S.; Chakraborty, M. Volatile organic compounds as disease predictors in newborn infants: A systematic review. J. Breath Res. 2021, 15, 024002. [Google Scholar] [CrossRef] [PubMed]
- Gouzerh, F.; Bessiere, J.M.; Ujvari, B.; Thomas, F.; Dujon, A.M.; Dormont, L. Odors and cancer: Current status and future directions. Biochim. Et Biophys. Acta-Rev. Cancer 2022, 1877, 188644. [Google Scholar] [CrossRef]
- Xiang, L.J.; Wu, S.H.; Hua, Q.L.; Bao, C.Y.; Liu, H. Volatile organic compounds in human exhaled breath to diagnose gastrointestinal cancer: A meta-analysis. Front. Oncol. 2021, 11, 269. [Google Scholar] [CrossRef] [PubMed]
- Corsini, L.; Castro, R.; Barroso, C.G.; Duran-Guerrero, E. Characterization by gas chromatography-olfactometry of the most odour-active compounds in Italian balsamic vinegars with geographical indication. Food Chem. 2019, 272, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Aznar, M.; Domeno, C.; Osorio, J.; Nerin, C. Release of volatile compounds from cooking plastic bags under different heating sources. Food Packag. Shelf Life 2020, 26, 100552. [Google Scholar] [CrossRef]
- Zhou, T.; Feng, Y.Z.; Thomas-Danguin, T.; Zhao, M.M. Enhancement of saltiness perception by odorants selected from Chinese soy sauce: A gas chromatography/olfactometry-associated taste study. Food Chem. 2021, 335, 127664. [Google Scholar] [CrossRef]
- Kumar, S.; Huang, J.Z.; Abbassi-Ghadi, N.; Spanel, P.; Smith, D.; Hanna, G.B. Selected Ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal. Chem. 2013, 85, 6121–6128. [Google Scholar] [CrossRef]
- Yuan, B.; Koss, A.R.; Warneke, C.; Coggon, M.; Sekimoto, K.; de Gouw, J.A. Proton-transfer-reaction mass spectrometry: Applications in atmospheric sciences. Chem. Rev. 2017, 117, 13187–13229. [Google Scholar] [CrossRef]
- Biasioli, F.; Yeretzian, C.; Gasperi, F.; Mark, T.D. PTR-MS monitoring of VOCs and BVOCs in food science and technology. Trac-Trends Anal. Chem. 2011, 30, 968–977. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.F.; Zhang, C.; Ma, J.; Hong, S.H.; She, Y.X.; Abd El-Aty, A.M.; He, Y.H.; Yu, H.L.; Liu, H.J.; Wang, J. Fabrication of a highly sensitive electrochemical sensor based on electropolymerized molecularly imprinted polymer hybrid nanocomposites for the determination of 4-nonylphenol in packaged milk samples. Anal. Biochem. 2018, 559, 44–50. [Google Scholar] [CrossRef]
- Rasheed, T.; Hassan, A.A.; Kausar, F.; Sher, F.; Bilal, M.; Iqbal, H.M.N. Carbon nanotubes assisted analytical detection-Sensing/delivery cues for environmental and biomedical monitoring. Trac-Trends Anal. Chem. 2020, 132, 116066. [Google Scholar] [CrossRef]
- Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S.G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N. Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors 2021, 21, 2494. [Google Scholar] [CrossRef]
- El Kazzy, M.; Weerakkody, J.S.; Hurot, C.; Mathey, R.; Buhot, A.; Scaramozzino, N.; Hou, Y.X. An overview of artificial olfaction systems with a focus on surface plasmon resonance for the analysis of volatile organic compounds. Biosensors 2021, 11, 244. [Google Scholar] [CrossRef] [PubMed]
- Dobrzyniewski, D.; Szulczynski, B.; Dymerski, T.; Gebicki, J. Development of gas sensor array for methane reforming process monitoring. Sensors 2021, 21, 4983. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Critical overview on the application of sensors and biosensors for clinical analysis. Trac-Trends Anal. Chem. 2016, 85, 36–60. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, K.; Stobiecka, M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr. Polym. 2020, 229, 115463. [Google Scholar] [CrossRef] [PubMed]
- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef]
- Majdinasab, M.; Mishra, R.K.; Tang, X.Q.; Marty, J.L. Detection of antibiotics in food: New achievements in the development of biosensors. Trac-Trends Anal. Chem. 2020, 127, 115883. [Google Scholar] [CrossRef]
- Bhalla, N.; Pan, Y.W.; Yang, Z.G.; Payam, A.F. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano 2020, 14, 7783–7807. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy 2021, 79, 105369. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.C.; Yin, S.; Dong, J.W.; Kaynak, O. A Review on soft sensors for monitoring, control, and optimization of industrial processes. IEEE Sens. J. 2021, 21, 12868–12881. [Google Scholar] [CrossRef]
- Mani, V.; Beduk, T.; Khushaim, W.; Ceylan, A.E.; Timur, S.; Wolfbeis, O.S.; Salama, K.N. Electrochemical sensors targeting salivary biomarkers: A comprehensive review. Trac-Trends Anal. Chem. 2021, 135, 116164. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Dourandish, Z.; Khalilzadeh, M.A.; Jang, H.W.; Venditti, R.A.; Varma, R.S.; Shokouhimehr, M. Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants. Ind. Eng. Chem. Res. 2021, 60, 1112–1136. [Google Scholar] [CrossRef]
- Nykamp, H. A transition to green buildings in Norway. Environ. Innov. Soc. Transit. 2017, 24, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Kemp-Benedict, E. Investing in a Green Transition. Ecol. Econ. 2018, 153, 218–236. [Google Scholar] [CrossRef]
- Yang, Y.C.; Nie, P.Y.; Huang, J.B. The optimal strategies for clean technology to advance green transition. Sci. Total Environ. 2020, 716, 134439. [Google Scholar] [CrossRef]
- Bogovic, N.D.; Grdic, Z.S. Transitioning to a green economy-possible effects on the croatian economy. Sustainability 2020, 12, 9342. [Google Scholar] [CrossRef]
- Sharpe, S.A.; Martinez-Fernandez, C.M. The Implications of green employment: Making a just transition in ASEAN. Sustainability 2021, 13, 7389. [Google Scholar] [CrossRef]
- Ohnesorge, L.; Rogge, E. Europe’s green policy: Towards a climate neutral economy by way of investors’ choice. Eur. Co. Law 2021, 18, 34–39. [Google Scholar]
- Zuliani, A.; Cova, C.M. Green synthesis of heterogeneous visible-light-active photocatalysts: Recent advances. Photochem 2021, 1, 147–166. [Google Scholar] [CrossRef]
- Green Transition. Available online: https://ec.europa.eu/reform-support/what-we-do/green-transition_en (accessed on 25 November 2021).
- Zuliani, A.; Balu, A.M.; Luque, R. Efficient and Environmentally friendly microwave-assisted synthesis of catalytically active magnetic metallic Ni nanoparticles. ACS Sustain. Chem. Eng. 2017, 5, 11584–11587. [Google Scholar] [CrossRef]
- Zuliani, A.; Ranjan, P.; Luque, R.; Van der Eycken, E.V. Heterogeneously catalyzed synthesis of imidazolones via cycloisomerizations of propargylic ureas using Ag and Au/AI SBA-15 systems. ACS Sustain. Chem. Eng. 2019, 7, 5568–5575. [Google Scholar] [CrossRef]
- Cova, C.M.; Zuliani, A.; Manno, R.; Sebastian, V.; Luque, R. Scrap waste automotive converters as efficient catalysts for the continuous-flow hydrogenations of biomass derived chemicals. Green Chem. 2020, 22, 1414–1423. [Google Scholar] [CrossRef]
- Zuliani, A.; Cano, M.; Calsolaro, F.; Puente Santiago, A.R.; Giner-Casares, J.J.; Rodríguez-Castellón, E.; Berlier, G.; Cravotto, G.; Martina, K.; Luque, R. Improving the electrocatalytic performance of sustainable Co/carbon materials for the oxygen evolution reaction by ultrasound and microwave assisted synthesis. Sustain. Energy Fuels 2021, 5, 720–731. [Google Scholar] [CrossRef]
- Ivars-Barcelo, F.; Zuliani, A.; Fallah, M.; Mashkour, M.; Rahimnejad, M.; Luque, R. Novel applications of microbial fuel cells in sensors and biosensors. Appl. Sci. 2018, 8, 1184. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, R.; Gardner, J.W.; Guha, P.K. Air pollution monitoring using near room temperature resistive gas sensors: A review. IEEE Trans. Electron Devices 2019, 66, 3254–3264. [Google Scholar] [CrossRef]
- Masikini, M.; Chowdhury, M.; Nemraoui, O. Review-metal oxides: Application in exhaled breath acetone chemiresistive sensors. J. Electrochem. Soc. 2020, 167, 037537. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.X.; Zhou, Q.; Peng, S.D.; Xu, L.N.; Zeng, W. Volatile organic compounds gas sensors based on molybdenum oxides: A mini review. Front. Chem. 2020, 8, 339. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Zhao, S.N.; Zang, S.Q.; Li, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. [Google Scholar] [CrossRef] [PubMed]
- Li, B.L.; Zhou, Q.; Peng, S.D.; Liao, Y.M. Recent advances of SnO2-based sensors for detecting volatile organic compounds. Front. Chem. 2020, 8, 321. [Google Scholar] [CrossRef]
- Tholl, D.; Hossain, O.; Weinhold, A.; Rose, U.S.R.; Wei, Q.S. Trends and applications in plant volatile sampling and analysis. Plant J. 2021, 106, 314–325. [Google Scholar] [CrossRef]
- Zeng, H.; Zhang, G.Z.; Nagashima, K.; Takahashi, T.; Hosomi, T.; Yanagida, T. Metal-oxide nanowire molecular sensors and their promises. Chemosensors 2021, 9, 41. [Google Scholar] [CrossRef]
- Tomic, M.; Setka, M.; Vojkuvka, L.; Vallejos, S. VOCs sensing by metal oxides, conductive polymers, and carbon-based materials. Nanomaterials 2021, 11, 552. [Google Scholar] [CrossRef]
- Pelosi, P.; Mastrogiacomo, R.; Iovinella, I.; Tuccori, E.; Persaud, K.C. Structure and biotechnological applications of odorant-binding proteins. Appl. Microbiol. Biotechnol. 2014, 98, 61–70. [Google Scholar] [CrossRef]
- Wasilewski, T.; Szulczynski, B.; Wojciechowski, M.; Kamysz, W.; Gebicki, J. Determination of long-chain aldehydes using a novel quartz crystal microbalance sensor based on a biomimetic peptide. Microchem. J. 2020, 154, 104509. [Google Scholar] [CrossRef]
- Magna, G.; Muduganti, M.; Stefanelli, M.; Sivalingam, Y.; Zurlo, F.; Di Bartolomeo, E.; Catini, A.; Martinelli, E.; Paolesse, R.; Di Natale, C. Light-activated porphyrinoid-capped nanoparticles for gas sensing. ACS Appl. Nano Mater. 2021, 4, 414–424. [Google Scholar] [CrossRef]
- Gong, Y.; Wei, Y.J.; Cheng, J.H.; Jiang, T.Y.; Chen, L.; Xu, B. Health risk assessment and personal exposure to Volatile Organic Compounds (VOCs) in metro carriages—A case study in Shanghai, China. Sci. Total Environ. 2017, 574, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Soni, V.; Singh, P.; Shree, V.; Goel, V. Effects of VOCs on human health. In Air Pollution and Control. Energy, Environment, and Sustainability; Springer: Singapore, 2018; pp. 119–142. [Google Scholar] [CrossRef]
- Meciarova, L.; Vilcekova, S.; Burdova, E.K.; Kiselak, J. Factors effecting the total volatile organic compound (TVOC) concentrations in Slovak households. Int. J. Environ. Res. Public Health 2017, 14, 1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Yang, X.D.; Licina, D. Emissions of volatile organic compounds from interior materials of vehicles. Build. Environ. 2020, 170, 1443. [Google Scholar] [CrossRef]
- Harb, P.; Locoge, N.; Thevenet, F. Emissions and treatment of VOCs emitted from wood-based construction materials: Impact on indoor air quality. Chem. Eng. J. 2018, 354, 641–652. [Google Scholar] [CrossRef]
- Caron, F.; Guichard, R.; Robert, L.; Verriele, M.; Thevenet, F. Behaviour of individual VOCs in indoor environments: How ventilation affects emission from materials. Atmos. Environ. 2020, 243, 117713. [Google Scholar] [CrossRef]
- Heroux, M.E.; Gauvin, D.; Gilbert, N.L.; Guay, M.; Dupuis, G.; Legris, M.; Levesque, B. Housing characteristics and indoor concentrations of selected volatile organic compounds (VOCs) in Quebec City, Canada. Indoor Built Environ. 2008, 17, 128–137. [Google Scholar] [CrossRef]
- Toxicological Profiles. Available online: https://www.atsdr.cdc.gov/toxprofiledocs/index.html (accessed on 3 December 2021).
- Lai, X.Y.; Cao, K.; Shen, G.X.; Xue, P.; Wang, D.; Hu, F.; Zhang, J.L.; Yang, Q.F.; Wang, X.Z. Ordered mesoporous NiFe2O4 with ultrathin framework for low-ppb toluene sensing. Sci. Bull. 2018, 63, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Cui, F.H.; Wang, G.; Yu, D.W.; Gan, X.D.; Tian, Q.H.; Guo, X.Y. Towards “zero waste” extraction of nickel from scrap nickel-based superalloy using magnesium. J. Clean. Prod. 2020, 262, 121275. [Google Scholar] [CrossRef]
- Li, H.R.; Li, Y.; Cheng, H.L.; Yang, Q.R.; Xiong, J.H.; Ma, Y.J.; Ding, L.W.; Zeng, C.H. Lanthanide Metal-organic frameworks as luminescent sensor for toluene. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2645–2653. [Google Scholar] [CrossRef]
- Wang, J.L.; Wu, Z.L.; Chen, S.H.; Yuan, R.; Dong, L. A novel multifunctional fluorescent sensor based on N/S co-doped carbon dots for detecting Cr (VI) and toluene. Microchem. J. 2019, 151, 104246. [Google Scholar] [CrossRef]
- Sarris, D.; Galiotou-Panayotou, M.; Koutinas, A.A.; Komaitis, M.; Papanikolaou, S. Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J. Chem. Technol. Biotechnol. 2011, 86, 1439–1448. [Google Scholar] [CrossRef]
- Zhong, Z.; Fritzsche, M.; Pieper, S.B.; Wood, T.K.; Lear, K.L.; Dandy, D.S.; Reardon, K.F. Fiber optic monooxygenase biosensor for toluene concentration measurement in aqueous samples. Biosens. Bioelectron. 2011, 26, 2407–2412. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, M.; Acikbas, Y.; Bozkurt, S.; Capan, R.; Erdogan, M.; Ozkaya, C. A novel Calix 4 arene thiourea decorated with 2-(2-aminophenyl)benzothiazole moiety as highly selective chemical gas sensor for dichloromethane vapor. ChemistrySelect 2021, 6, 4670–4676. [Google Scholar] [CrossRef]
- Kim, E.B.; Abdullah; Ameen, S.; Akhtar, M.S.; Shin, H.S. Environment-friendly and highly sensitive dichloromethane chemical sensor fabricated with ZnO nanopyramids-modified electrode. J. Taiwan Inst. Chem. Eng. 2019, 102, 143–152. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhan, S.P.; Wu, X.F.; Wu, L.Q.; Liu, Y.X. Nanoporous fluorescent sensor based on upconversion nanoparticles for the detection of dichloromethane with high sensitivity. RSC Adv. 2021, 11, 565–571. [Google Scholar] [CrossRef]
- Plekhanova, Y.V.; Firsova, Y.E.; Doronina, N.V.; Trotsenko, Y.A.; Reshetilov, A.N. Aerobic methylobacteria as the basis for a biosensor for dichloromethane detection. Appl. Biochem. Microbiol. 2013, 49, 188–193. [Google Scholar] [CrossRef]
- Weston-Green, K.; Clunas, H.; Naranjo, C.J. A review of the potential use of pinene and linalool as terpene-based medicines for brain health: Discovering novel therapeutics in the flavours and fragrances of cannabis. Front. Psychiatry 2021, 12, 1309. [Google Scholar] [CrossRef]
- Wen, T.; Sang, M.X.; Wang, M.L.; Han, L.B.; Gong, Z.L.; Tang, X.H.; Long, X.Z.; Xiong, H.; Peng, H.L. Rapid detection of d-limonene emanating from citrus infestation by Bactrocera dorsalis (Hendel) using a developed gas-sensing system based on QCM sensors coated with ethyl cellulose. Sens. Actuators B Chem. 2021, 328, 129048. [Google Scholar] [CrossRef]
- Li, B.W.; Xu, C.Q.; Liu, L.; Yu, J.; Fan, Y.M. Facile and sustainable etherification of ethyl cellulose towards excellent UV blocking and fluorescence properties. Green Chem. 2021, 23, 479–489. [Google Scholar] [CrossRef]
- Hawari, H.F.; Samsudin, N.M.; Shakaff, A.Y.M.; Wahab, Y.; Hashim, U.; Zakaria, A.; Ghani, S.A.; Ahmad, M.N. Highly selective molecular imprinted polymer (MIP) based sensor array using interdigitated electrode (IDE) platform for detection of mango ripeness. Sens. Actuators B Chem. 2013, 187, 434–444. [Google Scholar] [CrossRef]
- Wu, Y.; Shetty, M.; Zhang, K.; Dauenhauer, P.J. Sustainable hybrid route to renewable methacrylic acid via biomass-derived citramalate. ACS Eng. Au 2021. [Google Scholar] [CrossRef]
- Hui, K.S.; Chao, C.Y.H. Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH. J. Hazard. Mater. 2006, 137, 1135–1148. [Google Scholar] [CrossRef]
- Abu-Zied, B.M.; Alam, M.M.; Asiri, A.M.; Schwieger, W.; Rahman, M.M. Fabrication of 1,2-dichlorobenzene sensor based on mesoporous MCM-41 material. Colloids Surf. A Physicochem. Eng. Asp. 2019, 562, 161–169. [Google Scholar] [CrossRef]
- Feng, L.; Dong, C.L.; Li, M.F.; Li, L.X.; Jiang, X.; Gao, R.; Wang, R.J.; Zhang, L.J.; Ning, Z.L.; Gao, D.J.; et al. Terbium-based metal-organic frameworks: Highly selective and fast respond sensor for styrene detection and construction of molecular logic gate. J. Hazard. Mater. 2020, 388, 121816. [Google Scholar] [CrossRef]
- Alonso, S.; Navarro-Llorens, J.M.; Tormo, A.; Perera, J. Construction of a bacterial biosensor for styrene. J. Biotechnol. 2003, 102, 301–306. [Google Scholar] [CrossRef]
- Yuan, H.Y.; Aljneibi, S.; Yuan, J.R.; Wang, Y.X.; Liu, H.; Fang, J.; Tang, C.H.; Yan, X.H.; Cai, H.; Gu, Y.D.; et al. ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 2019, 31, e1807161. [Google Scholar] [CrossRef]
- Jo, Y.K.; Jeong, S.Y.; Moon, Y.K.; Jo, Y.M.; Yoon, J.W.; Lee, J.H. Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor. Nat. Commun. 2021, 12, 4955. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.Y.; Chen, X.Q.; Zhang, Y. Batch fabrication of formaldehyde sensors based on LaFeO3 thin film with ppb-level detection limit. Sens. Actuators B Chem. 2021, 349, 130738. [Google Scholar] [CrossRef]
- Xu, L.; Ge, M.Y.; Zhang, F.; Huang, H.J.; Sun, Y.; He, D.N. Nanostructured of SnO2/NiO composite as a highly selective formaldehyde gas sensor. J. Mater. Res. 2020, 35, 3079–3090. [Google Scholar] [CrossRef]
- Kang, Z.J.; Zhang, D.Z.; Li, T.T.; Liu, X.H.; Song, X.S. Polydopamine-modified SnO2 nanofiber composite coated QCM gas sensor for high-performance formaldehyde sensing. Sens. Actuators B Chem. 2021, 345, 130299. [Google Scholar] [CrossRef]
- Sun, Y.H.; Wang, J.; Du, H.Y.; Li, X.G.; Wang, C.; Hou, T.Y. Formaldehyde gas sensors based on SnO2/ZSM-5 zeolite composite nanofibers. J. Alloys Compd. 2021, 868, 159140. [Google Scholar] [CrossRef]
- Chang, H.K.; Ko, D.S.; Cho, D.H.; Kim, S.; Lee, H.N.; Lee, H.S.; Kim, H.J.; Park, T.J.; Park, Y.M. Enhanced response of the photoactive gas sensor on formaldehyde using porous SnO2@TiO2 heterostructure driven by gas-flow thermal evaporation and atomic layer deposition. Ceram. Int. 2021, 47, 5985–5992. [Google Scholar] [CrossRef]
- Jali, M.H.; Rahim, H.R.A.; Johari, M.A.M.; Ali, U.U.M.; Johari, S.H.; Mohamed, H.; Harun, S.W.; Yasin, M. Formaldehyde sensor with enhanced performance using microsphere resonator-coupled ZnO nanorods coated glass. Opt. Laser Technol. 2021, 139, 106853. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Zhang, H.Y. Study of highly sensitive formaldehyde sensors based on ZnO/CuO heterostructure via the sol-gel method. Sensors 2021, 21, 4685. [Google Scholar] [CrossRef]
- Khojier, K. Preparation and investigation of Al-doped ZnO thin films as a formaldehyde sensor with extremely low detection limit and considering the effect of RH. Mater. Sci. Semicond. Process. 2021, 121, 105283. [Google Scholar] [CrossRef]
- Huang, J.Y.; Liang, H.; Ye, J.X.; Jiang, D.T.; Sun, Y.L.; Li, X.J.; Geng, Y.F.; Wang, J.Q.; Qian, Z.F.; Du, Y. Ultrasensitive formaldehyde gas sensor based on Au-loaded ZnO nanorod arrays at low temperature. Sens. Actuators B Chem. 2021, 346, 130568. [Google Scholar] [CrossRef]
- Zheng, Q.Y.; Zhang, H.; Liu, J.L.; Xiao, L.H.; Ao, Y.H.; Li, M. High porosity fluorescent aerogel with new molecular probes for formaldehyde gas sensors. Microporous Mesoporous Mater. 2021, 325, 111208. [Google Scholar] [CrossRef]
- Gautam, V.; Kumar, A.; Kumar, R.; Jain, V.K.; Nagpal, S. Silicon nanowires/reduced graphene oxide nanocomposite based novel sensor platform for detection of cyclohexane and formaldehyde. Mater. Sci. Semicond. Process. 2021, 123, 105571. [Google Scholar] [CrossRef]
- Wang, J.L.; Shang, J.H.; Guo, Y.J.; Jiang, Y.Y.; Xiong, W.K.; Li, J.S.; Yang, X.; Torun, H.; Fu, Y.Q.; Zu, X.T. Hydrophobic metal organic framework for enhancing performance of acoustic wave formaldehyde sensor based on polyethyleneimine and bacterial cellulose nanofilms. J. Mater. Sci. Mater. Electron. 2021, 32, 18551–18564. [Google Scholar] [CrossRef]
- Padmalaya, G.; Vardhan, K.H.; Kumar, P.S.; Ali, M.A.; Chen, T.W. A disposable modified screen-printed electrode using egg white/ZnO rice structured composite as practical tool electrochemical sensor for formaldehyde detection and its comparative electrochemical study with Chitosan/ZnO nanocomposite. Chemosphere 2022, 288, 132560. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Furusawa, H.; Nomura, A.; Matsui, H.; Nihei, M.; Tokito, S. Formaldehyde detection by a combination of formaldehyde dehydrogenase and chitosan on a sensor based on an organic field-effect transistor. Technologies 2019, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Vanderroost, M.; Ragaert, P.; Devlieghere, F.; De Meulenaer, B. Intelligent food packaging: The next generation. Trends Food Sci. Technol. 2014, 39, 47–62. [Google Scholar] [CrossRef]
- Shao, P.; Liu, L.M.; Yu, J.H.; Lin, Y.; Gao, H.Y.; Chen, H.J.; Sun, P.L. An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends Food Sci. Technol. 2021, 118, 285–296. [Google Scholar] [CrossRef]
- Sohail, M.; Sun, D.W.; Zhu, Z.W. Recent developments in intelligent packaging for enhancing food quality and safety. Crit. Rev. Food Sci. Nutr. 2018, 58, 2650–2662. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Souza Correa, D. Smart choices: Mechanisms of intelligent food packaging. Curr. Res. Food Sci. 2021, 4, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Kandeepan, G.; Vishnuraj, M.R.; Soni, A. Anthocyanins based indicator sensor for intelligent packaging application. Agric. Res. 2016, 5, 205–209. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Naficy, S.; McConchie, R.; Dehghani, F.; Chandrawati, R. Polydiacetylene-based sensors to detect food spoilage at low temperatures. J. Mater. Chem. C 2019, 7, 1919–1926. [Google Scholar] [CrossRef]
- Hashim, S.B.H.; Elrasheid Tahir, H.; Liu, L.; Zhang, J.; Zhai, X.; Ali Mahdi, A.; Nureldin Awad, F.; Hassan, M.M.; Xiaobo, Z.; Jiyong, S. Intelligent colorimetric pH sensoring packaging films based on sugarcane wax/agar integrated with butterfly pea flower extract for optical tracking of shrimp freshness. Food Chem. 2021, 373, 131514. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, H.; Morsy, M.; Ateia, M.A.; Abdel-Haleem, F.M. Ultrafast response humidity sensors based on polyvinyl chloride/graphene oxide nanocomposites for intelligent food packaging. Sens. Actuators A-Phys. 2021, 331, 112918. [Google Scholar] [CrossRef]
- Abou Saoud, W.; Assadi, A.A.; Kane, A.; Jung, A.V.; Le Cann, P.; Gerard, A.; Bazantay, F.; Bouzaza, A.; Wolbert, D. Integrated process for the removal of indoor VOCs from food industry manufacturing: Elimination of Butane-2,3-dione and Heptan-2-one by cold plasma-photocatalysis combination. J. Photochem. Photobiol. A Chem. 2020, 386, 112071. [Google Scholar] [CrossRef]
- Zhai, X.; Wang, X.; Zhang, J.; Yang, Z.; Sun, Y.; Li, Z.; Huang, X.; Holmes, M.; Gong, Y.; Povey, M.; et al. Extruded low density polyethylene-curcumin film: A hydrophobic ammonia sensor for intelligent food packaging. Food Packag. Shelf Life 2020, 26, 100595. [Google Scholar] [CrossRef]
- Reji, R.P.; Marappan, G.; Sivalingam, Y.; Surya, V.J. VOCs adsorption induced surface potential changes on phthalocyanines: A combined experimental and theoretical approach towards food freshness monitoring. Mater. Lett. 2022, 306, 130945. [Google Scholar] [CrossRef]
- Wang, A.; Stancik, C.M.; Yin, Y.; Wu, J.; Duncan, S.E. Performance of cost-effective PET packaging with light protective additives to limit photo-oxidation in UHT milk under refrigerated LED-lighted storage condition. Food Packag. Shelf Life 2022, 31, 100773. [Google Scholar] [CrossRef]
- Preis, S.; Klauson, D.; Gregor, A. Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. J. Environ. Manag. 2013, 114, 125–138. [Google Scholar] [CrossRef]
- Fortin, C.; Goodwin, H.L.; Thomsen, M. Consumer attitudes toward freshness indicators on perishable food products. J. Food Distrib. Res. 2009, 40, 1–15. [Google Scholar]
- Park, Y.W.; Kim, S.M.; Lee, J.Y.; Jang, W. Application of biosensors in smart packaging. Mol. Cell. Toxicol. 2015, 11, 277–285. [Google Scholar] [CrossRef]
- Kuswandi, B.; Damayanti, F.; Abdullah, A.; Heng, L.Y. Simple and low-cost on-package sticker sensor based on litmus paper for real-time monitoring of beef freshness. J. Math. Fundam. Sci. 2015, 47, 236–251. [Google Scholar] [CrossRef]
- Alessandroni, L.; Caprioli, G.; Faiella, F.; Fiorini, D.; Galli, R.; Huang, X.H.; Marinelli, G.; Nzekoue, F.; Ricciutelli, M.; Scortichini, S.; et al. A shelf-life study for the evaluation of a new biopackaging to preserve the quality of organic chicken meat. Food Chem. 2022, 371, 131134. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Panigrahi, S.; Mallik, S. Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens. Bioelectron. 2011, 26, 3103–3109. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Panigrahi, S.; Mallik, S. Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens. Actuators B Chem. 2011, 155, 8–18. [Google Scholar] [CrossRef]
- Panigrahi, S.; Sankaran, S.; Mallik, S.; Gaddam, B.; Hanson, A.A. Olfactory receptor-based polypeptide sensor for acetic acid VOC detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Han, D.Q. Sol-gel autocombustion synthesis of zinc oxide foam decorated with holes and its use as acetic acid gas sensor at sub-ppm level. Ceram. Int. 2020, 46, 3304–3310. [Google Scholar] [CrossRef]
- Senapati, M.; Sahu, P.P. Meat quality assessment using Au patch electrode Ag-SnO2/SiO2/Si MIS capacitive gas sensor at room temperature. Food Chem. 2020, 324, 126893. [Google Scholar] [CrossRef]
- ACGIH. Available online: https://www.acgih.org/ (accessed on 20 November 2021).
- Kim, G.; Cho, B.; Oh, S.H.; Kim, K. Feasibility study for the evaluation of chicken meat storage time using surface acoustic wave sensor. J. Biosyst. Eng. 2020, 45, 261–271. [Google Scholar] [CrossRef]
- Chow, C.-F. Bimetallic-based food sensors for meat spoilage: Effects of the accepting metallic unit in Fe(II)-C N-M-A (M-A = Pt(II) or Au(I)) on device selectivity and sensitivity. Food Chem. 2019, 300, 125190. [Google Scholar] [CrossRef] [PubMed]
- Odeyemi, O.A.; Burke, C.M.; Bolch, C.C.J.; Stanley, R. Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int. J. Food Microbiol. 2018, 280, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Perillo, P.M.; Rodriguez, D.F. Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes. J. Alloy. Compd. 2016, 657, 765–769. [Google Scholar] [CrossRef]
- Yang, T.Y.; Du, L.Y.; Zhai, C.B.; Li, Z.F.; Zhao, Q.; Luo, Y.; Xing, D.J.; Zhang, M.Z. Ultrafast response and recovery trimethylamine sensor based on alpha-Fe2O3 snowflake-like hierarchical architectures. J. Alloy. Compd. 2017, 718, 396–404. [Google Scholar] [CrossRef]
- Liu, L.K.; Fu, S.; Lv, X.; Yue, L.L.; Fan, L.; Yu, H.T.; Gao, X.L.; Zhu, W.B.; Zhang, W.; Li, X.; et al. A gas sensor with Fe2O3 nanospheres based on trimethylamine detection for the rapid assessment of spoilage degree in fish. Front. Bioeng. Biotechnol. 2020, 8, 567584. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Xu, S.; Zhao, C.; Qiao, X.; Liu, H.; Zhao, Y.; Wei, J.; Zhu, Y. Bimetallic Au@Pt nanocrystal sensitization mesoporous α-FeO3 hollow nanocubes for highly sensitive and rapid detection of fish freshness at low temperature. ACS Appl. Mater. Interfaces 2021, 13, 57597–57608. [Google Scholar] [CrossRef]
- Lv, R.Q.; Huang, X.Y.; Ye, W.T.; Aheto, J.H.; Xu, H.X.; Dai, C.X.; Tian, X.Y. Research on the reaction mechanism of colorimetric sensor array with characteristic volatile gases-TMA during fish storage. J. Food Process Eng. 2019, 42, e12952. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wen, J.W.; Chen, Z.J.; Qiu, S.B.; Wang, Y.X.; Yin, E.Q.; Li, H.B.; Liu, X.H. Non-destructive and rapid method for monitoring fish freshness of grass carp based on printable colorimetric paper sensor in modified atmosphere packaging. Food Anal. Methods 2021, 1–11. [Google Scholar] [CrossRef]
- Capello, C.; Trevisol, T.C.; Pelicioli, J.; Terrazas, M.B.; Monteiro, A.R.; Valencia, G.A. Preparation and Characterization of Colorimetric Indicator Films Based on Chitosan/Polyvinyl Alcohol and Anthocyanins from Agri-Food Wastes. J. Polym. Environ. 2021, 29, 1616–1629. [Google Scholar] [CrossRef]
- Lai, F.Y.; Yang, J.L.; Huang, R.R.; Wang, Z.L.; Tang, J.Q.; Zhang, M.L.; Miao, R.; Fang, Y. Nondestructive evaluation of fish freshness through nanometer-thick fluorescence-based amine-sensing films. ACS Appl. Nano Mater. 2021, 4, 2575–2582. [Google Scholar] [CrossRef]
- Praoboon, N.; Siriket, S.; Taokaenchan, N.; Kuimalee, S.; Phaisansuthichol, S.; Pookmanee, P.; Satienperakul, S. Paper-based electrochemiluminescence device for the rapid estimation of trimethylamine in fish via the quenching effect of thioglycolic acid-capped cadmium selenide quantum dots. Food Chem. 2022, 366, 130590. [Google Scholar] [CrossRef]
- Jia, Z.X.; Shi, C.; Wang, Y.B.; Yang, X.T.; Zhang, J.R.; Ji, Z.T. Nondestructive determination of salmon fillet freshness during storage at different temperatures by electronic nose system combined with radial basis function neural networks. Int. J. Food Sci. Technol. 2020, 55, 2080–2091. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.H.; Gu, S.; Wang, J.; Wang, Y.W.; Wei, Z.B. Hydrophobic amino-functionalized graphene oxide nanocomposite for aldehydes detection in fish fillets. Sens. Actuators B Chem. 2020, 306, 127579. [Google Scholar] [CrossRef]
- Public Health and Environment. Available online: https://www.who.int/data/gho/data/themes/public-health-and-environment (accessed on 3 December 2021).
- Gardner, J.W.; Vincent, T.A. Electronic Noses for Well-Being: Breath Analysis and Energy Expenditure. Sensors 2016, 16, 947. [Google Scholar] [CrossRef] [Green Version]
- Terrington, D.; Hayton, C.; Peel, A.; Fowler, S.; Wilson, A. Exhaled breath biomarkers in sarcoidosis: A systematic review. Eur. Respir. J. 2018, 52, PA3003. [Google Scholar] [CrossRef]
- Peel, A.M.; Wilkinson, M.; Sinha, A.; Loke, Y.K.; Fowler, S.J.; Wilson, A.M. Volatile organic compounds associated with diagnosis and disease characteristics in asthma—A systematic review. Respir. Med. 2020, 169, 105984. [Google Scholar] [CrossRef]
- Di Zazzo, L.; Magna, G.; Lucentini, M.; Stefanelli, M.; Paolesse, R.; Di Natale, C. Sensor-embedded face masks for detection of volatiles in breath: A proof of concept study. Chemosensors 2021, 9, 356. [Google Scholar] [CrossRef]
- Li, D.S.; Shao, Y.Z.; Zhang, Q.; Qu, M.J.; Ping, J.F.; Fu, Y.Q.; Xie, J. A flexible virtual sensor array based on laser-induced graphene and MXene for detecting volatile organic compounds in human breath. Analyst 2021, 146, 5704–5713. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.M.; Eetemadi, A.; Tagkopoulos, I. Reduced Graphene Oxide-Metalloporphyrin Sensors for Human Breath Screening. Appl. Sci. 2021, 11, 11290. [Google Scholar] [CrossRef]
- Tyagi, H.; Daulton, E.; Bannaga, A.S.; Arasaradnam, R.P.; Covington, J.A. Non-invasive detection and staging of colorectal cancer using a portable electronic nose. Sensors 2021, 21, 5440. [Google Scholar] [CrossRef]
- Jalal, A.H.; Alam, F.; Roychoudhury, S.; Umasankar, Y.; Pala, N.; Bhansali, S. Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 2018, 3, 1246–1263. [Google Scholar] [CrossRef]
- Capuano, R.; Catini, A.; Paolesse, R.; Di Natale, C. Sensors for lung cancer diagnosis. J. Clin. Med. 2019, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Vicente, C.; Santos, J.P.; Lozano, J.; Sayago, I.; Sanjurjo, J.L.; Azabal, A.; Ruiz-Valdepenas, S. Graphene-doped Tin oxide nanofibers and nanoribbons as gas sensors to detect biomarkers of different diseases through the breath. Sensors 2020, 20, 7223. [Google Scholar] [CrossRef] [PubMed]
- Hanh, N.H.; Ngoc, T.M.; Duy, L.V.; Hung, C.M.; Duy, N.V.; Hoa, N.D. A comparative study on the VOCs gas sensing properties of Zn2SnO4 nanoparticles, hollow cubes, and hollow octahedra towards exhaled breath analysis. Sens. Actuators B Chem. 2021, 343, 130147. [Google Scholar] [CrossRef]
- Rodriguez-Aguilar, M.; de Leon-Martinez, L.D.; Gorocica-Rosete, P.; Perez-Padilla, R.; Dominguez-Reyes, C.A.; Tenorio-Torres, J.A.; Ornelas-Rebolledo, O.; Mehta, G.; Zamora-Mendoza, B.N.; Flores-Ramirez, R. Application of chemoresistive gas sensors and chemometric analysis to differentiate the fingerprints of global volatile organic compounds from diseases. Preliminary results of COPD, lung cancer and breast cancer. Clin. Chim. Acta 2021, 518, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Zaim, O.; Diouf, A.; El Bari, N.; Lagdali, N.; Benelbarhdadi, I.; Ajana, F.Z.; Llobet, E.; Bouchikhi, B. Comparative analysis of volatile organic compounds of breath and urine for distinguishing patients with liver cirrhosis from healthy controls by using electronic nose and voltammetric electronic tongue. Anal. Chim. Acta 2021, 1184, 339028. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Wang, H.R.; Wang, J.H.; Wang, D.Z.; Shi, L.J.; Tian, X.; Sun, J.H. VOCs gas sensor based on MOFs derived porous Au@Cr2O3-In2O3 nanorods for breath analysis. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127752. [Google Scholar] [CrossRef]
- Guo, W.W.; Huang, L.L.; Zhao, B.Y.; Gao, X.; Fan, Z.H.; Liu, X.Y.; He, Y.Z.; Zhang, J. Synthesis of the ZnFe2O4/ZnSnO3 nanocomposite and enhanced gas sensing performance to acetone. Sens. Actuators B Chem. 2021, 346, 130524. [Google Scholar] [CrossRef]
- Yoon, J.W.; Lee, J.H. Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: Recent progress and future perspectives. Lab Chip 2017, 17, 3537–3557. [Google Scholar] [CrossRef]
- Guo, W.W.; Huang, L.L.; Zhang, J.; He, Y.Z.; Zeng, W. Ni-doped SnO2/g-C3N4 nanocomposite with enhanced gas sensing performance for the eff;ective detection of acetone in diabetes diagnosis. Sens. Actuators B Chem. 2021, 334, 129666. [Google Scholar] [CrossRef]
- Zhang, S.F.; Jiang, W.H.; Li, Y.W.; Yang, X.L.; Sun, P.; Liu, F.M.; Yan, X.; Gao, Y.; Liang, X.H.; Ma, J.; et al. Highly-sensitivity acetone sensors based on spinel-type oxide (NiFe2O4) through optimization of porous structure. Sens. Actuators B Chem. 2019, 291, 266–274. [Google Scholar] [CrossRef]
- Hu, J.; Yang, J.; Wang, W.D.; Xue, Y.; Sun, Y.J.; Li, P.W.; Lian, K.; Zhang, W.D.; Chen, L.; Shi, J.; et al. Synthesis and gas sensing properties of NiO/SnO2 hierarchical structures toward ppb-level acetone detection. Mater. Res. Bull. 2018, 102, 294–303. [Google Scholar] [CrossRef]
- Du, H.Y.; Li, X.G.; Yao, P.J.; Wang, J.; Sun, Y.H.; Dong, L. Zinc oxide coated Tin oxide nanofibers for improved selective acetone sensing. Nanomaterials 2018, 8, 509. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zou, C.; Su, Y.J.; Li, M.; Yang, Z.; Ge, M.Y.; Zhang, Y.F. One-step synthesis of 2D C3N4-tin oxide gas sensors for enhanced acetone vapor detection. Sens. Actuators B Chem. 2017, 253, 641–651. [Google Scholar] [CrossRef]
- Li, L.; Tan, J.F.; Dun, M.H.; Huang, X.T. Porous ZnFe2O4 nanorods with net-worked nanostructure for highly sensor response and fast response acetone gas sensor. Sens. Actuators B Chem. 2017, 248, 85–91. [Google Scholar] [CrossRef]
- Ao, W.Y.; Fu, J.; Mao, X.; Kang, Q.H.; Ran, C.M.; Liu, Y.; Zhang, H.D.; Gao, Z.P.; Li, J.; Liu, G.Q.; et al. Microwave assisted preparation of activated carbon from biomass: A review. Renew. Sustain. Energy Rev. 2018, 92, 958–979. [Google Scholar] [CrossRef]
- Cova, C.M.; Zuliani, A.; Santiago, A.R.P.; Caballero, A.; Munoz-Batista, M.J.; Luque, R. Microwave-assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as efficient HER catalysts. J. Mater. Chem. A 2018, 6, 21516–21523. [Google Scholar] [CrossRef]
- Zuliani, A.; Munoz-Batista, M.J.; Luque, R. Microwave-assisted valorization of pig bristles: Towards visible light photocatalytic chalcocite composites. Green Chem. 2018, 20, 3001–3007. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.H.; Shao, K.; Wang, T. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal. Bioanal. Chem. 2016, 408, 2759–2780. [Google Scholar] [CrossRef] [PubMed]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef]
- Behera, B.; Joshi, R.; Vishnu, G.K.A.; Bhalerao, S.; Pandya, H.J. Electronic nose: A non-invasive technology for breath analysis of diabetes and lung cancer patients. J. Breath Res. 2019, 13, 024001. [Google Scholar] [CrossRef]
- Tripathi, K.M.; Sachan, A.; Castro, M.; Choudhary, V.; Sonkar, S.K.; Feller, J.F. Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers. Sustain. Mater. Technol. 2018, 16, 1–11. [Google Scholar] [CrossRef]
- Hassan, K.; Hossain, R.; Farzana, R.; Sahajwalla, V. Microrecycled zinc oxide nanoparticles (ZnO NP) recovered from spent Zn-C batteries for VOC detection using ZnO sensor. Anal. Chim. Acta 2021, 1165, 338563. [Google Scholar] [CrossRef]
- Zito, C.A.; Perfecto, T.M.; Oliveira, T.N.T.; Volanti, D.P. Bicone-like ZnO structure as high-performance butanone sensor. Mater. Lett. 2018, 223, 142–145. [Google Scholar] [CrossRef] [Green Version]
- Pu, J.Y.; Kentala, K.; Dickinson, B.C. Multidimensional control of Cas9 by evolved RNA polymerase-based biosensors. ACS Chem. Biol. 2018, 13, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.Y.; Ji, Z.R.; Suo, T.Y.; Li, B.Z.; Zhang, X. Advancing sensing technology with CRISPR: From the detection of nucleic acids to a broad range of analytes e A review. Anal. Chim. Acta 2021, 1185, 338848. [Google Scholar] [CrossRef] [PubMed]
- Baracu, A.M.; Gugoasa, L.A.D. Review-recent advances in microfabrication, design and applications of amperometric sensors and biosensors. J. Electrochem. Soc. 2021, 168, 037503. [Google Scholar] [CrossRef]
- Kleinekorte, J.; Fleitmann, L.; Bachmann, M.; Katelhon, A.; Barbosa-Povoa, A.; von der Assen, N.; Bardow, A. Life cycle assessment for the design of chemical processes, products, and supply chains. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 203–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
VOC | Typical Emission Sources |
---|---|
Propane | Gas grills; gas heaters |
Butane | Gas grills; gas heaters; gas torches; end-life fridges, and freezers |
Methyl chloride | Solvents; fire extinguishers |
Formaldehyde | Plastic furniture items; fiberboards |
Toluene | Paints; solvents |
Acetone | Solvents; wallpaper and furniture polish |
Isopropyl alcohol | Solvents; disinfecting solutions |
Carbon Tetrachloride | Fire extinguishers; cleaning products |
Carbon disulphide | Volcanic eruptions; marshes |
Vinyl chloride | PVC pipes, wire, cable coatings, and textiles; burnt tobacco |
Benzene | Fuels |
Styrene | Polystyrene objects, rigid panels, and furnishings |
Acetic acid | Cellulosic materials such as wood and paper |
Isoprenoids | Plants |
VOCs | Maximum Concentration (µg m−3) | ||
---|---|---|---|
Houses According to Héroux et al. [97] * | Houses According to Yamazaki et al. [10] ** | Primary School [11] | |
Toluene | 436 | 530 | 117 |
Dichloromethane | 1687 | / | / |
α-pinene | 801 | / | 506 |
Limonene | 329 | / | / |
Dichlorobenzene | 287 | 4900 | / |
Tetrachloroethylene | 179 | / | / |
Styrene | 14 | 2000 | 369 |
Formaldehyde | / | 100 | / |
Acetaldehyde | / | 150 | / |
Cumene | 46 | / | / |
Ethylbenzene | 20 | 590 | 196 |
Hexane | 39 | / | / |
Naphthalene | 23 | / | / |
n-decane | 203 | / | / |
Xylene | 77 | 310 | 153 |
Advantages | Disadvantages | |
---|---|---|
Classic methods (e.g., GC, HPLC, PTR, etc.) | High specificity; rapid separations; robust techniques | Matrix effects; high costs; higher maintenance; laborious sample preparation |
Sustainable sensors and biosensors | Rapid response and recovery time; inexpensive; high sensitivity; small size; good precision; robustness | Temperature and humidity sensitive; high power consumption; short lifetime |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cova, C.M.; Rincón, E.; Espinosa, E.; Serrano, L.; Zuliani, A. Paving the Way for a Green Transition in the Design of Sensors and Biosensors for the Detection of Volatile Organic Compounds (VOCs). Biosensors 2022, 12, 51. https://doi.org/10.3390/bios12020051
Cova CM, Rincón E, Espinosa E, Serrano L, Zuliani A. Paving the Way for a Green Transition in the Design of Sensors and Biosensors for the Detection of Volatile Organic Compounds (VOCs). Biosensors. 2022; 12(2):51. https://doi.org/10.3390/bios12020051
Chicago/Turabian StyleCova, Camilla Maria, Esther Rincón, Eduardo Espinosa, Luis Serrano, and Alessio Zuliani. 2022. "Paving the Way for a Green Transition in the Design of Sensors and Biosensors for the Detection of Volatile Organic Compounds (VOCs)" Biosensors 12, no. 2: 51. https://doi.org/10.3390/bios12020051
APA StyleCova, C. M., Rincón, E., Espinosa, E., Serrano, L., & Zuliani, A. (2022). Paving the Way for a Green Transition in the Design of Sensors and Biosensors for the Detection of Volatile Organic Compounds (VOCs). Biosensors, 12(2), 51. https://doi.org/10.3390/bios12020051