Real-Time Detection of LAMP Products of African Swine Fever Virus Using Fluorescence and Surface Plasmon Resonance Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagent
2.2. Systems of Detection
2.2.1. SPR Detection System
2.2.2. Fluorescence Detection System
2.3. Integrated Device of SPR Sensor Chip and Heating Module
2.4. Experiment Procedure
2.4.1. SPR Detection Procedure
2.4.2. Fluorescence Detection Procedure
2.4.3. SPR and Fluorescence Simultaneous Detection Procedure
3. Results and Discussion
3.1. SPR Detects LAMP Products
3.2. Fluorescence Detection of LAMP on a Microfluidic Chip
3.3. Simultaneous Detection of LAMP Products by SPR and Fluorescence on a Microfluidic Chip
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Basto, A.P.; Portugal, R.S.; Nix, R.J.; Cartaxeiro, C.; Boinas, F.; Dixon, L.K. Development of a nested PCR and its internal control for the detection of African swine fever virus (ASV) in ornithodoros erraticus. Arch. Virol. 2006, 151, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Lin, X.Y.; Yang, Z.X.; Yao, X.P.; Li, G.L.; Peng, S.Z. A multiplex PCR for simultaneous detection of classical swine fever virus, African swine fever virus, highly pathogenic porcine reproductive and respiratory syndrome virus, porcine reproductive and respiratory syndrome virus and pseudorabies in swines. Pol. J. Vet. Sci. 2015, 18, 715–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luther, N.J.; Udeama, P.G.; Majiyagbe, K.A.; Shamaki, D.; Owolodun, O.A. Polymerase chain reaction (PCR) detection of the genome of African swine fever virus (ASFV) from natural infection in a nigerian baby warthog (phacochoereus aethiopicus). Niger. Vet. J. 2007, 28, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Schoder, M.E.; Tignon, M.; Linden, A.; Vervaeke, M.; Cay, A.B. Evaluation of seven commercial African swine fever virus detection kits and three Taq polymerases on 300 well-characterized field samples. J. Virol. Methods 2020, 280, 113874. [Google Scholar] [CrossRef] [PubMed]
- Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (lamp) of gene sequences and simple visual detection of products. Nat. Protoc. 2008, 3, 877. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Zhu, H.F. Establishment of a Loop-mediated Isothermal Amplification Assay for the Detection of African Swine Fever Virus. China Anim. Husb. Vet. Med. 2009, 36, 72–74. [Google Scholar]
- Chen, X.; Zhang, L.L.; Cui, D.F.; Yin, H. Miniaturized System with a Facile Isothermal Amplification Microfluidic Chip for Rapid Detection of Zika Viruses. In Proceedings of the 2nd International Conference on Biomedical and Biological Engineering 2017, Guilin, China, 26–28 May 2017. [Google Scholar]
- Liu, D.Y.; Liang, G.; Zhang, Q.; Chen, B. Detection of mycobacterium tuberculosis using a capillary-array microsystem with integrated DNA extraction, loop-mediated isothermal amplification, and fluorescence detection. Anal. Chem. 2013, 85, 4698–4704. [Google Scholar] [CrossRef]
- Guner, H.; Ozgur, E.; Kokturk, G.; Celik, M.; Esen, E.; Topal, A.E. A smartphone-based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuators B Chem. 2017, 239, 571–577. [Google Scholar] [CrossRef]
- Sipova, H.; Homola, J. Surface plasmon resonance sensing of nucleic acids: A review. Anal. Chim. Acta 2013, 773, 9–23. [Google Scholar] [CrossRef]
- Qu, J.H.; Dillen, A.; Saeys, W.; Lammertyn, J.; Spasic, D. Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal. Chim. Acta 2020, 1104, 10–27. [Google Scholar] [CrossRef]
- Lin, L.M.; Xue, J.C.; Xu, H.F.; Zhao, Q.; Zhang, W.B.; Zheng, Y.Q.; Wu, L.; Zhou, Z.K. Integrating lattice and gap plasmonic modes to construct dual-mode metasurfaces for enhancing light–matter interaction. Sci. China Mater. 2021, 64, 3007–3016. [Google Scholar] [CrossRef]
- Bai, H.; Wang, R.; Hargis, B.; Lu, H.; Li, Y. A spr aptasensor for detection of avian influenza virus H5N1. Sensors 2012, 12, 12506–12518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.P.; Shan, X.N.; Patel, U.; Huang, X.; Lu, J.; Li, J.; Tao, N. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc. Natl. Acad. Sci. USA 2010, 107, 16028–16032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, V.T.; Seo, H.B.; Kim, B.C.; Kim, S.K.; Song, C.S.; Gu, M.B. Highly sensitive sandwich-type SPR based detection of whole h5nx viruses using a pair of aptamers. Biosens. Bioelectron. 2016, 86, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Wang, W.H.; Chang, Y.F.; Yuan, R.Y.; Hong, Y.W.; Su, L.C. Detection of emerging avian influenza a H7N9 virus based on a rapid and sensitive intensity-modulated spr biosensor. J. Virus Erad. 2018, 4, 4. [Google Scholar] [CrossRef]
- Yoo, H.; Shin, J.; Sim, J.; Cho, H.; Hong, S. Reusable surface plasmon resonance biosensor chip for the detection of h1n1 influenza virus. Biosens. Bioelectron. 2020, 168, 112561. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, Q.; Tan, Y.; Li, X.; Deng, Y.H.; Zhou, Z.K.; Zhou, B.; Xia, H.Q.; Chen, H.J.; Qiu, C.W.; et al. Metaoptronic multiplexed interface for probing bioentity behaviors. Nano Lett. 2021, 21, 2681–2689. [Google Scholar] [CrossRef]
- Zhang, L.L.; Miao, G.J.; Liu, L.Y.; Gong, S.; Chen, X. Development of a surface plasmon resonance and fluorescence imaging system for biochemical sensing. Micromachines 2019, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Giergiel, J.; Reed, C.E.; Hemminger, J.C.; Ushioda, S. Surface plasmon polariton enhancement of Raman scattering in a Kretschmann geometry. J. Phys. Chem. 1988, 92, 5357–5365. [Google Scholar] [CrossRef]
- Huang, Y.F.; Zhang, L.L.; Zhang, H.; Li, Y.C.; Liu, L.Y.; Chen, Y.Y.; Qiu, X.B.; Yu, D.L. Development of a Portable SPR Sensor for Nucleic Acid Detection. Micromachines 2020, 11, 526. [Google Scholar] [CrossRef]
- Tan, T.N.; Trinh, K.; Yoon, W.J.; Lee, N.Y.; Ju, H. Integration of a microfluidic polymerase chain reaction device and surface plasmon resonance fiber sensor into an inline all-in-one platform for pathogenic bacteria detection. Sens. Actuators B Chem. 2017, 242, 1–8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yao, Y.; Chen, Z.; Sun, W.; Liu, X.; Chen, L.; Sun, J.; Qiu, X.; Yu, D.; Zhang, L. Real-Time Detection of LAMP Products of African Swine Fever Virus Using Fluorescence and Surface Plasmon Resonance Method. Biosensors 2022, 12, 213. https://doi.org/10.3390/bios12040213
Zhang H, Yao Y, Chen Z, Sun W, Liu X, Chen L, Sun J, Qiu X, Yu D, Zhang L. Real-Time Detection of LAMP Products of African Swine Fever Virus Using Fluorescence and Surface Plasmon Resonance Method. Biosensors. 2022; 12(4):213. https://doi.org/10.3390/bios12040213
Chicago/Turabian StyleZhang, Hao, Yuan Yao, Zhi Chen, Wenbo Sun, Xiang Liu, Lei Chen, Jianhai Sun, Xianbo Qiu, Duli Yu, and Lulu Zhang. 2022. "Real-Time Detection of LAMP Products of African Swine Fever Virus Using Fluorescence and Surface Plasmon Resonance Method" Biosensors 12, no. 4: 213. https://doi.org/10.3390/bios12040213
APA StyleZhang, H., Yao, Y., Chen, Z., Sun, W., Liu, X., Chen, L., Sun, J., Qiu, X., Yu, D., & Zhang, L. (2022). Real-Time Detection of LAMP Products of African Swine Fever Virus Using Fluorescence and Surface Plasmon Resonance Method. Biosensors, 12(4), 213. https://doi.org/10.3390/bios12040213