Aptamer-Based Fluorescence Detection and Selective Disinfection of Salmonella Typhimurium by Using Hollow Carbon Nitride Nanosphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of HCNS
2.2. Fluorescence Aptasensing of S. typhimurium
2.3. Real Sample Preparation and Measurements
2.4. Specificity Tests
2.5. Drug Loading and Release Experiments
2.6. Antibacterial Experiments
2.7. Selective Disinfection Experiments
3. Results and Discussion
3.1. Characterization of HCNS
3.2. Fluorescence Aptasensing of S. typhimurium Based on HCNS
3.2.1. Fluorescence Characteristics of HCNS
3.2.2. Optimization of the Aptasensing Conditions
3.2.3. Fluorescence Determination of S. typhimurium
3.3. Selective Disinfection of S. typhimurium by HCNS-Based Drug Delivery System Decorated with Aptamer
3.3.1. Mechanism for the Selective Disinfection of S. typhimurium
3.3.2. Drug Encapsulation and Release
3.3.3. Antibacterial Performance of HCNS-Based Drug Delivery System
3.3.4. Selective Disinfection of S. typhimurium
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Ye, Z.; Ying, Y. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria. Sensors 2012, 12, 3449–3471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, H.X.; Zhou, H.Y.; Luo, H.; Yi, X.U.; Zhang, R.Y.; Yang, Z.M. Research progress of isothermal amplification in the detection of pathogenic bacteria in food. J. Food Sci. Technol. 2019, 40, 362–367. [Google Scholar]
- Abbassi-Ghozzi, I.; Jaouani, A.; Hammami, S.; Martinez-Urtaza, J.; Boudabous, A.; Gtari, M. Molecular analysis and antimicrobial resistance of Salmonella isolates recovered from raw meat marketed in the area of “Grand Tunis”, Tunisia. Pathol. -Biol. 2012, 60, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.; Priyadarshi, N.; Pinnaka, A.K.; Soni, S.; Deep, A.; Singhal, N.K. Glycoconjugates coated gold nanorods based novel biosensor for optical detection and photothermal ablation of food borne bacteria. Sens. Actuators B Chem. 2019, 289, 207–215. [Google Scholar] [CrossRef]
- Tiller, F.W.; Diener, E. Haemophilus influenzae type b capsular polysaccharide detection and measurement by an enzyme-linked immunosorbent assay (ELISA). Zent. Fur Bakteriologie. 1. Abt. Originale. A Med. Mikrobiol. Infekt. Parasitol. 1981, 248, 488–493. [Google Scholar] [CrossRef]
- Wang, P.X.; Sun, Y.; Li, X.; Wang, L.; Xu, Y.; He, L.L.; Li, G.L. Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: A review. Anal. Chim. Acta 2021, 1157, 338279. [Google Scholar] [CrossRef]
- Xiong, Y.Y.; Li, N.T.; Che, C.N.Y.; Wang, W.J.; Barya, P.; Liu, W.A.; Liu, L.Y.; Wang, X.J.; Wu, S.X.; Hu, H.; et al. Microscopies Enabled by Photonic Metamaterials. Sensors 2022, 22, 1086. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B. Photonic and Plasmonic Metasensors. Laser Photon. Rev. 2022, 16, 2100328. [Google Scholar] [CrossRef]
- Dong, P.; Zhu, Y.; Zhang, J.; Peng, C.; Yan, Z.; Li, L.; Peng, Z.W.; Ruan, G.D.; Xiao, W.Y.; Lin, H.; et al. Graphene on Metal Grids as the Transparent Conductive Material for Dye Sensitized Solar Cell. J. Phys. Chem. C 2014, 118, 25863–25868. [Google Scholar] [CrossRef]
- Xu, H.; Liang, S.; Zhu, X.; Wu, X.; Dong, Y.; Wu, H.; Zhang, W.; Chi, Y. Enhanced electrogenerated chemiluminescence behavior of C3N4 QDs@ C3N4 nanosheet and its signal-on aptasensing for platelet derived growth factor. Biosens. Bioelectron. 2017, 92, 695–701. [Google Scholar] [CrossRef]
- Rong, M.; Lin, L.; Song, X.; Wang, Y.; Zhong, Y.; Yan, J.; Feng, Y.; Zeng, X.; Chen, X. Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens. Bioelectron. 2015, 68, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Duan, N.; Wu, S.J.; Ma, X.Y.; Xia, Y.; Wang, Z.P.; Wei, X.L. Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Mikrochim Acta 2014, 181, 967–974. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, W.; Zhou, Y.; Kong, W.; Wang, Z.; Fu, Z. Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G. Mikrochim Acta 2016, 183, 1507–1512. [Google Scholar] [CrossRef]
- Zheng, B.; Cheng, S.; Liu, W.; Lam, M.H.; Liang, H. Small organic molecules detection based on aptamer-modified gold nanoparticles-enhanced quartz crystal microbalance with dissipation biosensor. Anal. Biochem. 2013, 438, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, H.; Song, Z.; Guo, L.; Fu, F.; Wu, Y. A ratiometric nanoprobe for biosensing based on green fluorescent graphitic carbon nitride nanosheets as an internal reference and quenching platform. Biosens. Bioelectron. 2019, 129, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Men, C.; Li, C.H.; Wei, X.M.; Liu, J.J.; Liu, Y.X.; Huang, C.Z.; Zhen, S.J. A sensitive and low background fluorescent sensing strategy based on g-C3N4-MnO2 sandwich nanocomposite and liposome amplification for ricin detection. Analyst 2018, 143, 5764–5770. [Google Scholar] [CrossRef] [PubMed]
- Marslin, G.; Xiang, L.; Shen, X.L.; Wang, X. PEG-PLGA Nanoencapsulation Improves the Antibacterial Activity of Chloramphenicol. Lat. Am. J. Pharm. 2017, 36, 2001–2006. [Google Scholar]
- Peng, Y.; Li, Y.; Li, L.; Zhu, J.J. A label-free aptasensor for ultrasensitive Pb(2+) detection based on electrochemiluminescence resonance energy transfer between carbon nitride nanofibers and Ru(phen)3(2). J. Hazard. Mater. 2018, 359, 121–128. [Google Scholar] [CrossRef]
- Xu, J.; Gao, Q.; Bai, X.; Wang, Z.; Zhu, Y. Enhanced visible-light-induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles. Catal. Today 2019, 332, 227–235. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, H.; Quan, X.; Chen, S.; Zhang, Y.; Zhao, H.; Wang, H. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl. Catal. B 2014, 152–153, 46–50. [Google Scholar] [CrossRef]
- Huang, J.; Ho, W.; Wang, X. Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem. Comm. 2014, 50, 4338–4340. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.Y.; Gu, Z.L.; Chen, X.C.; Lin, L.; Wang, Z.G.; Dai, X.; Yang, Z.X.; Liu, L.; Zhou, R.H.; Dong, M.D. Stimulating antibacterial activities of graphitic carbon nitride nanosheets with plasma treatment. Nanoscale 2019, 11, 18416–18425. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Dong, W.; Zeng, X.; Guo, Z.; Zong, P.; Li, B.; Meng, X.; Zuo, G. β-cyclodextrin modified g-C3N4 nanosheet: A fluorescent drug carrier with ultrahigh drug loading capacity and pH-responsive release. J. Chem. Technol. Biotechnol. 2019, 94, 628–633. [Google Scholar] [CrossRef]
- Song, M.Y.; Jurng, J.; Park, Y.K.; Kim, B.C. An aptamer cocktail-functionalized photocatalyst with enhanced antibacterial efficiency towards target bacteria. J. Hazard. Mater. 2016, 318, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.J.; Yan, X.; Wu, M.X.; Li, W.K.; Deng, L. Development of an aptamer-ampicillin conjugate for treating biofilms. Biochem. Biophys. Res. Commun. 2017, 483, 847–854. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, J.; Zhang, M.; Antonietti, M.; Fu, X.; Wang, X. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 2012, 3, 1139. [Google Scholar] [CrossRef]
- Gong, H.; Wang, L.; Zhou, K.; Zhang, D.; Zhang, Y.; Adamaki, V.; Bowen, C.; Sergejevs, A. Improved photocatalytic performance of gradient reduced TiO2 ceramics with aligned pore channels. Adv. Powder Technol. 2021; in press. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.J.; Zhu, Y.F. Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance. Langmuir 2013, 29, 10566–10572. [Google Scholar] [CrossRef]
- Da Silva, E.S.; Moura, N.M.M.; Neves, M.G.P.M.S.; Coutinho, A.; Prieto, M.; Silva, C.G.; Faria, J.L. Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis(carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production. Appl. Catal. B 2018, 221, 56–69. [Google Scholar] [CrossRef]
- Stanisavljevic, M.; Krizkova, S.; Vaculovicova, M.; Kizek, R.; Adam, V. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens. Bioelectron. 2015, 74, 562–574. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Cheng, L.; Yang, C.; Zhang, J. Photoelectrochemical aptasensing of kanamycin using visible light-activated carbon nitride and graphene oxide nanocomposites. Anal. Chem. 2014, 86, 9372–9375. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Lei, J.; Xu, N.; Gao, F.; Ju, H. Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal. Chem. 2013, 85, 12182–12188. [Google Scholar] [CrossRef]
- Xu, J.; Gao, Q.Z.; Wang, Z.P.; Zhu, Y. An all-organic 0D/2D supramolecular porphyrin/g-C3N4 heterojunction assembled via pi-pi interaction for efficient visible photocatalytic oxidation. Appl. Catal. B 2021, 291, 120059. [Google Scholar] [CrossRef]
- Xu, J.; Huang, J.; Wang, Z.P.; Zhu, Y.F. Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots. Chin. J. Catal. 2020, 41, 474–484. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Xu, J.; Wang, Z.P.; Zhu, Y.F. Enhanced visible photocatalytic oxidation activity of perylene diimide/g-C3N4 n-n heterojunction via pi-pi interaction and interfacial charge separation. Appl. Catal. B 2020, 271, 118933. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Xu, J.; Lou, Y.; Pan, C.; Zhang, Y.; Wang, Z. Aptamer-Based Fluorescence Detection and Selective Disinfection of Salmonella Typhimurium by Using Hollow Carbon Nitride Nanosphere. Biosensors 2022, 12, 228. https://doi.org/10.3390/bios12040228
Liu X, Xu J, Lou Y, Pan C, Zhang Y, Wang Z. Aptamer-Based Fluorescence Detection and Selective Disinfection of Salmonella Typhimurium by Using Hollow Carbon Nitride Nanosphere. Biosensors. 2022; 12(4):228. https://doi.org/10.3390/bios12040228
Chicago/Turabian StyleLiu, Xinyi, Jing Xu, Yang Lou, Chengsi Pan, Yin Zhang, and Zhouping Wang. 2022. "Aptamer-Based Fluorescence Detection and Selective Disinfection of Salmonella Typhimurium by Using Hollow Carbon Nitride Nanosphere" Biosensors 12, no. 4: 228. https://doi.org/10.3390/bios12040228
APA StyleLiu, X., Xu, J., Lou, Y., Pan, C., Zhang, Y., & Wang, Z. (2022). Aptamer-Based Fluorescence Detection and Selective Disinfection of Salmonella Typhimurium by Using Hollow Carbon Nitride Nanosphere. Biosensors, 12(4), 228. https://doi.org/10.3390/bios12040228