Ratiometric Fluorescence Detection of Colorectal Cancer-Associated Exosomal miR-92a-3p with DSN-Assisted Signal Amplification by a MWCNTs@Au NCs Nanoplatform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Materials
2.2. Synthesis of Fluorescent Au NCs
2.3. Preparation of MWCNTs@Au NCs
2.4. Fluorescence Detection of miR-92a-3p
2.5. Extraction of Exosomes and Exosomal RNAs
2.6. Characterization
2.7. RT-qPCR Detection of miR-92a-3p
3. Results and Discussion
3.1. Characterization of Materials
3.2. Detection Principle of miR-92a-3p
3.3. Optimization of Measurement Conditions
3.4. Sensitivity and Selectivity for miR-92a-3p Detection
3.5. Detection of miR-92a-3p Extracted from Exosomes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilikevicius, A.; Meister, G.; Corey, D.R. Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res. 2022, 50, 617–634. [Google Scholar] [CrossRef] [PubMed]
- Kunze-Schumacher, H.; Krueger, A. The Role of MicroRNAs in Development and Function of Regulatory T Cells—Lessons for a Better Understanding of MicroRNA Biology. Front. Immunol. 2020, 11, 2185. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, J.B.; Yang, S.; Zhang, T.; Xia, X.H.; Zhang, K.X.; Deng, S.; He, G.P.; Gao, H.; He, Q.; et al. CRISPR/Cas14a-Based Isothermal Amplification for Profiling Plant MicroRNAs. Anal. Chem. 2021, 93, 12602–12608. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Q.; Wang, S.Q.; Chen, Y.; Fu, L.Y.; Xu, Y.N.; Li, L.; Tao, L.; Shen, X.C. MicroRNAs Regulating Mitochondrial Function in Cardiac Diseases. Front. Pharmacol. 2021, 12, 663322. [Google Scholar] [CrossRef] [PubMed]
- Murri, M.; Insenser, M.; Fernandez-Duran, E.; San-Millan, J.L.; Escobar-Morreale, H.F. Effects of Polycystic Ovary Syndrome (PCOS), Sex Hormones, and Obesity on Circulating miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 Expression. J. Clin. Endocrinol. Metab. 2013, 98, E1835–E1844. [Google Scholar] [CrossRef] [Green Version]
- He, X.Y.; Kuang, G.Y.; Wu, Y.R.; Ou, C.L. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin. Transl. Med. 2021, 11, e468. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Raza, W.; Parveen, S.; Meena, A.; Luqman, S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem. Pharmacol. 2021, 189, 114409. [Google Scholar] [CrossRef]
- Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res. 2021, 28, 127–138. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Zhang, X.H.; Luo, S.H.; Yan, X.H.; Qiu, Y.R.; Zheng, L.; Li, L. Research advances for exosomal miRNAs detection in biosensing: From the massive study to the individual study. Biosens. Bioelectron. 2021, 177, 112962. [Google Scholar] [CrossRef]
- Zhu, D.; Miao, Z.Y.; Hu, Y.; Zhang, X.J. Single-step, homogeneous and sensitive detection for microRNAs with dual-recognition steps based on luminescence resonance energy transfer (LRET) using upconversion nanoparticles. Biosens. Bioelectron. 2018, 100, 475–481. [Google Scholar] [CrossRef]
- Wijesinghe, K.M.; Kanak, M.A.; Harrell, J.C.; Dhakal, S. Single-Molecule Sensor for High-Confidence Detection of miRNA br. ACS Sens. 2022, 7, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.Y.; Zhang, L.L.; Yang, Z.Z.; Song, Z.; Zhang, Q.; He, Y. Graphene oxide-based qRT-PCR assay enables the sensitive and specific detection of miRNAs for the screening of ovarian cancer. Anal. Chim. Acta 2021, 1174, 338715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Y.; Hao, W.H.; Liu, X.T.; Sun, X.R.; Yan, J.L.; Wang, Y.C. Visual detection of miRNAs using enzyme-free amplification reactions and ratiometric fluorescent probes. Talanta 2020, 219, 121332. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.K.; Wang, L.L.; Li, J.; Chen, X.Q.; Lan, J.M.; Yan, A.; Lei, Y.; Yang, S.; Yang, H.H.; Chen, J.H. A Ratiometric Fluorescent Bioprobe Based on Carbon Dots and Acridone Derivate for Signal Amplification Detection Exosomal microRNA. Anal. Chem. 2018, 90, 8969–8976. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Yang, Y.Q.; Ding, Y.D.; Feng, N.H.; Li, M.L.; Yin, Y.M. Engineering entropy-driven based multiple signal amplification strategy for visualized assay of miRNA by naked eye. Talanta 2021, 235, 122810. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Deng, D.H.; Wu, D.H.; Hou, W.L.; Wang, L.; Li, N.; Sun, Z.F. Duplex-specific nuclease-based electrochemical biosensor for the detection of microRNAs by conversion of homogeneous assay into surface-tethered electrochemical analysis. Anal. Chim. Acta 2021, 1149, 338199. [Google Scholar] [CrossRef]
- Yin, B.C.; Liu, Y.Q.; Ye, B.C. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J. Am. Chem. Soc. 2012, 134, 5064–5067. [Google Scholar] [CrossRef]
- Liu, Q.; Kang, P.J.; Chen, Z.P.; Shi, C.X.; Chen, Y.; Yu, R.Q. Highly specific and sensitive detection of microRNAs by tandem signal amplification based on duplex-specific nuclease and strand displacement. Chem. Commun. 2019, 55, 14210–14213. [Google Scholar] [CrossRef]
- Yu, L.; He, P.; Xu, Y.C.; Kou, X.Y.; Yu, Z.Q.; Xie, X.B.; Miao, P. Manipulations of DNA four-way junction architecture and DNA modified Fe3O4@Au nanomaterials for the detection of miRNA. Sens. Actuator B-Chem. 2020, 313, 128015. [Google Scholar] [CrossRef]
- Wu, Y.D.; Cui, S.; Li, Q.; Zhang, R.S.; Song, Z.M.; Gao, Y.Z.; Chen, W.J.; Xing, D.M. Recent advances in duplex-specific nuclease-based signal amplification strategies for microRNA detection. Biosens. Bioelectron. 2020, 165, 112449. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.Y.; Kan, A.L.; Xu, X.W.; Zhang, N.; Jiang, W. MnO2 nanosheet-mediated target-binding-induced FRET strategy for multiplexed microRNAs detection and imaging in living cells. Talanta 2021, 226, 122202. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.W.; Tong, Y.; Zhou, X.Y.; Li, J.; Zhao, L.; Li, H.; Wang, C.X.; Du, L.T.; Jiang, Y.Y. Ratiometric Fluorescent Biosensor Based on Forster Resonance Energy Transfer between Carbon Dots and Acridine Orange for miRNA Analysis. ACS Omega 2021, 6, 34150–34159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.X.; Wang, F.; Zhang, H.X.; Zhang, Y.Y.; Liu, M.L.; Liu, Y. Universal Ti3C2 MXenes Based Self-Standard Ratiometric Fluorescence Resonance Energy Transfer Platform for Highly Sensitive Detection of Exosomes. Anal. Chem. 2018, 90, 12737–12744. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, J.; Shin, H.; Min, D.H. Graphene oxide-based molecular diagnostic biosensor for simultaneous detection of Zika and dengue viruses. 2D Mater. 2020, 7, 044001. [Google Scholar] [CrossRef]
- Wang, Y.T.; Wu, N.; Guo, F.N.; Gao, R.X.; Yang, T.; Wang, J.H. g-C3N4 nanosheet-based ratiometric fluorescent probes for the amplification and imaging of miRNA in living cells. J. Mat. Chem. B 2019, 7, 7566–7573. [Google Scholar] [CrossRef] [PubMed]
- Oudeng, G.; Au, M.T.; Shi, J.Y.; Wen, C.Y.; Yang, M. One-Step in Situ Detection of miRNA-21 Expression in Single Cancer Cells Based on Biofunctionalized MoS2 Nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Piao, J.F.; Peng, W.P.; Wang, Y.; Zhang, B.; Gong, X.Q.; Chang, J. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform. ACS Appl. Mater. Interfaces 2018, 10, 3324–3332. [Google Scholar] [CrossRef]
- Li, X.T.; Tang, X.M.; Chen, X.J.; Qu, B.H.; Lu, L.H. Label-free and enzyme-free fluorescent isocarbophos aptasensor based on MWCNTs and G-quadruplex. Talanta 2018, 188, 232–237. [Google Scholar] [CrossRef]
- Ding, Z.Q.; Bligh, S.W.A.; Tao, L.; Quan, J.; Nie, H.L.; Zhu, L.M.; Gong, X. Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein. Mater. Sci. Eng. C-Mater. Biol. Appl. 2015, 48, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Xue, N.; Li, Z.B.; Xing, K.; Miao, X.M. Ultrasensitive detection of miRNA-155 using multi-walled carbon nanotube-gold nanocomposites as a novel fluorescence quenching platform. Sens. Actuator B-Chem. 2018, 266, 221–227. [Google Scholar] [CrossRef]
- Reddu, V.; Sun, L.; Li, X.; Jin, H.; Wang, S.; Wang, X. Highly selective and efficient electroreduction of CO2 in water by quaterpyridine derivative-based molecular catalyst noncovalently tethered to carbon nanotubes. SmartMat 2022, 3, 151–162. [Google Scholar] [CrossRef]
- Dong, P.; Liu, Y.H.; Zhao, Y.; Wang, W.X.; Pan, M.; Liu, Y.; Liu, X.Q. Ratiometric fluorescence sensing of copper ion and enzyme activity by nanoprobe-mediated autocatalytic reaction and catalytic cascade reaction. Sens. Actuator B-Chem. 2020, 310, 127873. [Google Scholar] [CrossRef]
- Jia, P.; Yang, J.Y.; Hou, J.J.; Yang, K.R.; Zhe, T.T.; Bu, T.; Wang, L. Innovative ratiometric optical strategy: Nonconjugated polymer dots based fluorescence-scattering dual signal output for sensing mercury ions. Food Chem. 2022, 374, 131771. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.P.; Zou, R.; Wang, L.Y.; Chen, C.Y.; Gong, H.; Cai, C.Q. An amine-functionalized metal-organic framework and triple-helix molecular beacons as a sensing platform for miRNA ratiometric detection. Talanta 2021, 228, 122199. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.S.; Fu, T.; Wu, F.F.; Wang, H.X. Ratiometric fluorescence and smartphone dual-mode detection of glutathione using carbon dots coupled with Ag+-triggered oxidation of o-phenylenediamine. Nanotechnology 2021, 32, 445501. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Deng, X.; Wang, M.; Li, J.; Zhang, Z.Q. A dual-function oligonucleotide-based ratiometric fluorescence sensor for ATP detection. Talanta 2020, 219, 121349. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, W.; Lan, X.L.; Zeng, Z.C.; Liang, Y.S.; Yan, Y.R.; Song, F.Y.; Wang, F.F.; Zhu, X.H.; Liao, W.J.; et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol. Cancer 2019, 18, 91. [Google Scholar] [CrossRef] [Green Version]
- Misak, H.E.; Asmatulu, R.; O’Malley, M.; Jurak, E.; Mall, S. Functionalization of carbon nanotube yarn by acid treatment. Int. J. Smart Nano Mater. 2014, 5, 34–43. [Google Scholar] [CrossRef]
- Jing, P.J.; Yin, Z.Z.; Cai, W.R.; Li, J.Y.; Wu, D.T.; Kong, Y. The hybrids of perylene tetracarboxylic acid functionalized multi-walled carbon nanotubes and chitosan for electrochemical chiral sensing of tryptophan enantiomers. Bioelectrochemistry 2022, 146, 108110. [Google Scholar] [CrossRef]
- Parida, K.M.; Sahu, N.; Tripathi, A.K.; Kamble, V.S. Gold Promoted S,N-Doped TiO2: An Efficient Catalyst for CO Adsorption and Oxidation. Environ. Sci. Technol. 2010, 44, 4155–4160. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y. Extinction Effect of Gold Nanocatalysts on Photocatalytic Activities under Plasmonic Excitation. Catalysts 2021, 11, 413. [Google Scholar] [CrossRef]
- Yang, W.T.; Shen, Y.; Zhang, D.Y.; Li, C.; Yuan, R.; Xu, W.J. Programmed Dual-Functional DNA Tweezer for Simultaneous and Recognizable Fluorescence Detection of microRNA and Protein. Anal. Chem. 2019, 91, 7782–7789. [Google Scholar] [CrossRef] [PubMed]
- Du, X.Y.; Wu, S.H.; Huang, X.B.; Sun, J.J. Ag Nanocubes Coupled with Heating-Enhanced DSN-Assisted Cycling Amplification for Surface-Enhanced Raman Spectroscopy Detection of MicroRNA-21. ACS Appl. Nano Mater. 2021, 4, 2565–2574. [Google Scholar] [CrossRef]
- Liu, M.Q.; Shen, R.; Li, H.R.; Jia, Y.W.; Mak, P.I.; Martins, R.P. Ratiometric fluorescence analysis for miR-141 detection with hairpin DNA-templated silver nanoclusters. J. Mater. Chem. C 2022, 10, 655–664. [Google Scholar] [CrossRef]
- Huang, J.; Shangguan, J.F.; Guo, Q.P.; Ma, W.J.; Wang, H.Z.; Jia, R.C.; Ye, Z.; He, X.X.; Wang, K.M. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Analyst 2019, 144, 4917–4924. [Google Scholar] [CrossRef]
- Zhou, D.S.; Liu, X.T.; Liu, X.T.; Xu, Y.T.; Chen, R.Q.; Lin, C.; Guo, L.Q.; Fu, F.F. Ratiometric fluorescent biosensor for microRNAs imaging in living cells. Sens. Actuator B-Chem. 2020, 322, 128632. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Xu, X.W.; Li, X.; Jiang, W. MnO2 nanosheet-mediated ratiometric fluorescence biosensor for MicroRNA detection and imaging in living cells. Anal. Chim. Acta 2019, 1063, 152–158. [Google Scholar] [CrossRef]
- Ji, D.Y.; Mou, X.; Kwok, C.K. Label-free and ratiometric detection of microRNA based on target-induced catalytic hairpin assembly and two fluorescent dyes. Anal. Methods 2019, 11, 4808–4813. [Google Scholar] [CrossRef]
- Jiang, Y.T.; Ma, X.Y.; Shao, X.J.; Wang, M.Y.; Jiang, Y.; Miao, P. Chameleon silver nanoclusters for ratiometric sensing of miRNA. Sens. Actuator B-Chem. 2019, 297, 126788. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Xue, Z.Q.; Hao, X.L.; Miao, C.F.; Zhang, J.Z.; Zheng, Y.J.; Zheng, Z.F.; Lin, X.H.; Weng, S.H. Ratiometric fluorescence sensor based on carbon dots as internal reference signal and T7 exonuclease-assisted signal amplification strategy for microRNA-21 detection. Anal. Chim. Acta 2020, 1103, 212–219. [Google Scholar] [CrossRef]
- Lin, X.Y.; Zhang, C.; Huang, Y.S.; Zhu, Z.; Chen, X.; Yang, C.J. Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification. Chem. Commun. 2013, 49, 7243–7245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.H.; Rong, Y.; Yang, Z.P.; She, D.; Gong, M.W. Construction of Dual-Target Recognition-Based Specific MicroRNA Detection Method for Acute Pancreatitis Analysis. Appl. Biochem. Biotechnol. 2022, 194, 3136–3144. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Yang, F.; Zhang, Y.L.; Ning, Y.; Yao, Q.F.; Zhang, G.J. Amplified fluorescence sensing of miRNA by combination of graphene oxide with duplex-specific nuclease. Anal. Methods 2014, 6, 3598–3603. [Google Scholar] [CrossRef]
- Sun, Y.J.; Wang, C.C.; Tang, L.N.; Zhang, Y.L.; Zhang, G.J. Magnetic-enhanced fluorescence sensing of tumor miRNA by combination of MNPs@PDA with duplex specific nuclease. RSC Adv. 2021, 11, 2968–2975. [Google Scholar] [CrossRef]
- Shen, W.; Yeo, K.H.; Gao, Z.Q. A simple and highly sensitive fluorescence assay for microRNAs. Analyst 2015, 140, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.D.; Xiao, Z.Y.; Yu, S.; Yao, K.; Liu, D.H.; Chen, K.X.; Wei, Z.M.; Li, Y.J.; Sun, F.F. Tetrahedral structure supported two stages DSN-assisted amplification strategy for sensitive detection of lung cancer related MicroRNA. Microchem. J. 2022, 174, 107035. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, P.; Kuang, Y.; Yang, J.X.; Cao, D.Y.; You, Y.; Shen, K. Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis. Tumor Biol. 2016, 37, 4213–4221. [Google Scholar] [CrossRef]
- Sun, Z.W.; Yang, J.J.; Li, H.; Wang, C.X.; Fletcher, C.; Li, J.; Zhan, Y.; Du, L.T.; Wang, F.L.; Jiang, Y.Y. Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials 2021, 274, 120873. [Google Scholar] [CrossRef]
- Liu, H.Y.; Liu, W.; Jin, G. Detection of Exosomes Using Total Internal Reflected Imaging Ellipsometry. Biosensors 2021, 11, 164. [Google Scholar] [CrossRef]
Oligonucleotide | Sequence (5′ → 3′) |
---|---|
Probe | Atto-425-(CH2)6-ACAGGCCGGGACAAGTGCAATA |
miR-92a-3p | UAUUGCACUUGUCCCGGCCUGU |
Single base mismatched target (SMT) | UAUUCCACUUGUCCCGGCCUGU |
Two base mismatched target (TMT) | UUUUCCACUUGUCCCGGCCUGU |
Non-complementary target (NCT) | UGUCAGUUUGUCAAAUACCCCA |
Fluorescent Materials | Targets | Linear Interval (pM) | Limit of Detection (pM) | Ref. |
---|---|---|---|---|
DNA-AgNCs | miR-141 | 5 × 103–1 × 105 | 2.5 × 103 | [45] |
Protonated phenyl-doped carbon nitride, ROX | miRNA-224 | 103–2 × 104 | 200 | [46] |
FAM, TAMRA | miRNA-21 | 102–2 × 104 | 73 | [47] |
NMM, DAPI | miRNA-21 | 10–4.5 × 104 | 3.1 | [48] |
Chameleon Ag NCs | miR-17-5p | 10–104 | 2.8 | [49] |
CDs, FAM | miRNA-21 | 50–104 | 1 | [50] |
CdTe QDs, FCMMs | let-7a | 2–2 × 102 | 0.1 | [13] |
Boron doped g-C3N4 nanosheets, Cu NCs | miR-582-3p | 0.2–1 | 0.049 | [25] |
FAM | let-7a | 0.5–5 × 102 | 0.4 | [51] |
FAM | miRNA-21 | 0.1–1 × 103 | 0.1 | [52] |
FAM | let-7b | 0.5–103 | 0.16 | [53] |
FAM | miRNA-141 | 5–103 | 0.42 | [54] |
FAM | let-7a | 0.1–2 × 103 | 0.06 | [55] |
Hairpin structure molecular beacons | let-7a | 1–104 | 0.0325 | [56] |
MWCNTs@Au NCs, Atto-425 | miR-92a-3p | 0.1–10 | 0.031 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Li, J.; Tong, Y.; Zhao, L.; Zhou, X.; Li, H.; Wang, C.; Du, L.; Jiang, Y. Ratiometric Fluorescence Detection of Colorectal Cancer-Associated Exosomal miR-92a-3p with DSN-Assisted Signal Amplification by a MWCNTs@Au NCs Nanoplatform. Biosensors 2022, 12, 533. https://doi.org/10.3390/bios12070533
Sun Z, Li J, Tong Y, Zhao L, Zhou X, Li H, Wang C, Du L, Jiang Y. Ratiometric Fluorescence Detection of Colorectal Cancer-Associated Exosomal miR-92a-3p with DSN-Assisted Signal Amplification by a MWCNTs@Au NCs Nanoplatform. Biosensors. 2022; 12(7):533. https://doi.org/10.3390/bios12070533
Chicago/Turabian StyleSun, Zhiwei, Juan Li, Yao Tong, Li Zhao, Xiaoyu Zhou, Hui Li, Chuanxin Wang, Lutao Du, and Yanyan Jiang. 2022. "Ratiometric Fluorescence Detection of Colorectal Cancer-Associated Exosomal miR-92a-3p with DSN-Assisted Signal Amplification by a MWCNTs@Au NCs Nanoplatform" Biosensors 12, no. 7: 533. https://doi.org/10.3390/bios12070533
APA StyleSun, Z., Li, J., Tong, Y., Zhao, L., Zhou, X., Li, H., Wang, C., Du, L., & Jiang, Y. (2022). Ratiometric Fluorescence Detection of Colorectal Cancer-Associated Exosomal miR-92a-3p with DSN-Assisted Signal Amplification by a MWCNTs@Au NCs Nanoplatform. Biosensors, 12(7), 533. https://doi.org/10.3390/bios12070533