Electrochemical Determination of 4-Bromophenoxyacetic Acid Based on CeO2/eGr Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of CeO2, eGr, and eGr/CeO2 Composites
2.3. Characterization
2.4. Sample Pretreatment
3. Results and Discussion
3.1. Morphology and Phase Structure Characterization
3.2. The Electrochemical Characteristic of the Prepared Electrode
3.3. The Electrochemical Performance of the Prepared Electrode for 4-BPA Detection
3.4. The Repeatability and the Anti-Interference Ability of the CeO2/eGr/GCE
3.5. The Practical Application of the CeO2/eGr/GCE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bons, H.K.; Kaur, M. Role of plant growth regulators in improving fruit set, quality and yield of fruit crops: A review. J. Hortic. Sci. Biotechnol. 2019, 95, 137–146. [Google Scholar] [CrossRef]
- Kahlina, K.V.; Jurić, S.; Marijan, M.; Mutaliyeva, B.; Khalus, S.V.; Prosyanik, A.V.; Vinceković, M. Synthesis, Characterization, and Encapsulation of Novel Plant Growth Regulators (PGRs) in Biopolymer Matrices. Int. J. Mol. Sci. 2021, 22, 1847. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.Z.; Zhang, H.N.; Li, W.C.; Xie, J.H.; Wang, Y.C.; Liu, L.Q.; Shi, S.Y. Phenological growth stages of lychee (Litchi chinensis Sonn.) using the extended BBCH-scale. Sci. Hortic. 2013, 161, 273–277. [Google Scholar] [CrossRef]
- Fan, Y.X.; Yang, W.; Yan, Q.Q.; Chen, C.R.; Li, J.H. Genome-Wide Identification and Expression Analysis of the Protease Inhibitor Gene Families in Tomato. Genes 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Brondi, S.H.G.; Lanças, F.M. Development and validation of a multi-residue analytical methodology to determine the presence of selected pesticides in water through liquid chromatography. J. Braz. Chem. Soc. 2005, 16, 650–654. [Google Scholar] [CrossRef]
- Rostami, S.; Azhdarpoor, A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere 2019, 220, 818–827. [Google Scholar] [CrossRef]
- Sutcharitchan, C.; Miao, S.; Li, W.T.; Liu, J.M.; Zhou, H.; Ma, Y.X.; Ji, S.; Cui, Y.J. High performance liquid chromatography-tandem mass spectrometry method for residue determination of 39 plant growth regulators in root and rhizome Chinese herbs. Food Chem. 2020, 322, 126766. [Google Scholar] [CrossRef]
- Chen, H.; Feng, X.; Guo, H.S.; Zhang, H.W. Simultaneous determination of phytohormones containing carboxyl in crude extracts of fruit samples based on chemical derivatization by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. B 2011, 879, 1802–1808. [Google Scholar] [CrossRef]
- Jiang, C.L.; Dai, J.X.; Han, H.L.; Wang, C.; Li, Z.; Lu, C.Y.; Chen, H.P. Determination of thirteen acidic phytohormones and their analogues in tea (Camellia sinensis) leaves using ultra high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2020, 1149, 122144. [Google Scholar] [CrossRef]
- Qin, G.F.; Zou, K.T.; Tian, L.; Li, Y.B. Determination of Five Plant Growth Regulator Containing Carboxyl in Bean Sprouts Based on Chemical Derivatization by GC-MS. Food Anal. Methods 2018, 11, 2628–2635. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Caratelli, V.; Amendola, L.; Palleschi, G.; Moscone, D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019, 126, 346–354. [Google Scholar] [CrossRef]
- Fusco, G.; Gallo, F.; Tortolini, C.; Bollella, P.; Ietto, F.; Mico, A.D.; D’Annibale, A.; Antiochia, R.; Favero, G.; Mazzei, F. AuNPs-functionalized PANABA-MWCNTs nanocomposite-based impedimetric immunosensor for 2,4-dichlorophenoxy acetic acid detection. Biosens. Bioelectron. 2017, 93, 52–56. [Google Scholar] [CrossRef]
- Liu, F.P.; Qin, X.W.; Huang, Z.F.; Zhang, G.; Xiang, C.Z.; Zhang, C.Y.; Liang, H.L.; Peng, J.Y. Green synthesis of porous graphene and its application for sensitive detection of hydrogen peroxide and 2,4-dichlorophenoxyacetic acid. Electrochim. Acta. 2019, 295, 615–623. [Google Scholar] [CrossRef]
- Skrzypczyńska, K.; Kuśmierek, K.; Świątkowski, A. Carbon paste electrodes modified with various carbonaceous materials for the determination of 2,4-dichlorophenoxyacetic acid by differential pulse voltammetry. J. Electroanal. Chem. 2016, 766, 8–15. [Google Scholar] [CrossRef]
- Wang, H.M.; Xu, Q.; Wang, J.; Du, W.; Liu, F.P.; Hu, X.Y. Dendrimer-like amino-functionalized hierarchical porous silica nanoparticle: A host material for 2,4-dichlorophenoxyacetic acid imprinting and sensing. Biosens. Bioelectron. 2018, 100, 105–114. [Google Scholar] [CrossRef]
- Arvand, M.; Gaskarmahalleh, A.A.; Hemmati, S. Enhanced-Oxidation and Highly Sensitive Detection of Tartrazine in Foodstuffs via New Platform Based on Poly(5-Sulfosalicylic Acid)/Cu(OH)2 Nanoparticles. Food Anal. Methods 2017, 10, 2241–2251. [Google Scholar] [CrossRef]
- Su, D.D.; Zhang, Y.Y.; Wang, Z.J.; Wan, Q.J.; Yang, N.J. Decoration of graphene nano platelets with gold nanoparticles for voltammetry of 4-nonylphenol. Carbon 2017, 117, 313–321. [Google Scholar] [CrossRef]
- Arumugasamy, S.K.; Govindaraju, S.; Yun, K. Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl. Surf. Sci. 2020, 508, 145294. [Google Scholar] [CrossRef]
- Kim, C.K.; Kim, T.; Choi, I.Y.; Soh, M.; Kim, D.H.; Kim, Y.J.; Jang, H.D.; Yang, H.S.; Kim, J.Y.; Park, H.K.; et al. Rücktitelbild: Ceria Nanoparticles that can Protect against Ischemic Stroke. Chem. Int. Ed. Eng. 2012, 51, 11039–11043. [Google Scholar] [CrossRef]
- Wang, Z.L.; Li, G.R.; Ou, Y.N.; Feng, Z.P.; Qu, D.L.; Tong, Y.X. Electrochemical deposition of Eu3+-doped CeO2 nanobelts with enhanced optical properties. J. Phys. Chem. C. 2011, 115, 351–356. [Google Scholar] [CrossRef]
- Ansari, A.A.; Alam, M. Nickle-ion-substituted ceria nanoparticles-based electrochemical sensor for sensitive detection of thiourea. J. Mater. Sci. 2021, 32, 23266–23274. [Google Scholar] [CrossRef]
- Chen, C.H.; Yang, S.W.; Chuang, M.C.; Woon, W.Y.; Su, C.Y. Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Nanoscale 2015, 7, 15362–15373. [Google Scholar] [CrossRef]
- Ambrosi, A.; Chua, C.K.; Latiff, N.M.; Loo, A.H.; Wong, C.H.A.; Eng, A.Y.S.; Bonanni, A.; Pumera, M. Graphene and its electrochemistry–an update. Chem. Soc. Rev. 2010, 39, 4146–4157. [Google Scholar] [CrossRef]
- Pumera, M. Electrochemistry of graphene, graphene oxide and other graphenoids: Review. Electrochem. Commun. 2013, 36, 14–18. [Google Scholar] [CrossRef]
- Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of Graphene and Related Materials. Chem. Rev. 2014, 114, 7150–7188. [Google Scholar] [CrossRef]
- Brownson, D.A.C.; Banks, C.E. The Handbook of Graphene Electrochemistry, 1st ed; Springer: London, UK, 2014; pp. 6–20. [Google Scholar] [CrossRef]
- Jayaprakash, G.K. Pre-post redox electron transfer regioselectivity at the alanine modified nano graphene electrode interface. Chem. Phys. Lett. 2022, 789, 139295. [Google Scholar] [CrossRef]
- Sun, J.J.; Xie, X.H.; Xie, K.; Xu, S.C.; Jiang, S.Z.; Ren, J.F.; Zhao, Y.F.; Xu, H.Q.; Wang, J.J.; Yue, W.W. Magnetic Graphene Field-Effect Transistor Biosensor for Single-Strand DNA Detection. Nanoscale Res. Lett. 2019, 14, 248. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, Z.P.; Wan, Q.J.; Wang, Z.H.; Wu, K.B.; Yang, N.J. High-Performance Hydrazine Sensor Based on Graphene Nano Platelets Supported Metal Nanoparticles. Electroanalysis 2016, 28, 126–132. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.Y.; Zeng, T.; Chen, X.Y.; Wang, W.Q.; Wan, Q.J.; Yang, N.J. Graphene nanoplatelet supported CeO2 nanocomposites towards electrocatalytic oxidation of multiple phenolic pollutan. Anal. Chim. Acta 2019, 1088, 45–53. [Google Scholar] [CrossRef]
- Zhang, Y.; Ai, J.X.; Hu, H.L.; Wang, X.; Zhou, H.X.; Du, K.Z.; Du, H.J.; Yang, Y. Highly Sensitive Detection of Kinetin with Electrochemical Exfoliation of Graphene Nanosheets. Appl. Phys. A 2022, 128, 350. [Google Scholar] [CrossRef]
- Kumar, A.A.; Swamy, B.E.K.; Rani, T.S.; Ganesh, P.S.; Raj, Y.P. Voltammetric determination of catechol and hydroquinone at poly(murexide) modified glassy carbon electrode. Mater. Sci. Eng. C. 2019, 98, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.Y.; Wang, J.; Yu, S.Z.; Zhou, K.B. Support Morphology-Dependent Catalytic Activity of Pd/CeO2 for Formaldehyde Oxidation. Sci. Technol. 2015, 49, 8675–8682. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, Y.Y.; Li, H.; Wan, Q.J.; Li, Y.W.; Yang, N.J. Electrochemical properties and sensing applications of nanocarbons: A comparative study. Carbon 2018, 129, 301–309. [Google Scholar] [CrossRef]
- Mullins, D.R.; Overbury, S.H.; Huntley, D.R. Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf. Sci. 1998, 409, 307–319. [Google Scholar] [CrossRef]
- Lyu, L.; Xie, Q.; Yang, Y.Y.; Wang, R.R.; Cen, W.F.; Luo, S.Y.; Yang, W.S.; Gao, Y.; Xiao, Q.Q.; Zou, P.; et al. A Novel CeO2 Hollow-Shell Sensor Constructed for High Sensitivity of Acetone Gas Detection. Appl. Surf. Sci. 2022, 571, 151337. [Google Scholar] [CrossRef]
- Meng, F.M.; Wang, L.N.; Cui, J.B. Controllable synthesis and optical properties of nano-CeO2 via a facile hydrothermal route. J. Alloys Compd. 2013, 556, 102–108. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.M.; Fu, T.W.; Zhu, J.; Fan, J.P.; Zhang, Z.; Zhang, J.Q. Influence of ethanol content in the precursor solution on anodic electrodeposited CeO2 thin films. Thin Solid Film. 2014, 556, 128–136. [Google Scholar] [CrossRef]
- Parvez, K.; Wu, Z.S.; Li, R.; Liu, X.; Graf, R.; Feng, X.; Müllen, K. Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. J. Am. Chem. Soc. 2014, 136, 6083–6091. [Google Scholar] [CrossRef]
- Nicholson, R.S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Sha, T.; Liu, J.; Sun, M.; Li, L.; Bai, J.; Hu, Z.; Zhou, M. Green and low-cost synthesis of nitrogen-doped graphene-like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples. Talanta 2019, 200, 300–306. [Google Scholar] [CrossRef]
- Krzyczmonik, P.; Socha, E.; Skrzypek, S.; Soliwoda, K.; Celichowski, G.; Grobelny, J. Honeycomb-structured porous poly(3,4-ethylenedioxythiophene) composite layers on a gold electrode. Thin Solid Films 2014, 565, 54–61. [Google Scholar] [CrossRef]
- Zamiri, R.; Salehizadeh, S.A.; Ahangar, H.A.; Shabani, M.; Rebelo, A.; Ferreira, J.M.F. Dielectric and optical properties of Ni-and Fe-doped CeO2 Nanoparticles. Appl. Phys. A 2019, 125, 1–7. [Google Scholar] [CrossRef]
- Chen, Y.N.; Chen, Q.; Zhao, H.; Dang, J.Q.; Jin, R.; Zhao, W.; Li, Y.H. Wheat Straws and Corn Straws as Adsorbents for the Removal of Cr(VI) and Cr(III) from Aqueous Solution: Kinetics, Isotherm, and Mechanism. ACS Omega 2020, 5, 6003–6009. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, X.; Tong, L.; Tong, Q.X. Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells. ACS Sustain. Chem. Eng. 2020, 8, 1644–1650. [Google Scholar] [CrossRef]
- Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Xu, D.D.; Song, X.Z.; Qi, W.Z.; Wang, H.; Bian, Z.Y. Degradation mechanism, kinetics, and toxicity investigation of 4-bromophenol by electrochemical reduction and oxidation with Pd-Fe/graphene catalytic cathodes. Chem. Eng. J. 2018, 333, 477–485. [Google Scholar] [CrossRef]
Sample | Added Value (μM) | Determined Value (μM) | Recovery (%) |
---|---|---|---|
1 | 0 | Not detected (a, b) | - |
2 | 0.5 | 0.45 ± 0.01 | 90% |
3 | 1 | 1.08 ± 0.04 | 108% |
4 | 3 | 2.78 ± 0.03 | 93% |
5 | 5 | 4.86 ± 0.04 | 97% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Zhang, Y.; Wang, X.; Hu, H.; Ai, J.; Zhou, H.; Yan, X.; Yang, Y.; Lu, Z. Electrochemical Determination of 4-Bromophenoxyacetic Acid Based on CeO2/eGr Composite. Biosensors 2022, 12, 760. https://doi.org/10.3390/bios12090760
Du H, Zhang Y, Wang X, Hu H, Ai J, Zhou H, Yan X, Yang Y, Lu Z. Electrochemical Determination of 4-Bromophenoxyacetic Acid Based on CeO2/eGr Composite. Biosensors. 2022; 12(9):760. https://doi.org/10.3390/bios12090760
Chicago/Turabian StyleDu, Haijun, Yan Zhang, Xin Wang, Huali Hu, Jixing Ai, Huanxi Zhou, Xia Yan, Yang Yang, and Zhiwei Lu. 2022. "Electrochemical Determination of 4-Bromophenoxyacetic Acid Based on CeO2/eGr Composite" Biosensors 12, no. 9: 760. https://doi.org/10.3390/bios12090760
APA StyleDu, H., Zhang, Y., Wang, X., Hu, H., Ai, J., Zhou, H., Yan, X., Yang, Y., & Lu, Z. (2022). Electrochemical Determination of 4-Bromophenoxyacetic Acid Based on CeO2/eGr Composite. Biosensors, 12(9), 760. https://doi.org/10.3390/bios12090760