Metal and pH-Dependent Aptamer Binding of Tetracyclines Enabling Highly Sensitive Fluorescence Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fluorescence Spectroscopy
2.3. Isothermal Titration Calorimetry
2.4. Milk Extraction and Detection
3. Results and Discussion
3.1. The Tetracyclines and the OTC5 Aptamer
3.2. pH- and Mg2+-Dependent Fluorescence of the Tetracyclines
3.3. pH- and Mg2+-Dependent Aptamer Binding
3.4. Aptamer Binding Assay Using ITC
3.5. Effect of other Metal Ions
3.6. Label-Free and Dye-Free Sensing of Tetracyclines
3.7. Detection in Milk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed]
- Grossman, T.H. Tetracycline Antibiotics and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025387. [Google Scholar] [CrossRef] [PubMed]
- Daghrir, R.; Drogui, P. Tetracycline Antibiotics in the Environment: A Review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, Fate, and Risk Assessment of Typical Tetracycline Antibiotics in the Aquatic Environment: A Review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef]
- Smith, K.; Leyden, J.J. Safety of Doxycycline and Minocycline: A Systematic Review. Clin. Ther. 2005, 27, 1329–1342. [Google Scholar] [CrossRef]
- Scaria, J.; Anupama, K.V.; Nidheesh, P.V. Tetracyclines in the Environment: An Overview on the Occurrence, Fate, Toxicity, Detection, Removal Methods, and Sludge Management. Sci. Total Environ. 2021, 771, 145291. [Google Scholar] [CrossRef]
- Himmelsbach, M.; Buchberger, W. Residue Analysis of Oxytetracycline in Water and Sediment Samples by High-Performance Liquid Chromatography and Immunochemical Techniques. Microchim. Acta 2005, 151, 67–72. [Google Scholar] [CrossRef]
- Tao, X.; Peng, Y.; Liu, J. Nanomaterial-Based Fluorescent Biosensors for Veterinary Drug Detection in Foods. J. Food Drug Anal. 2020, 28, 575–594. [Google Scholar] [CrossRef]
- Gao, W.; Li, P.; Qin, S.; Huang, Z.; Cao, Y.; Liu, X. A Highly Sensitive Tetracycline Sensor Based on a Combination of Magnetic Molecularly Imprinted Polymer Nanoparticles and Surface Plasmon Resonance Detection. Microchim. Acta 2019, 186, 637. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Wang, C.-C.; Zhang, X.-W.; Ren, X.-Y.; Yu, B.; Wang, P.; Zhao, Z.-X.; Fu, H. A New Eu-Mof for Ratiometrically Fluorescent Detection toward Quinolone Antibiotics and Selective Detection toward Tetracycline Antibiotics. Chin. Chem. Lett. 2022, 33, 1353–1357. [Google Scholar] [CrossRef]
- Mehlhorn, A.; Rahimi, P.; Joseph, Y. Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors 2018, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Alawad, A.; Istamboulié, G.; Calas-Blanchard, C.; Noguer, T. A Reagentless Aptasensor Based on Intrinsic Aptamer Redox Activity for the Detection of Tetracycline in Water. Sens. Actuators B: Chem. 2019, 288, 141–146. [Google Scholar] [CrossRef]
- Yu, H.; Alkhamis, O.; Canoura, J.; Liu, Y.; Xiao, Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew. Chem. Int. Ed. Engl. 2021, 60, 16800–16823. [Google Scholar] [CrossRef]
- Alkhamis, O.; Canoura, J.; Yu, H.; Liu, Y.; Xiao, Y. Innovative Engineering and Sensing Strategies for Aptamer-Based Small-Molecule Detection. TrAC Trends Anal. Chem. 2019, 121, 115699. [Google Scholar] [CrossRef]
- Ruscito, A.; DeRosa, M.C. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications. Front. Chem. 2016, 4, 14. [Google Scholar] [CrossRef]
- Wang, S.; Yan, X.; Yang, Y.; Qi, X.; Zhao, Y.; Li, L.; Ma, R.; Wang, L.; Dong, Y.; Sun, J.; et al. Advances and Perspectives of Aptasensors for the Detection of Tetracyclines: A Class of Model Compounds of Food Analysis. Food Chem. 2021, 364, 130361. [Google Scholar] [CrossRef]
- Nakatsuka, N.; Yang, K.-A.; Abendroth, J.M.; Cheung, K.M.; Xu, X.; Yang, H.; Zhao, C.; Zhu, B.; Rim, Y.S.; Yang, Y.; et al. Aptamer–Field-Effect Transistors Overcome Debye Length Limitations for Small-Molecule Sensing. Science 2018, 362, 319–324. [Google Scholar] [CrossRef]
- Yang, K.-A.; Chun, H.; Zhang, Y.; Pecic, S.; Nakatsuka, N.; Andrews, A.M.; Worgall, T.S.; Stojanovic, M.N. High-Affinity Nucleic-Acid-Based Receptors for Steroids. ACS Chem. Biol. 2017, 12, 3103–3112. [Google Scholar] [CrossRef]
- Yu, H.; Luo, Y.; Alkhamis, O.; Canoura, J.; Yu, B.; Xiao, Y. Isolation of Natural DNA Aptamers for Challenging Small-Molecule Targets, Cannabinoids. Anal. Chem. 2021, 93, 3172–3180. [Google Scholar] [CrossRef]
- Huang, P.-J.J.; Liu, J. Selection of Aptamers for Sensing Caffeine and Discrimination of Its Three Single Demethylated Analog. Anal. Chem. 2022, 94, 3142–3149. [Google Scholar] [CrossRef]
- Luo, Y.; Jin, Z.; Wang, J.; Ding, P.; Pei, R. The Isolation of a DNA Aptamer to Develop a Fluorescent Aptasensor for the Thiamethoxam Pesticide. Analyst 2021, 146, 1986–1995. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Duan, N.; Wu, S.; Wang, Z. Selection and Application of Ssdna Aptamers against Spermine Based on Capture-Selex. Anal. Chim. Acta 2019, 1081, 168–175. [Google Scholar] [CrossRef]
- Zhao, Y.; Ong, S.; Chen, Y.; Jimmy Huang, P.-J.; Liu, J. Label-Free and Dye-Free Fluorescent Sensing of Tetracyclines Using a Capture-Selected DNA Aptamer. Anal. Chem. 2022, 94, 10175–10182. [Google Scholar] [CrossRef] [PubMed]
- Carlotti, B.; Fuoco, D.; Elisei, F. Fast and Ultrafast Spectroscopic Investigation of Tetracycline Derivatives in Organic and Aqueous Media. PCCP 2010, 12, 15580–15591. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Weigand, J.E.; Weichenrieder, O.; Suess, B. Thermodynamic Characterization of an Engineered Tetracycline-Binding Riboswitch. Nucleic Acids Res. 2006, 34, 2607–2617. [Google Scholar] [CrossRef] [PubMed]
- Niazi, J.H.; Lee, S.J.; Kim, Y.S.; Gu, M.B. Ssdna Aptamers That Selectively Bind Oxytetracycline. Bioorg. Med. Chem. 2008, 16, 1254–1261. [Google Scholar] [CrossRef]
- Niazi, J.H.; Lee, S.J.; Gu, M.B. Single-Stranded DNA Aptamers Specific for Antibiotics Tetracyclines. Bioorg. Med. Chem. 2008, 16, 7245–7253. [Google Scholar] [CrossRef]
- Berens, C.; Thain, A.; Schroeder, R. A Tetracycline-Binding RNA Aptamer. Bioorg. Med. Chem. 2001, 9, 2549–2556. [Google Scholar] [CrossRef]
- Tickner, Z.J.; Zhong, G.; Sheptack, K.R.; Farzan, M. Selection of High-Affinity RNA Aptamers That Distinguish between Doxycycline and Tetracycline. Biochemistry 2020, 59, 3473–3486. [Google Scholar] [CrossRef]
- Jezowska-Bojczuk, M.; Lambs, L.; Kozlowski, H.; Berthon, G. Metal Ion-Tetracycline Interactions in Biological Fluids. 10. Structural Investigations on Copper(Ii) Complexes of Tetracycline, Oxytetracycline, Chlortetracycline, 4-(Dedimethylamino)Tetracycline, and 6-Desoxy-6-Demethyltetracycline and Discussion of Their Binding Modes. Inorg. Chem. 1993, 32, 428–437. [Google Scholar]
- Lambs, L.; Decock-Le Reverend, B.; Kozlowski, H.; Berthon, G. Metal Ion-Tetracycline Interactions in Biological Fluids. 9. Circular Dichroism Spectra of Calcium and Magnesium Complexes with Tetracycline, Oxytetracycline, Doxycycline, and Chlortetracycline and Discussion of Their Binding Modes. Inorg. Chem. 1988, 27, 3001–3012. [Google Scholar] [CrossRef]
- Lambs, L.; Brion, M.; Berthon, G. Metal Ion-Tetracycline Interactions in Biological Fluids. Part 3. Formation of Mixed-Metal Ternary Complexes of Tetracycline, Oxytetracycline, Doxycycline and Minocycline with Calcium and Magnesium, and Their Involvement in the Bioavailability of These Antibiotics in Blood Plasma. Agents Actions 1984, 14, 743–750. [Google Scholar] [PubMed]
- Schneider, S.; Schmitt, M.O.; Brehm, G.; Reiher, M.; Matousek, P.; Towrie, M. Fluorescence Kinetics of Aqueous Solutions of Tetracycline and Its Complexes with Mg2+ and Ca2+. Photochem. Photobiol. Sci. 2003, 2, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Lorsch, J.R.; Szostak, J.W. In Vitro Selection of RNA Aptamers Specific for Cyanocobalamin. Biochemistry 1994, 33, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J. Selection of DNA Aptamers for Sensing Uric Acid in Simulated Tears. Anal. Sens. 2022, 2, e202200010. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Liu, X.; Zhao, G.; Sun, Y. Dissipation Kinetics of Oxytetracycline, Tetracycline, and Chlortetracycline Residues in Soil. Environ. Sci. Pollut. Res. 2016, 23, 13822–13831. [Google Scholar] [CrossRef]
- Xuan, R.; Arisi, L.; Wang, Q.; Yates, S.R.; Biswas, K.C. Hydrolysis and Photolysis of Oxytetracycline in Aqueous Solution. J. Environ. Sci. Health B 2009, 45, 73–81. [Google Scholar] [CrossRef]
- Guerra, W.; Silva-Caldeira, P.P.; Terenzi, H.; Pereira-Maia, E.C. Impact of Metal Coordination on the Antibiotic and Non-Antibiotic Activities of Tetracycline-Based Drugs. Coord. Chem. Rev. 2016, 327–328, 188–199. [Google Scholar] [CrossRef]
- Li, Y.; Gao, H.; Qi, Z.; Huang, Z.; Ma, L.; Liu, J. Freezing-Assisted Conjugation of Unmodified Diblock DNA to Hydrogel Nanoparticles and Monoliths for DNA and Hg2+ Sensing. Angew. Chem. Int. Ed. 2021, 60, 12985–12991. [Google Scholar] [CrossRef]
- Ayodele, O.O.; Adesina, A.O.; Pourianejad, S.; Averitt, J.; Ignatova, T. Recent Advances in Nanomaterial-Based Aptasensors in Medical Diagnosis and Therapy. Nanomaterials 2021, 11, 932. [Google Scholar] [CrossRef]
Aptamer | Target | pH | N | KD (μM) | ΔH (cal/mol) (×104) | ΔS (cal/mol/K) |
---|---|---|---|---|---|---|
OTC5 | OTC | 6.0 | 0.92 | 0.2 | −2.89 | −66.3 |
OTC5 | OTC | 8.3 | 1.27 | 0.03 | −1.99 | −32.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Gao, B.; Sun, P.; Liu, J.; Liu, J. Metal and pH-Dependent Aptamer Binding of Tetracyclines Enabling Highly Sensitive Fluorescence Sensing. Biosensors 2022, 12, 717. https://doi.org/10.3390/bios12090717
Zhao Y, Gao B, Sun P, Liu J, Liu J. Metal and pH-Dependent Aptamer Binding of Tetracyclines Enabling Highly Sensitive Fluorescence Sensing. Biosensors. 2022; 12(9):717. https://doi.org/10.3390/bios12090717
Chicago/Turabian StyleZhao, Yichen, Biwen Gao, Peihuan Sun, Jiawen Liu, and Juewen Liu. 2022. "Metal and pH-Dependent Aptamer Binding of Tetracyclines Enabling Highly Sensitive Fluorescence Sensing" Biosensors 12, no. 9: 717. https://doi.org/10.3390/bios12090717
APA StyleZhao, Y., Gao, B., Sun, P., Liu, J., & Liu, J. (2022). Metal and pH-Dependent Aptamer Binding of Tetracyclines Enabling Highly Sensitive Fluorescence Sensing. Biosensors, 12(9), 717. https://doi.org/10.3390/bios12090717