Recent Progress of Fluorescence Sensors for Histamine in Foods
Abstract
:1. Introduction
2. Histamine Detection
2.1. Conventional Histamine Detection Techniques
2.2. Quantum Dots as Fluorescence Sensors
2.2.1. Molecular Imprinting Quantum Dots
2.2.2. Ionic Liquid Quantum Dots
2.2.3. Element-Doped Quantum Dots
2.2.4. Graphene Quantum Dot
2.2.5. Functional Group Quantum Dots
2.2.6. Gold Nanoparticles
2.3. Metallic Material as Fluorescence Sensors
2.3.1. Metal–Organic Framework
2.3.2. Organic–Inorganic Hybrid Nanomaterials
2.3.3. Fluorescent Copper Nanoparticles
2.3.4. Upconversion Luminescence
2.4. Aptamer Fluorescence Sensors
2.4.1. Aptamer Binds to Fluorescent Peptide
2.4.2. Aptamer Binds to Gold Nanoparticles
2.4.3. Aptamer-Binding Small-Molecule Fluorescent Probe
2.4.4. Aptamer Binds to Fluorescent Dye
2.5. Organic Small Molecules and Organic Polymers as Fluorescence Sensors
2.5.1. Organic Small Molecules
2.5.2. Fluorescent Molecular Polymer
2.5.3. Organic Solid State Fluorescent Material
3. Application of Fluorescence Sensors in Detection of Histamine in Fish
4. Advantages and Challenges of Fluorescence Sensors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AOAC | Association of official analytical chemists |
QDs | Quantum dots |
MIP | Molecularly imprinted polymer |
CNPs | Carbon nanoparticles |
CDs | Carbon dots |
β-CD | β-cyclodextrin |
IL | Ionic liquid |
COFs | Covalent organic frameworks |
GQDs | Graphene quantum dots |
MOFs | Metal–organic frameworks |
PLP | Pyridoxal phosphate |
Py | Pyridoxal |
MSA | Mercaptosuccinic acid |
IOH-NPs | Inorganic–organic hybrid nanoparticles |
AIE | Aggregation-induced emission |
UCNPs | Upconversion particles |
UCPL | Upconversion photoluminescence |
SELEX | Systematic evolution of ligands by exponential enrichment |
EIS | Electrochemical impedance spectroscopy |
H3R | Histamine H3 receptors |
MADH | Methylamine dehydrogenase |
ESIPT | Excited-state intramolecular proton transfer |
TPE | Tetraphenylethenes |
ACQ | Aggregation-caused quenching |
FITC | Fluorescein isothiocyanate |
References
- Erdag, D.; Merhan, O.; Yildiz, B. Biochemical and pharmacological properties of biogenic amines. In Biogenic Amines; InTech Open: London, UK, 2018. [Google Scholar]
- Ladero, V.; Calles-Enríquez, M.; Fernández, M.; Alvarez, M.A. Toxicological effects of dietary biogenic amines. Curr. Nutr. Food Sci. 2010, 6, 145–156. [Google Scholar] [CrossRef]
- Kolenbrander, P. The genus Veillonella. Prokaryotes 2006, 4, 1022–1040. [Google Scholar]
- Khalid, K. An overview of lactic acid bacteria. Int. J. Biosci. 2011, 1, 1–13. [Google Scholar]
- Yang, S.Y.; Lin, Q.; Lu, Z.X.; Lü, F.X.; Bie, X.M.; Zou, X.K.; Sun, L.J. Characterization of a novel glutamate decarboxylase from Streptococcus salivarius ssp. thermophilus Y2. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2008, 83, 855–861. [Google Scholar]
- Fernández-No, I.C.; Böhme, K.; Gallardo, J.M.; Barros-Velázquez, J.; Cañas, B.; Calo-Mata, P. Differential characterization of biogenic amine-producing bacteria involved in food poisoning using MALDI-TOF mass fingerprinting. Electrophoresis 2010, 31, 1116–1127. [Google Scholar]
- Emborg, J.; Laursen, B.G.; Dalgaard, P. Significant histamine formation in tuna (Thunnus albacares) at 2 C—effect of vacuum-and modified atmosphere-packaging on psychrotolerant bacteria. Int. J. Food Microbiol. 2005, 101, 263–279. [Google Scholar] [CrossRef]
- Visciano, P.; Schirone, M.; Tofalo, R.; Suzzi, G. Biogenic amines in raw and processed seafood. Front. Microbiol. 2012, 3, 188. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Lee, S.; Jang, A.; Jo, C.; Park, C.; Lee, M. Relationship between the concentration of biogenic amines and volatile basic nitrogen in fresh beef, pork, and chicken meat. Asian-Australas. J. Anim. Sci. 2007, 20, 1278–1284. [Google Scholar] [CrossRef]
- Suzzi, G.; Gardini, F. Biogenic amines in dry fermented sausages: A review. Int. J. Food Microbiol. 2003, 88, 41–54. [Google Scholar] [CrossRef]
- Lu, S.; Jiang, C.; Xu, X.; Xu, C.; Li, K.; Shu, R. Improved screening procedure for biogenic amine production by lactic acid bacteria and Enterobacteria. Czech J. Food Sci. 2015, 33, 19–26. [Google Scholar]
- Demoncheaux, J.-P.; Michel, R.; Mazenot, C.; Duflos, G.; Iacini, C.; Delaval, F.; Saware, E.; Renard, J.-C. A large outbreak of scombroid fish poisoning associated with eating yellowfin tuna (Thunnus albacares) at a military mass catering in Dakar, Senegal. Epidemiol. Infect. 2012, 140, 1008–1012. [Google Scholar] [CrossRef]
- Schirone, M.; Visciano, P.; Tofalo, R.; Suzzi, G. Histamine food poisoning. In Histamine and Histamine Receptors in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2016; pp. 217–235. [Google Scholar]
- Skidgel, R.A. Histamine, Bradykinin, and Their Antagonists; Brunton, L.L., Hilal-Dandan, R., Knollmann, B.C., Eds.; McGraw-Hill: New York, NY, USA, 1996; pp. 110–115. [Google Scholar]
- Katzung, B.G.; Julius, D. Histamine, serotonin, and the ergot alkaloids. In Basic and Clinical Pharmacology; McGraw-Hill Medical: New York, NY, USA, 2000; pp. 265–291. [Google Scholar]
- Black, E.; Strada, S.; Thompson, W. Relationships of secretagogue-induced cAMP accumulation and acid secretion in elutriated rat gastric parietal cells. J. Pharmacol. Methods 1988, 20, 57–78. [Google Scholar] [CrossRef]
- Durak-Dados, A.; Michalski, M.; Osek, J. Histamine and other biogenic amines in food. J. Vet. Res. 2020, 64, 281–288. [Google Scholar] [CrossRef]
- Spano, G.; Russo, P.; Lonvaud-Funel, A.; Lucas, P.; Alexandre, H.; Grandvalet, C.; Coton, E.; Coton, M.; Barnavon, L.; Bach, B. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 2010, 64, S95–S100. [Google Scholar] [CrossRef] [Green Version]
- Ganapathy, B.; Khalid, Q.; Ru, X. Histamine content in various types of canned foods (fruits and syrups) stored under different temperature conditions over time-an in vitro study. J. Adv. Biomed. Pathobiol. Res. 2017, 7, 1–13. [Google Scholar]
- Horwitz, W. Official methods of analysis of AOAC International. In Agricultural Chemicals, Contaminants, Drugs; Horwitz, W., Ed.; AOAC International: Gaithersburg, MA, USA, 1997; Volume I. [Google Scholar]
- Jutel, M.; Akdis, M.; Akdis, C. Histamine, histamine receptors and their role in immune pathology. Clin. Exp. Allergy 2009, 39, 1786–1800. [Google Scholar] [CrossRef]
- Dy, M.; Schneider, E. Histamine–cytokine connection in immunity and hematopoiesis. Cytokine Growth Factor Rev. 2004, 15, 393–410. [Google Scholar] [CrossRef]
- Ohtsu, H. Pathophysiologic role of histamine: Evidence clarified by histidine decarboxylase gene knockout mice. Int. Arch. Allergy Immunol. 2012, 158, 2–6. [Google Scholar] [CrossRef]
- Feng, C.; Teuber, S.; Gershwin, M.E. Histamine (scombroid) fish poisoning: A comprehensive review. Clin. Rev. Allergy Immunol. 2016, 50, 64–69. [Google Scholar] [CrossRef]
- Yesudhason, P.; Al-Zidjali, M.; Al-Zidjali, A.; Al-Busaidi, M.; Al-Waili, A.; Al-Mazrooei, N.; Al-Habsi, S. Histamine levels in commercially important fresh and processed fish of Oman with reference to international standards. Food Chem. 2013, 140, 777–783. [Google Scholar] [CrossRef]
- Kovacova-Hanuskova, E.; Buday, T.; Gavliakova, S.; Plevkova, J. Histamine, histamine intoxication and intolerance. Allergol. Immunopathol. 2015, 43, 498–506. [Google Scholar] [CrossRef]
- Smolinska, S.; Jutel, M.; Crameri, R.; O'mahony, L. Histamine and gut mucosal immune regulation. Allergy 2014, 69, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Henderson, P. Case of poisoning from the bonito (Scomber pelamis). Edinb. Med. J. 1830, 34, 317–318. [Google Scholar]
- Yu, Y.; Wang, P.; Bian, L.; Hong, S. Rare death via histamine poisoning following crab consumption: A case report. J. Forensic Sci. 2018, 63, 980–982. [Google Scholar] [CrossRef] [PubMed]
- Köse, S.; Hall, G. Modification of a colorimetric method for histamine analysis in fish meal. Food Res. Int. 2000, 33, 839–845. [Google Scholar] [CrossRef]
- Patange, S.; Mukundan, M.; Kumar, K.A. A simple and rapid method for colorimetric determination of histamine in fish flesh. Food Control. 2005, 16, 465–472. [Google Scholar] [CrossRef]
- Oguri, S.; Mizusawa, A.; Kamada, M.; Kohori, M. A new method of histamine colorimetry using 2, 3-naphthalenedicarboxaldehyde on a silica–gel column cartridge. Anal. Chim. Acta 2006, 558, 326–331. [Google Scholar] [CrossRef]
- Bi, J.; Tian, C.; Zhang, G.-L.; Hao, H.; Hou, H.-M. Detection of histamine based on gold nanoparticles with dual sensor system of colorimetric and fluorescence. Foods 2020, 9, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munzi, G.; Failla, S. Highly selective and sensitive colorimetric/fluorometric dual mode detection of relevant biogenic amines. Analyst 2021, 146, 2144–2151. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Zhao, Y.; Sivashanmugan, K.; Squire, K.; Wang, A.X. Quantitative TLC-SERS detection of histamine in seafood with support vector machine analysis. Food Control. 2019, 103, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Tahmouzi, S.; Khaksar, R.; Ghasemlou, M. Development and validation of an HPLC-FLD method for rapid determination of histamine in skipjack tuna fish (Katsuwonus pelamis). Food Chem. 2011, 126, 756–761. [Google Scholar] [CrossRef]
- Cicero, A.; Galluzzo, F.G.; Cammilleri, G.; Pulvirenti, A.; Giangrosso, G.; Macaluso, A.; Vella, A.; Ferrantelli, V. Development of a rapid and eco-friendly UHPLC analytical method for the detection of histamine in fish products. Int. J. Environ. Res. Public Health 2020, 17, 7453. [Google Scholar] [CrossRef]
- Hwang, B.-S.; Wang, J.-T.; Choong, Y.-M. A rapid gas chromatographic method for the determination of histamine in fish and fish products. Food Chem. 2003, 82, 329–334. [Google Scholar] [CrossRef]
- Klimov, V.; Mikhailovsky, A.; Xu, S.; Malko, A.; Hollingsworth, J.; Leatherdale, A.C.; Eisler, H.-J.; Bawendi, M. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.W.; Peng, X. Formation of High-Quality CdS and Other II–VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers. Angew. Chem. 2007, 119, 2611. [Google Scholar] [CrossRef]
- Nirmal, M.; Brus, L. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 1999, 32, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Chen, T.; Gooding, J.J.; Liu, J. Review of carbon and graphene quantum dots for sensing. ACS Sens. 2019, 4, 1732–1748. [Google Scholar] [CrossRef]
- Molaei, M.J. Principles, mechanisms, and application of carbon quantum dots in sensors: A review. Anal. Methods 2020, 12, 1266–1287. [Google Scholar] [CrossRef]
- Duan, J.; Jiang, X.; Ni, S.; Yang, M.; Zhan, J. Facile synthesis of N-acetyl-l-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg2+. Talanta 2011, 85, 1738–1743. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, J.-Y.; Zhu, Y.; Tian, L.-J.; Wang, W.-K.; Zhu, T.-T.; Li, W.-W.; Yu, H.-Q. Fluorescence sensor based on biosynthetic CdSe/CdS quantum dots and liposome carrier signal amplification for mercury detection. Anal. Chem. 2020, 92, 3990–3997. [Google Scholar] [CrossRef]
- Nan, Z.; Hao, C.; Zhang, X.; Liu, H.; Sun, R. Carbon quantum dots (CQDs) modified ZnO/CdS nanoparticles based fluorescence sensor for highly selective and sensitive detection of Fe (III). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117717. [Google Scholar] [CrossRef]
- Liang, J.; Yu, L.; Li, X.; Zhang, J.; Chen, G.; Zhang, J. Self-assembled quantum dot microstructure guided by a microemulsion approach for immunoassays. RSC Adv. 2019, 9, 26838–26842. [Google Scholar] [CrossRef] [Green Version]
- Costa, W.C.; Salla, C.A.; Ely, F.; Bechtold, I.H. Highly emissive MAPbBr3 perovskite QDs by ligand-assisted reprecipitation: The antisolvent effect. Nanotechnology 2021, 33, 095702. [Google Scholar] [CrossRef]
- Zakery, M.; Ensafi, A.A.; Kazemifard, N.; Rezaei, B. Novel Histamine Fluorosensor Based on Modified Environmental Friendly Carbon Nanoparticles From Gum Tragacanth. IEEE Sens. J. 2020, 20, 13229–13235. [Google Scholar] [CrossRef]
- Kim, Y.; Chang, J.Y. Fabrication of a fluorescent sensor by organogelation: CdSe/ZnS quantum dots embedded molecularly imprinted organogel nanofibers. Sens. Actuators B Chem. 2016, 234, 122–129. [Google Scholar] [CrossRef]
- Johnson, K.E. What’s an ionic liquid? Electrochem. Soc. Interface 2007, 16, 38. [Google Scholar] [CrossRef]
- Wilkes, J.S. Properties of ionic liquid solvents for catalysis. J. Mol. Catal. A: Chem. 2004, 214, 11–17. [Google Scholar] [CrossRef]
- Wang, Q.-H.; Fang, G.-Z.; Liu, Y.-Y.; Zhang, D.-D.; Liu, J.-M.; Wang, S. Fluorescent sensing probe for the sensitive detection of histamine based on molecular imprinting ionic liquid-modified quantum dots. Food Anal. Methods 2017, 10, 2585–2592. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Xie, J.; Geng, W.; Liu, H. Ionic-liquid-stabilized fluorescent probe based on S-doped carbon dot-embedded covalent-organic frameworks for determination of histamine. Microchim. Acta 2020, 187, 28. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Liu, H.; Sun, B. N-doped carbon dots derived from covalent organic frameworks embedded in molecularly imprinted polymers for optosensing of flonicamid. Microchem. J. 2020, 159, 105585. [Google Scholar] [CrossRef]
- Du, N.; Dou, Z.; Wu, Y.; Wu, Q.; Zhang, G.; Liu, X. Fluorescent nanoprobe array based on carbon nanodots for qualitative and quantitative determination of biogenic polyamine. Microchim. Acta 2020, 187, 522. [Google Scholar] [CrossRef] [PubMed]
- Toloza, C.A.; Khan, S.; Silva, R.L.; Romani, E.C.; Larrude, D.G.; Louro, S.R.; Júnior, F.L.F.; Aucelio, R.Q. Photoluminescence suppression effect caused by histamine on amino-functionalized graphene quantum dots with the mediation of Fe3+, Cu2+, Eu3+: Application in the analysis of spoiled tuna fish. Microchem. J. 2017, 133, 448–459. [Google Scholar] [CrossRef]
- Yadav, A.; Upadhyay, Y.; Bera, R.K.; Sahoo, S.K. Vitamin B6 cofactors guided highly selective fluorescent turn-on sensing of histamine using beta-cyclodextrin stabilized ZnO quantum dots. Food Chem. 2020, 320, 126611. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, V.; Kumar, S.A.; Sahoo, S.K. Decorating Vitamin B6 Cofactor over Beta-Cyclodextrin Stabilized Silver Nanoparticles through Inclusion Complexation for Fluorescent Turn-On Detection of Hydrazine. ACS Appl. Bio Mater. 2020, 3, 7021–7028. [Google Scholar] [CrossRef]
- Viswanath, A.; Shen, Y.; Green, A.N.; Tan, R.; Greytak, A.B.; Benicewicz, B.C. Copolymerization and synthesis of multiply binding histamine ligands for the robust functionalization of quantum dots. Macromolecules 2014, 47, 8137–8144. [Google Scholar] [CrossRef]
- Khan, S.; Carneiro, L.S.; Vianna, M.S.; Romani, E.C.; Aucelio, R.Q. Determination of histamine in tuna fish by photoluminescence sensing using thioglycolic acid modified CdTe quantum dots and cationic solid phase extraction. J. Lumin. 2017, 182, 71–78. [Google Scholar] [CrossRef]
- Li, L.; Qian, H.; Fang, N.; Ren, J. Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J. Lumin. 2006, 116, 59–66. [Google Scholar] [CrossRef]
- Gagic, M.; Nejdl, L.; Xhaxhiu, K.; Cernei, N.; Zitka, O.; Jamroz, E.; Svec, P.; Richtera, L.; Kopel, P.; Milosavljevic, V. Fully automated process for histamine detection based on magnetic separation and fluorescence detection. Talanta 2020, 212, 120789. [Google Scholar] [CrossRef]
- Sarikaya, M.; Tamerler, C.; Jen, A.K.-Y.; Schulten, K.; Baneyx, F. Molecular biomimetics: Nanotechnology through biology. Nat. Mater. 2003, 2, 577–585. [Google Scholar] [CrossRef]
- Azzazy, H.M.; Highsmith, W.E., Jr. Phage display technology: Clinical applications and recent innovations. Clin. Biochem. 2002, 35, 425–445. [Google Scholar] [CrossRef]
- Shi, R.; Feng, S.; Park, C.Y.; Park, K.Y.; Song, J.; Park, J.P.; Chun, H.S.; Park, T.J. Fluorescence detection of histamine based on specific binding bioreceptors and carbon quantum dots. Biosens. Bioelectron. 2020, 167, 112519. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, Y.; Hu, W.; Ye, W. Carbon dots-modified nanoporous membrane and Fe3O4@ Au magnet nanocomposites-based FRET assay for ultrasensitive histamine detection. Molecules 2019, 24, 3039. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Chen, T.; Zhang, Y.; Ye, W. A carbon dot and gold nanoparticle-based fluorometric immunoassay for 8-hydroxy-2′-deoxyguanosine in oxidatively damaged DNA. Microchim. Acta 2019, 186, 303. [Google Scholar] [CrossRef]
- Shi, Y.; Lin, L.; Wei, Y.; Li, W.; Nie, P.; He, Y.; Feng, X. Gold nanoparticles-mediated ratiometric fluorescence aptasensor for ultra-sensitive detection of Abscisic Acid. Biosens. Bioelectron. 2021, 190, 113311. [Google Scholar] [CrossRef]
- Lin, J.; Su, Q. Luminescence and energy transfer of rare-earth-metal ions in Mg2Y8 (SiO4)6O2. J. Mater. Chem. 1995, 5, 1151–1154. [Google Scholar] [CrossRef]
- Sreeram, K.J.; Aby, C.P.; Nair, B.U.; Ramasami, T. Colored cool colorants based on rare earth metal ions. Sol. Energy Mater. Sol. Cells 2008, 92, 1462–1467. [Google Scholar] [CrossRef]
- Chia, Y.; Tay, M. An insight into fluorescent transition metal complexes. Dalton Trans. 2014, 43, 13159–13168. [Google Scholar] [CrossRef]
- Diamandis, E.P. Immunoassays with time-resolved fluorescence spectroscopy: Principles and applications. Clin. Biochem. 1988, 21, 139–150. [Google Scholar] [CrossRef]
- Dou, X.; Sun, K.; Chen, H.; Jiang, Y.; Wu, L.; Mei, J.; Ding, Z.; Xie, J. Nanoscale metal-organic frameworks as fluorescence sensors for food safety. Antibiotics 2021, 10, 358. [Google Scholar] [CrossRef]
- Cui, Y.; Song, R.; Yu, J.; Liu, M.; Wang, Z.; Wu, C.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G. Dual-emitting MOF⊃ dye composite for ratiometric temperature sensing. Adv. Mater. 2015, 27, 1420–1425. [Google Scholar] [CrossRef]
- Yin, H.-Q.; Wang, X.-Y.; Yin, X.-B. Rotation restricted emission and antenna effect in single metal–organic frameworks. J. Am. Chem. Soc. 2019, 141, 15166–15173. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.-Q.; Yin, X.-B. Metal–organic frameworks with multiple luminescence emissions: Designs and applications. Acc. Chem. Res. 2020, 53, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-Y.; Yan, B. Eu (III)-functionalized ZnO@ MOF heterostructures: Integration of pre-concentration and efficient charge transfer for the fabrication of a ppb-level sensing platform for volatile aldehyde gases in vehicles. J. Mater. Chem. A 2017, 5, 2215–2223. [Google Scholar] [CrossRef]
- Zhang, W.-Q.; Li, Q.-Y.; Cheng, J.-Y.; Cheng, K.; Yang, X.; Li, Y.; Zhao, X.; Wang, X.-J. Ratiometric Luminescent Detection of Organic Amines Due to the Induced Lactam–Lactim Tautomerization of Organic Linker in a Metal–Organic Framework. ACS Appl. Mater. Interfaces 2017, 9, 31352–31356. [Google Scholar] [CrossRef]
- Ni, J.; Li, M.-Y.; Liu, Z.; Zhao, H.; Zhang, J.-J.; Liu, S.-Q.; Chen, J.; Duan, C.-Y.; Chen, L.-Y.; Song, X.-D. Discrimination of various amine vapors by a triemissive metal-organic framework composite via the combination of a three-dimensional ratiometric approach and a confinement-induced enhancement effect. ACS Appl. Mater. Interfaces 2020, 12, 12043–12053. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Ye, Y.; Qiu, Y.; Liu, J.; Huang, L.; Liang, B.; Chen, B. A Fluorescent Metal-Organic Framework for Food Real-Time Visual Monitoring. Adv. Mater. 2021, 33, 2008020. [Google Scholar] [CrossRef]
- Li, P.; Guo, M.-Y.; Gao, L.-L.; Yin, X.-M.; Yang, S.-L.; Bu, R.; Gao, E.-Q. Photoresponsivity and antibiotic sensing properties of an entangled tris (pyridinium)-based metal–organic framework. Dalton Trans. 2020, 49, 7488–7495. [Google Scholar] [CrossRef]
- Xu, X.Y.; Lian, X.; Hao, J.N.; Zhang, C.; Yan, B. A double-stimuli-responsive fluorescent center for monitoring of food spoilage based on dye covalently modified EuMOFs: From sensory hydrogels to logic devices. Adv. Mater. 2017, 29, 1702298. [Google Scholar] [CrossRef]
- Recillas-Mota, J.; Bernad-Bernad, M.; Gracia-Mora, J. Histamine interaction with Zn2+ and Cu2+ porphyrins. Die Pharm. -Int. J. Pharm. Sci. 2009, 64, 521–524. [Google Scholar]
- Choi, M.-S.; Kim, Y.-J. Fluorescent chemosensor for the detection of histamine based on dendritic porphyrin-incorporated nanofibers. Eur. Polym. J. 2012, 48, 1988–1996. [Google Scholar]
- Sahudin, M.A.; Su’ait, M.S.; Tan, L.L.; Lee, Y.H.; Abd Karim, N.H. Zinc (II) salphen complex-based fluorescence optical sensor for biogenic amine detection. Anal. Bioanal. Chem. 2019, 411, 6449–6461. [Google Scholar] [CrossRef]
- Guo, Q.-N.; Li, Z.-Y.; Chan, W.-H.; Lau, K.-C.; Crossley, M.J. Appending zinc tetraphenylporphyrin with an amine receptor at β-pyrrolic carbon for designing a selective histamine chemosensor. Supramol. Chem. 2010, 22, 122–129. [Google Scholar] [CrossRef]
- Oshikawa, Y.; Furuta, K.; Tanaka, S.; Ojida, A. Cell surface-anchored fluorescent probe capable of real-time imaging of single mast cell degranulation based on histamine-induced coordination displacement. Anal. Chem. 2016, 88, 1526–1529. [Google Scholar] [CrossRef]
- Neumeier, B.L.; Khorenko, M.; Alves, F.; Goldmann, O.; Napp, J.; Schepers, U.; Reichardt, H.M.; Feldmann, C. Fluorescent Inorganic-Organic Hybrid Nanoparticles. ChemNanoMat 2019, 5, 24–45. [Google Scholar] [CrossRef]
- Neumeier, B.L.; Heck, J.G.; Feldmann, C. Fluorescence-based histamine sensing with inorganic–organic hybrid nanoparticles. J. Mater. Chem. C 2019, 7, 3543–3552. [Google Scholar] [CrossRef]
- Han, A.; Xiong, L.; Hao, S.; Yang, Y.; Li, X.; Fang, G.; Liu, J.; Pei, Y.; Wang, S. Highly bright self-assembled copper nanoclusters: A novel photoluminescent probe for sensitive detection of histamine. Anal. Chem. 2018, 90, 9060–9067. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, Z.; Zhang, G.; Tian, L.; Zhang, X. Construction of thermo-responsive elastin-like polypeptides (ELPs)-aggregation-induced-emission (AIE) conjugates for temperature sensing. Molecules 2018, 23, 1725. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, Q.; Wang, Z.-W.; Xu, H.; An, F.-P.; Huang, Q.; Song, H.-B.; Wang, Y.-W. D-penicillamine modified copper nanoparticles for fluorometric determination of histamine based on aggregation-induced emission. Microchim. Acta 2020, 187, 329. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, E.; Jiao, A.; Jin, Z.; Irudayaraj, J. Bimodal counterpropagating-responsive sensing material for the detection of histamine. Rsc Adv. 2017, 7, 44933–44944. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Sheng, W.; Liu, Y.; Huang, N.; Zhang, W.; Wang, S. Multiplexed fluorescence immunoassay combined with magnetic separation using upconversion nanoparticles as multicolor labels for the simultaneous detection of tyramine and histamine in food samples. Anal. Chim. Acta 2020, 1130, 117–125. [Google Scholar] [CrossRef]
- Deng, T.; Yan, S.; Jiang, X.; Zhang, Q. Improving Upconversion Photoluminescence of GdAl [O. sub.3+]:[Er. sup.3+], [Yb. sup.3+] Phosphors via [Ga. sup.3+], [Lu. sup.3+] Doping. Int. J. Opt. 2019, 1, 1–6. [Google Scholar]
- Siegel, P.D.; Lewis, D.M.; Petersen, M.; Olenchock, S.A. Observations on the use of o-phthalaldehyde condensation for the measurement of histamine. Analyst 1990, 115, 1029–1032. [Google Scholar] [CrossRef]
- Tsikas, D.; Velásquez, R.; Toledano, C.; Brunner, G. Ion-pair extraction of histamine from biological fluids and tissues for its determination by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl. 1993, 614, 37–41. [Google Scholar] [CrossRef]
- Mairal Lerga, T.; Jauset-Rubio, M.; Skouridou, V.; Bashammakh, A.S.; El-Shahawi, M.S.; Alyoubi, A.O.; O’Sullivan, C.K. High affinity aptamer for the detection of the biogenic amine histamine. Anal. Chem. 2019, 91, 7104–7111. [Google Scholar] [CrossRef]
- Ho, L.S.J.; Fogel, R.; Limson, J.L. Generation and screening of histamine-specific aptamers for application in a novel impedimetric aptamer-based sensor. Talanta 2020, 208, 120474. [Google Scholar]
- Liew, F.F.; Fukuda, M.; Morii, T. Development of Fluorescent Ribonucleopeptide-Based Sensors for Biologically Active Amines. In Zero-Carbon Energy Kyoto 2009; Springer: Berlin/Heidelberg, Germany, 2010; pp. 181–185. [Google Scholar]
- Lerga, T.M.; Skouridou, V.; Bermudo, M.C.; Bashammakh, A.S.; El-Shahawi, M.S.; Alyoubi, A.O.; O’Sullivan, C.K. Gold nanoparticle aptamer assay for the determination of histamine in foodstuffs. Microchim. Acta 2020, 187, 452. [Google Scholar] [CrossRef]
- Bartole, E.; Grätz, L.; Littmann, T.; Wifling, D.; Seibel, U.; Buschauer, A.; Bernhardt, G.n. UR-DEBa242: A Py-5-Labeled fluorescent multipurpose probe for investigations on the histamine H3 and H4 receptors. J. Med. Chem. 2020, 63, 5297–5311. [Google Scholar] [CrossRef]
- Rosier, N.; Grätz, L.; Schihada, H.; Möller, J.; Işbilir, A.; Humphrys, L.J.; Nagl, M.; Seibel, U.; Lohse, M.J.; Pockes, S. A Versatile Sub-Nanomolar Fluorescent Ligand Enables NanoBRET Binding Studies and Single-Molecule Microscopy at the Histamine H3 Receptor. J. Med. Chem. 2021, 64, 11695–11708. [Google Scholar] [CrossRef]
- Dwidar, M.; Yokobayashi, Y. Development of a histamine aptasensor for food safety monitoring. Sci. Rep. 2019, 9, 16659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-Y.; Tang, X.-C.; Sun, M.-X. Simultaneous determination of histamine and polyamines by capillary zone electrophoresis with 4-fluor-7-nitro-2, 1, 3-benzoxadiazole derivatization and fluorescence detection. J. Chromatogr. B 2005, 820, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Kamra, M.; Roy, S.; Muniyappa, K.; Bhattacharya, S. Enhanced G-quadruplex DNA stabilization and telomerase inhibition by novel fluorescein derived salen and salphen based Ni (II) and Pd (II) complexes. Bioconjugate Chem. 2017, 28, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Dey, N.; Ali, A.; Podder, S.; Majumdar, S.; Nandi, D.; Bhattacharya, S. Dual-Mode Optical Sensing of Histamine at Nanomolar Concentrations in Complex Biological Fluids and Living Cells. Chem. Eur. J. 2017, 23, 11891–11897. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Todoroki, K.; Ishii, Y.; Miyauchi, C.; Palee, A.; Min, J.Z.; Inoue, K.; Suzuki, K.; Toyo’oka, T. An easy-to-use excimer fluorescence derivatization reagent, 2-chloro-4-methoxy-6-(4-(pyren-4-yl) butoxy)-1, 3, 5-triazine, for use in the highly sensitive and selective liquid chromatography analysis of histamine in Japanese soy sauces. Anal. Chim. Acta 2015, 880, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Seto, D.; Soh, N.; Nakano, K.; Imato, T. An amphiphilic fluorescent probe for the visualization of histamine in living cells. Bioorganic Med. Chem. Lett. 2010, 20, 6708–6711. [Google Scholar] [CrossRef]
- Ding, Z.; Dou, X.; Wang, C.; Feng, G.; Xie, J.; Zhang, X. Ratiometric pH sensing by fluorescence resonance energy transfer-based hybrid semiconducting polymer dots in living cells. Nanotechnology 2021, 32, 245502. [Google Scholar] [CrossRef]
- Gustiananda, M.; Andreoni, A.; Tabares, L.C.; Tepper, A.W.; Fortunato, L.; Aartsma, T.J.; Canters, G.W. Sensitive detection of histamine using fluorescently labeled oxido-reductases. Biosens. Bioelectron. 2012, 31, 419–425. [Google Scholar] [CrossRef]
- Ou, L.-J.; Liu, S.-J.; Chu, X.; Shen, G.-L.; Yu, R.-Q. DNA encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein. Anal. Chem. 2009, 81, 9664–9673. [Google Scholar] [CrossRef]
- Nie, D.; Guo, D.; Huang, Q.; Guo, W.; Wang, J.; Zhao, Z.; Han, Z. A novel insight into fluorescent sensor for patulin detection using thiol-terminated liposomes with encapsulated coumarin-6 as signal probe. Sens. Actuators B Chem. 2021, 345, 130366. [Google Scholar] [CrossRef]
- Zhao, X.; Shippy, S.A. Competitive immunoassay for microliter protein samples with magnetic beads and near-infrared fluorescence detection. Anal. Chem. 2004, 76, 1871–1876. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Oh, C.; Khan, I.; Haldorai, Y.; Gandhi, S.; Lee, H.; Song, X.; Kim, M.; Upadhyay, A.; Chen, L. Fluorescent immunoliposomal nanovesicles for rapid multi-well immuno-biosensing of histamine in fish samples. Chemosphere 2020, 243, 125404. [Google Scholar] [CrossRef]
- Tomasch, M.; Schwed, J.S.; Paulke, A.; Stark, H. Bodilisant A Novel Fluorescent, Highly Affine Histamine H3 Receptor Ligand. ACS Med. Chem. Lett. 2013, 4, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Barge, L.M.; Steinbock, O. Microfluidic production of pyrophosphate catalyzed by mineral membranes with steep pH gradients. Chem. Eur. J. 2019, 25, 4732–4739. [Google Scholar] [CrossRef]
- Bao, C.; Shao, S.; Zhou, H.; Han, Y. A new ESIPT-based fluorescent probe for the highly sensitive detection of amine vapors. New J. Chem. 2021, 45, 10735–10740. [Google Scholar] [CrossRef]
- Chaicham, A.; Kongwutthivech, J.; Tuntulani, T.; Tomapatanaget, B. Couple of Histamine blue fluorescence chemosensor and surface charge selector of FC-modified silica nanoporous for highly specific histamine detection via FRET-process. Sens. Actuators B Chem. 2018, 258, 621–627. [Google Scholar] [CrossRef]
- Nakamura, M.; Sanji, T.; Tanaka, M. Fluorometric sensing of biogenic amines with aggregation-induced emission-active tetraphenylethenes. Chem. Eur. J. 2011, 17, 5344–5349. [Google Scholar] [CrossRef]
- Seto, D.; Soh, N.; Nakano, K.; Imato, T. Selective fluorescence detection of histamine based on ligand exchange mechanism and its application to biomonitoring. Anal. Biochem. 2010, 404, 135–139. [Google Scholar] [CrossRef]
- Mattsson, L.; Xu, J.; Preininger, C.; Bui, B.T.S.; Haupt, K. Competitive fluorescent pseudo-immunoassay exploiting molecularly imprinted polymers for the detection of biogenic amines in fish matrix. Talanta 2018, 181, 190–196. [Google Scholar] [CrossRef]
- Mesgari, F.; Salehnia, F.; Beigi, S.M.; Hosseini, M.; Ganjali, M.R. Enzyme Free Electrochemiluminescence Sensor of Histamine Based on Graphite-carbon Nitride Nanosheets. Electroanalysis 2021. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, X.; Zhang, Y.; Che, Y.; Zhao, J. Detection of amines with fluorescent nanotubes: Applications in the assessment of meat spoilage. Acs Sens. 2016, 1, 22–25. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, J.; Yu, J.; Wu, J.; Nawaz, H.; Zhang, J.; He, J.; Wang, F. Cellulose-based solid fluorescent materials. Adv. Opt. Mater. 2016, 4, 2044–2050. [Google Scholar] [CrossRef]
- Jia, R.; Tian, W.; Bai, H.; Zhang, J.; Wang, S.; Zhang, J. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 2019, 10, 795. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Wang, C.; Feng, G.; Zhang, X. Thermo-responsive fluorescent polymers with diverse LCSTs for ratiometric temperature sensing through FRET. Polymers 2018, 10, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Z.; Wang, C.; Wang, S.; Wu, L.; Zhang, X. Light-harvesting metal-organic framework nanoprobes for ratiometric fluorescence energy transfer-based determination of pH values and temperature. Microchim. Acta 2019, 186, 476. [Google Scholar] [CrossRef] [PubMed]
Type | Name of Fluorescence Sensor (Formula) | LOD | Sample | Excitation/Emission | Linear Range | Size | References |
---|---|---|---|---|---|---|---|
Quantum dots | MP-CNPs | 1.5 nM | Fresh plasma | 345 nm/410 nm | 6.2 nM~0.17 μM | 18.6 nm | [49] |
QD-HIOGNF | 0.9 nM | Histamine solutions | 330 nm/660 nm | 0.9~6.3 nM | ~3.4 nm | [50] | |
QDs@IL@MIP | 0.1 mM | Fish | 400 nm/605 nm | 0.4~2.2 mM | Not available | [53] | |
S-doped CD-embedded COF | 0.8 nM | Wine and fermented meat products | 350 nm/440 nm | 1.6~160 nM | 5 nm | [54] | |
N-CD@Ag+ | 500 nM | Serum | 370 nm/440 nm | 0.5~100 μM | 4~6 nm | [56] | |
GQDs-amino | 0.056 µM | Tuna fish | 345 nm/435 nm | 0.4 µM~32µM | 28 nm | [57] | |
ZnO@PLP/ZnO@Py | 0.59 μM/0.97 μM | Analytical grade chemicals Histamine | 351 nm/375~700 nm | 2.49~24.4 μM/7.44~47.6 μM | 3.64 nm | [58] | |
PLP_β-CD-AgNPs | 0.513 μM | Water | 360 nm/515 nm | 9.9~31.6 μM | ~7 nm | [59] | |
TGA-CdTe QDs | 160 nM | Fish | 350 nm/515 nm | 9.8nM~0.6 µM | 28.2 nm | [61] | |
CdSe Quantum dots/MSA | 1.6 µM | White wine | 350 nm/380~700 nm | 0.07~4.5 mM | 2~3 nm | [63] | |
NAC-CQDs | 13.0 ppb | Blackfish | 360 nm/450 nm | 0.1~100 ppm | 3.3 nm | [66] | |
CD-modifified nanoporous alumina membrane | 70 pM | Mackerel fish | 340 nm/450 nm | 0.1 nM~1 mM | 10 nm | [67] | |
Metallic material | EuMOF-FITC | 19 µM | Raw fish | 380 nm/611nm | 45~450 µM | Not available | [81] |
PCL-Por (Zn) | 10 µM | Histamine solution | 420 nm/700 nm | 10~200 µM | 455 ± 42 nm | [85] | |
Zinc (II) salphen complexes | 4.4 pM | Shrimp | 300 nm/340–450 nm | 10 pM~1 µM | 90~160 nm | [86] | |
Ag+4[PTC]4–IOH-NPs | 10 µM | Histamine solutions | 492 nm/520 nm | Not available | 140 ± 8 nm | [90] | |
Cu NCs | 60 nM | Fish, shrimp and red wine | 325 nm/590 nm | 0.1~10 µM | <2 nm | [91] | |
DPA-CuNPs | 30 nM | Fish, pork and red wine | 280 nm/650 nm | 0.05~5 μM | <0.5 μm | [93] | |
UCNPs@MIPs–AgNPs | 81 nM | Red wine, rice wine and canned tuna | 210 nm/541 nm | 0.2µM~2.2 mM | 100 nm | [94] | |
NaYF4Yb-Er-UCNP | 90 pM | Pork, bacon, cheese, wine | 980 nm/550 nm | 0.9 nM~0.9 μM | 30.5 nm | [95] | |
Aptamer | RNP fluorescence sensor | 1 μM | Histamine solutions | 390 nm/535 nm. | 100 μM~1 mM | Not available | [101] |
aptamer AuNP | 8 nM | Fish | 350 nm/633 nm | 19~70 nM | 16 ± 3 nm | [102] | |
UR-NR266(12) | 15 nM | HEK293-SP-FLAG-hH3R cells | 550 nm/583 nm | Not available | Not available | [104] | |
Cy5-A1-949 | 1 μM | Tuna | 650 nm/670 nm | 1~1000 μM | Not available | [105] | |
Organic small molecules and organic polymers | CE-NBD-F | 0.021 µM | Lysate of tobacco Mesophyll protoplasts | 400 nm/490 nm | 0.05~3.0 μM | Not available | [106] |
Fluorescein dyes for Dual-mode detection | 21nM | Water, human serum, urine, cells | 457 nm/514 nm | 0–0.12mM | Not available | [108] | |
CMPT | 0.13 µM | Soy sauce | 325 nm/475 nm | 0.2~4 mM | Not available | [109] | |
MADH/amicyanin-Cy5 | 13 nM | Salmon and human blood serum | 645 nm/ 665 nm | 13 nM~225 M | Not available | [112] | |
Anti-His-LNs | 10 ppb | Fish | 550 nm/585 nm | 15~80 ppb | Not available | [116] | |
HB@NPs@FC | 8.55 µM | Salmon and tuna | 340 nm/536 nm | 29.1~166.7 µM | Not available | [120] | |
TPEs | 50 ppm | Canned tuna fish | 350 nm/480 nm | 0~100 ppm | Not available | [121] | |
Complex between Ni2+ and calcein | 10 nM | RAW264 cells | 485 nm/535 nm | 0~1000 μM | Not available | [122] | |
Competitive fluorescent MIP | 0.02 ppm | Fish | 485 nm/528 nm | 1~430 µM | 278 ± 36 nm | [123] | |
Asymmetric PDI molecules | 1 ppb | Meat | 455 nm/675 nm | Not available | Not available | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Dou, X.; Li, D.; Xu, S.; Zhang, J.; Ding, Z.; Xie, J. Recent Progress of Fluorescence Sensors for Histamine in Foods. Biosensors 2022, 12, 161. https://doi.org/10.3390/bios12030161
Wu G, Dou X, Li D, Xu S, Zhang J, Ding Z, Xie J. Recent Progress of Fluorescence Sensors for Histamine in Foods. Biosensors. 2022; 12(3):161. https://doi.org/10.3390/bios12030161
Chicago/Turabian StyleWu, Gan, Xilin Dou, Dapeng Li, Shihan Xu, Jicheng Zhang, Zhaoyang Ding, and Jing Xie. 2022. "Recent Progress of Fluorescence Sensors for Histamine in Foods" Biosensors 12, no. 3: 161. https://doi.org/10.3390/bios12030161
APA StyleWu, G., Dou, X., Li, D., Xu, S., Zhang, J., Ding, Z., & Xie, J. (2022). Recent Progress of Fluorescence Sensors for Histamine in Foods. Biosensors, 12(3), 161. https://doi.org/10.3390/bios12030161