A Perturbed Asymmetrical Y-TypeSheathless Chip for Particle Control Based on Adjustable Tilted-Angle Traveling Surface Acoustic Waves (ataTSAWs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Working Mechanism
2.2. Chip Fabrication
2.3. Sample Preparation and System Setup
3. Results
3.1. Simulation of Two-Dimensional (2D) Surface Velocity and Three-Dimensional (3D) Cross-Sectional Velocity of Microchannels
3.2. Related Performance Testing of Microchannels When AtaTSAWs Off
3.3. Acoustic Separation Effect Test at Different θi
3.4. Test Results of Chip Separation Performance When θi = 25°–45°
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sitkov, N.; Zimina, T.; Kolobov, A.; Sevostyanov, E.; Trushlyakova, V.; Luchinin, V.; Krasichkov, A.; Markelov, O.; Galagudza, M.; Kaplun, D. Study of the fabrication technology of hybrid microfluidic biochips forlabel-Free detection of proteins. Micromachines 2021, 13, 20. [Google Scholar] [CrossRef]
- Shi, J.; Fu, P.; Zheng, W. A design method based on Bayesian decision for routing-based digital microfluidic biochips. Analyst 2022, 147, 1076–1085. [Google Scholar] [CrossRef]
- Kundu, D.; Roy, S.; Bhattacharjee, S.; Saha, S.; Chakrabarty, K.; Chakrabarti, P.P.; Bhattacharya, B.B. Mixing Models as Integer Factorization: A key to sample preparation with microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 41, 558–570. [Google Scholar] [CrossRef]
- Tang, D.; Jiang, L.; Xiang, N.; Ni, Z. Discrimination of tumor cell type based on cytometric detection of dielectric properties. Talanta 2022, 246, 123524. [Google Scholar] [CrossRef]
- Zeng, S.; Sun, X.; Wan, X.; Qian, C.; Yue, W.; Sohan, A.M.F.; Lin, X.; Yin, B. A cascade Fermat spiral microfluidic mixer chip for accurate detection and logic discrimination of cancer cells. Analyst 2022, 147, 3424–3433. [Google Scholar] [CrossRef]
- Rong, Z.; Xiao, R.; Peng, Y.; Zhang, A.; Wei, H.; Ma, Q.; Wang, D.; Wang, Q.; Bai, Z.; Wang, F.; et al. Integrated fluorescent lateral flow assay platform for point-of-care diagnosis of infectious diseases by using a multichannel test cartridge. Sens. Actuators B Chem. 2021, 329, 129193. [Google Scholar] [CrossRef]
- Van Thanh Nguyen, N.; Taverna, M.; Smadja, C.; Mai, T.D. Recent electrokinetic and microfluidic strategies for detection of amyloid beta peptide biomarkers: Towards molecular diagnosis of alzheimer’s disease. Chem. Rec. 2021, 21, 149–161. [Google Scholar] [CrossRef]
- Moon, S.M.; Kim, J.H.; Kim, S.K.; Kim, S.; Kwon, H.J.; Bae, J.S.; Lee, S.; Lee, H.S.; Choi, M.; Jeon, B.H.; et al. Clinical utility of combined circulating tumor cell and circulating tumor DNA assays for diagnosis of primary lung cancer. Anticancer Res. 2020, 40, 3435–3444. [Google Scholar] [CrossRef]
- Laxmi, V.; Tripathi, S.; Joshi, S.S.; Agrawal, A. Separation and enrichment of platelets from whole blood using a PDMS-based passive microdevice. Ind. Eng. Chem. Res. 2020, 59, 4792–4801. [Google Scholar] [CrossRef]
- Tang, H.; Niu, J.; Jin, H.; Lin, S.; Cui, D. Geometric structure design of passive label-free microfluidic systems for biological micro-object separation. Microsyst. Nanoeng. 2022, 8, 1–28. [Google Scholar] [CrossRef]
- Catarino, S.O.; Rodrigues, R.O.; Pinho, D.; Miranda, J.M.; Minas, G.; Lima, R. Blood cells separation and sorting techniques of passive microfluidic devices: From fabrication to applications. Micromachines 2019, 10, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalilvand, E.; Shamloo, A.; Gangaraj, M.H. Computational study of an integrated microfluidic device for active separation of RBCs and cell lysis. Chem. Eng. Process.-Process Intensif. 2022, 174, 108891. [Google Scholar] [CrossRef]
- Sivaramakrishnan, M.; Kothandan, R.; Govindarajan, D.K.; Meganathan, Y.; Kandaswamy, K. Active microfluidic systems for cell sorting and separation. Curr. Opin. Biomed. Eng. 2020, 13, 60–68. [Google Scholar] [CrossRef]
- Liang, W.; Liu, J.; Yang, X.; Zhang, Q.; Yang, W.; Zhang, H.; Liu, L. Microfluidic-based cancer cell separation using active and passive mechanisms. Microfluid. Nanofluidics 2020, 24, 1–19. [Google Scholar] [CrossRef]
- Xiang, N.; Li, Q.; Ni, Z. Combining inertial microfluidics with cross-flow filtration for high-fold and high-throughput passive volume reduction. Anal. Chem. 2020, 92, 6770–6776. [Google Scholar] [CrossRef]
- Park, S.; Sabbagh, B.; Abu-Rjal, R.; Yossifon, G. Digital microfluidics-like manipulation of electrokinetically preconcentrated bioparticle plugs in continuous-flow. Lab A Chip 2022, 22, 814–825. [Google Scholar] [CrossRef]
- Kwizera, E.A.; Sun, M.; White, A.M.; Li, J.; He, X. Methods of generating dielectrophoretic force for microfluidic manipulation of bioparticles. ACS Biomater. Sci. Eng. 2021, 7, 2043–2063. [Google Scholar] [CrossRef]
- Zeng, L.; Hu, S.; Chen, X.; Zhang, P.; Gu, G.; Wang, Y.; Zhang, H.; Zhang, H.; Yang, H. Extraction of small extracellular vesicles by label-free and biocompatible on-chip magnetic separation. Lab A Chip 2022. [Google Scholar] [CrossRef]
- Qian, Z.; Hanley, T.R.; Reece, L.M.; Leary, J.F.; Boland, E.D.; Todd, P. Continuous flow labeling and in-line magnetic separation of cells. Magnetochemistry 2021, 8, 5. [Google Scholar] [CrossRef]
- Altay, R.; Yapici, M.K.; Koşar, A. A hybrid spiral microfluidic platform coupled with surface acoustic waves for circulating tumor cell sorting and separation: A numerical study. Biosensors 2022, 12, 171. [Google Scholar] [CrossRef]
- Lv, H.; Chen, X.; Zhang, Y.; Wang, X.; Zeng, X.; Zhang, D. Two-stage particle separation channel based on standing surface acoustic wave. J. Microsc. 2022, 286, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; He, F.; Li, Y.; Zhao, H.; Li, X.; Tang, H.; Li, Z.; Yang, Z.; Zhang, Y. Effects of two surface acoustic wave sorting chips on particles multi-level sorting. Biomed. Microdevices 2019, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Zheng, H.; Guo, W.; Ganan-Calvo, A.; Ai, Y.; Tsao, C.; Zhou, J.; Li, W.; Huang, Y.; Nguyen, N. Active droplet sorting in microfluidics: A review. Lab A Chip 2017, 17, 751–771. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, M.; Yang, S.; Wu, Y.; Gu, Y.; Chen, C.; Ye, J.; Xie, Z.; Tian, Z.; Bachman, H.; et al. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Lab A Chip 2020, 20, 1298–1308. [Google Scholar] [CrossRef]
- Xue, S.; Zhang, X.; He, F.; Liu, Z.; Hao, P. Acoustic particle migration and focusing in a tilted acoustic field. Phys. Fluids 2021, 33, 122006. [Google Scholar] [CrossRef]
- Mutafopulos, K.; Spink, P.; Lofstrom, C.D.; Lu, P.J.; Lu, H.; Sharpe, J.C.; Franke, T.; Weitz, D.A. Traveling surface acoustic wave (TSAW) microfluidic fluorescence activated cell sorter (μFACS). Lab A Chip 2019, 19, 2435–2443. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Tang, Z.; Liang, X.; Guo, M.; Han, R. Spatially gradated segregation and recovery of circulating tumor cells from peripheral blood of cancer patients. Biomicrofluidics 2013, 7, 180–204. [Google Scholar] [CrossRef] [Green Version]
- Chiu, T.K.; Chao, A.C.; Chou, W.P.; Liao, C.J.; Wang, H.M.; Chang, J.H.; Chen, P.H.; Wu, M.H. Optically-induced-dielectrophoresis (odep)-based cell manipulation in a microfluidic system for high-purity isolation of integral circulating tumor cell (ctc) clusters based on their size characteristics. Sens. Actuators 2018, B258, 1161–1173. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, W.; Zhu, F.; Liu, P.; Ba, Y. Numerical study of particle separation with standing surface acoustic waves (SSAW). Powder Technol. 2022, 395, 103–110. [Google Scholar] [CrossRef]
- Ning, S.; Liu, S.; Xiao, Y.; Zhang, G.; Cui, W.; Reed, M. A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves. Lab A Chip 2021, 21, 4608–4617. [Google Scholar] [CrossRef]
- Liu, G.; Li, Z.; Li, X.; Li, Y.; Tang, H.; Wang, M.; Yang, Z. Design and experiment of a focused acoustic sorting chip based on TSAW separation mechanism. Microsyst. Technol. 2020, 26, 2817–2828. [Google Scholar] [CrossRef]
- Mutafopulos, K.; Lu, P.J.; Garry, R.; Spink, P.; Weitz, D.A. Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using traveling surface acoustic waves in a microfluidic device. Lab A Chip 2020, 20, 3914–3921. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Destgeer, G.; Park, J.; Afzal, M.; Sung, H.J. Sheathless focusing and separation of microparticles using tilted-angle traveling surface acoustic waves. Anal. Chem. 2018, 90, 8546–8552. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Zhou, M.; Yuan, S.; Fan, C.; Jiang, B. Numerical investigation of particle deflection in tilted-angle standing surface acoustic wave microfluidic devices. Appl. Math. Model. 2022, 101, 517–532. [Google Scholar] [CrossRef]
- Namnabat, M.S.; Moghimi Zand, M.; Houshfar, E. 3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Li, S.; Ma, F.; Bachman, H.; Cameron, C.E.; Zeng, X.; Huang, T.J. Acoustofluidic bacteria separation. J. Micromechanics Microengineering 2016, 27, 015031. [Google Scholar] [CrossRef]
- Destgeer, G.; Ha, B.H.; Jung, J.H.; Sung, H.J. Submicron separation of microspheres via travelling surface acoustic waves. Lab A Chip 2014, 14, 4665–4672. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Wu, Y.; Dong, J. The automatic and high-throughput purification and enrichment of microalgae cells using deterministic lateral displacement arrays with different post shapes. J. Chem. Technol. Biotechnol. 2021, 96, 2228–2237. [Google Scholar] [CrossRef]
- Ji, M.; Liu, Y.; Duan, J.; Zang, W.; Wang, Y.; Qu, Z.; Zhang, B. A novel perturbed spiral sheathless chip for particle separation based on traveling surface acoustic waves (TSAW). Biosensors 2022, 12, 325. [Google Scholar] [CrossRef]
- Destgeer, G.; Hashmi, A.; Park, J.; Ahmed, H.; Afzal, M.; Sung, H.J. Microparticle self-assembly induced by travelling surface acoustic waves. RSC Adv. 2019, 9, 7916–7921. [Google Scholar] [CrossRef] [Green Version]
- Greco, G.; Agostini, M.; Tonazzin, I.; Sallemi, D.; Barone, S.; Ceccchini, M. Surface-acoustic-wave (saw)-driven device for dynamic cell cultures. Anal. Chem. 2018, 90, 7450–7457. [Google Scholar] [CrossRef] [PubMed]
Outlet Type | Sample Number | 5 μm Particle Number | 20 μm Particle Number | Total Number of Particles |
---|---|---|---|---|
Upper outlet | Sample 1 | 0 | 0 | 0 |
Sample 2 | 0 | 0 | 0 | |
Sample 3 | 0 | 0 | 0 | |
Lower outlet | Sample 1 | 123 | 42 | 165 |
Sample 2 | 101 | 27 | 128 | |
Sample 3 | 115 | 30 | 145 |
Chip Type | Flow Velocity | Separation Purity | Tilt Angle | IDT Number | Require Sheath Flow | Can Electrodes Be Reused? |
---|---|---|---|---|---|---|
[15] | 4 mL/min | 93.59% | No | No | No | No |
[28] | 25 µL/min | 90% | No | 1 | Yes | No |
[30] | 67.5 µL/min | 92.7% | No | 2 | Yes | No |
[33] | 50 µL/min | 99% | ±30° | 2 | No | No |
[24] | 6 µL/min | 96% | 15° | 2 | Yes | No |
Our work | 20 µL/min | 97% | 5–45° | 1 | No | Yes |
Number of Repeated Bonding | Maximal Lateral Migration Distance (µm) | Error Range (Compared with Figure 5d) |
---|---|---|
20 | 908 | 0.1% |
40 | 911 | 0.4% |
60 | 913 | 0.7% |
80 | 916 | 1% |
100 | 920 | 1.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Ji, M.; Zhang, B. A Perturbed Asymmetrical Y-TypeSheathless Chip for Particle Control Based on Adjustable Tilted-Angle Traveling Surface Acoustic Waves (ataTSAWs). Biosensors 2022, 12, 611. https://doi.org/10.3390/bios12080611
Duan J, Ji M, Zhang B. A Perturbed Asymmetrical Y-TypeSheathless Chip for Particle Control Based on Adjustable Tilted-Angle Traveling Surface Acoustic Waves (ataTSAWs). Biosensors. 2022; 12(8):611. https://doi.org/10.3390/bios12080611
Chicago/Turabian StyleDuan, Junping, Miaomiao Ji, and Binzhen Zhang. 2022. "A Perturbed Asymmetrical Y-TypeSheathless Chip for Particle Control Based on Adjustable Tilted-Angle Traveling Surface Acoustic Waves (ataTSAWs)" Biosensors 12, no. 8: 611. https://doi.org/10.3390/bios12080611
APA StyleDuan, J., Ji, M., & Zhang, B. (2022). A Perturbed Asymmetrical Y-TypeSheathless Chip for Particle Control Based on Adjustable Tilted-Angle Traveling Surface Acoustic Waves (ataTSAWs). Biosensors, 12(8), 611. https://doi.org/10.3390/bios12080611