Recent Progresses in Development of Biosensors for Thrombin Detection
Abstract
:1. Introduction
2. Electrochemical Biosensors
2.1. Voltammetric Electrochemical Biosensors
2.2. Impedimetric Electrochemical Biosensors
2.3. Amperometric Electrochemical Biosensors
3. Optical Biosensors
3.1. Combined Colorimetric Optical Biosensors with Other Detectors
3.2. Photoluminescence (PL) Optical Biosensors
3.2.1. Fluorescence Biosensors
3.2.2. Phosphorescence Biosensors
3.3. Chemiluminescence Optical Biosensors
3.4. Electrochemiluminescence (ECL) Optical Biosensors
3.5. Photoelectrochemical (PEC) Optical Biosensors
3.6. Surface Plasmon Resonance (SPR) Optical Biosensors
3.7. Waveguide Optical Biosensors
3.8. Other Optical Biosensors
4. Other Biosensors
5. Future Trends and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.; Qian, B.; Uto, K.; Chen, J.; Liu, X.; Minari, T. Functional Biomaterials towards Flexible Electronics and Sensors. Biosens. Bioelectron. 2018, 119, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Ziółkowski, R.; Jarczewska, M.; Górski, Ł.; Malinowska, E. From Small Molecules toward Whole Cells Detection: Application of Electrochemical Aptasensors in Modern Medical Diagnostics. Sensors 2021, 21, 724. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-Based Biosensors for Detection of Pathogenic Virus. TrAC Trends Anal. Chem. 2017, 97, 445–457. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; de la Guardia, M.; Mokhtarzadeh, A. Recent Advances in Nanomaterial-Mediated Bio and Immune Sensors for Detection of Aflatoxin in Food Products. TrAC Trends Anal. Chem. 2017, 87, 112–128. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Baradaran, B.; Maleki, A.; Hejazi, M.; Mokhtarzadeh, A.; de la Guardia, M. Recent Advances on Nanomaterial Based Electrochemical and Optical Aptasensors for Detection of Cancer Biomarkers. TrAC Trends Anal. Chem. 2018, 100, 103–115. [Google Scholar] [CrossRef]
- Baptista, A.C.; Ferreira, I.M.M.; Borges, J.P.M.R. Cellulose-Based Bioelectronic Devices; InTech: London, UK, 2013; ISBN 9535111914. [Google Scholar]
- Kamel, S.; Khattab, T.A. Recent Advances in Cellulose-Based Biosensors for Medical Diagnosis. Biosensors 2020, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.C.; Kouzani, A.Z.; Duan, W. Aptasensors: A Review. J. Biomed. Nanotechnol. 2010, 6, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Ravalli, A.; Voccia, D.; Palchetti, I.; Marrazza, G. Electrochemical, Electrochemiluminescence, and Photoelectrochemical Aptamer-Based Nanostructured Sensors for Biomarker Analysis. Biosensors 2016, 6, 39. [Google Scholar] [CrossRef]
- Moreno, M. Sensors|Aptasensors. In Encyclopedia of Analytical Science, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 150–153. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, W.; Chen, S.; Zhuang, Z.; Zhang, Y.; Jiang, L.; Lin, J.S. SELEX Tool: A Novel and Convenient Gel-Based Diffusion Method for Monitoring of Aptamer-Target Binding. J. Biol. Eng. 2020, 14, 1. [Google Scholar] [CrossRef]
- Xu, H.; Cui, H.; Yin, Z.; Wei, G.; Liao, F.; Shu, Q.; Ma, G.; Cheng, L.; Hong, N.; Xiong, J.; et al. Highly Sensitive Host-Guest Mode Homogenous Electrochemical Thrombin Signal Amplification Aptasensor Based on Tetraferrocene Label. Bioelectrochemistry 2020, 134, 107522. [Google Scholar] [CrossRef]
- Alfinito, E.; Reggiani, L.; Cataldo, R.; De Nunzio, G.; Giotta, L.; Guascito, M.R. Modeling the Microscopic Electrical Properties of Thrombin Binding Aptamer (TBA) for Label-Free Biosensors. Nanotechnology 2017, 28, 065502. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.K.H.; Sen, D.; Yu, H.Z. Design and Testing of Aptamer-Based Electrochemical Biosensors for Proteins and Small Molecules. Bioelectrochemistry 2009, 77, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.X.; Huang, K.J.; He, L.L.; Wang, Y.H. Tetrahedral DNA Probe Coupling with Hybridization Chain Reaction for Competitive Thrombin Aptasensor. Biosens. Bioelectron. 2018, 100, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ren, W.; Luo, H.Q.; Li, N.B. Label-Free Cascade Amplification Strategy for Sensitive Visual Detection of Thrombin Based on Target-Triggered Hybridization Chain Reaction-Mediated in Situ Generation of DNAzymes and Pt Nanochains. Biosens. Bioelectron. 2016, 80, 463–470. [Google Scholar] [CrossRef]
- Remaggi, G.; Zaccarelli, A.; Elviri, L. 3D Printing Technologies in Biosensors Production: Recent Developments. Chemosensors 2022, 10, 65. [Google Scholar] [CrossRef]
- Ravanbakhsh, H.; Bao, G.; Luo, Z.; Mongeau, L.G.; Zhang, Y.S. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. ACS Biomater. Sci. Eng. 2021, 7, 4009–4026. [Google Scholar] [CrossRef]
- Wang, M.; Li, W.; Mille, L.S.; Ching, T.; Luo, Z.; Tang, G.; Garciamendez, C.E.; Lesha, A.; Hashimoto, M.; Zhang, Y.S. Digital Light Processing Based Bioprinting with Composable Gradients. Adv. Mater. 2022, 34, 2107038. [Google Scholar] [CrossRef]
- Luo, Z.; Tang, G.; Ravanbakhsh, H.; Li, W.; Wang, M.; Kuang, X.; Garciamendez-Mijares, C.E.; Lian, L.; Yi, S.; Liao, J.; et al. Vertical Extrusion Cryo(Bio)Printing for Anisotropic Tissue Manufacturing. Adv. Mater. 2022, 34, 2108931. [Google Scholar] [CrossRef]
- Cui, H.; Wu, W.; Xu, H.; Cao, H.; Hong, N.; Cheng, L.; Liao, F.; Jiang, Y.; Ma, G.; Fan, H. A Homogeneous Strategy of Target-Triggered Catalytic Hairpin Assembly for Thrombin Signal Amplification. Microchem. J. 2020, 159, 105537. [Google Scholar] [CrossRef]
- Kotlarek, D.; Vorobii, M.; Ogieglo, W.; Knoll, W.; Rodriguez-Emmenegger, C.; Dostálek, J. Compact Grating-Coupled Biosensor for the Analysis of Thrombin. ACS Sens. 2019, 4, 2109–2116. [Google Scholar] [CrossRef]
- Narayanan, S. Multifunctional Roles of Thrombin. Ann. Clin. Lab. Sci. 1999, 29, 275–280. [Google Scholar] [PubMed]
- Martínez-Pérez, P.; Gómez-Gómez, M.; Angelova, T.; Griol, A.; Hurtado, J.; Bellieres, L.; García-rupérez, J. Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor. Micromachines 2020, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.K.; Kim, K.N.; Baik, J.M.; Kim, B. Self-powered triboelectric aptasensor for label-free highly specific thrombin detection. Nano Energy 2016, 30, 77–83. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, W.; Xu, L.; Zhou, X. A Label-Free Electrochemical Aptasensor Based on Magnetic Biocomposites with Pb2+-Dependent DNAzyme for the Detection of Thrombin. Anal. Chim. Acta 2019, 1047, 21–27. [Google Scholar] [CrossRef]
- Kesieme, E.; Kesieme, C.; Jebbin, N.; Irekpita, E.; Dongo, A. Deep Vein Thrombosis: A Clinical Review. J. Blood Med. 2011, 2, 59–69. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Wang, H.Y.; Wang, D.; Zhou, K.; Pei, F.X.; Zhou, Z.K. Oral vs Intravenous vs Topical Tranexamic Acid in Primary Hip Arthroplasty: A Prospective, Randomized, Double-Blind, Controlled Study. J. Arthroplast. 2018, 33, 786–793. [Google Scholar] [CrossRef]
- Wang, X.; Gao, F.; Gong, Y.; Liu, G.; Zhang, Y.; Ding, C. Electrochemical Aptasensor Based on Conductive Supramolecular Polymer Hydrogels for Thrombin Detection with High Selectivity. Talanta 2019, 205, 120140. [Google Scholar] [CrossRef]
- Chen, C.; Wei, G.; Yao, X.; Liao, F.; Peng, H.; Zhang, J.; Hong, N.; Cheng, L. Ru(bpy)32+/β-cyclodextrin-Au nanoparticles/nanographene Functionalized Nanocomposites-Based Thrombin Electrochemiluminescence Aptasensor. J. Solid State Electrochem. 2018, 22, 2059–2066. [Google Scholar] [CrossRef]
- Nierodzik, M.L.; Karpatkin, S. Thrombin Induces Tumor Growth, Metastasis, and Angiogenesis: Evidence for a Thrombin-Regulated Dormant Tumor Phenotype. Cancer Cell 2006, 10, 355–362. [Google Scholar] [CrossRef] [Green Version]
- McCloskey, O.; Maxwell, A.P. Diagnosis and Management of Nephrotic Syndrome. Practitioner 2017, 261, 11–15. [Google Scholar]
- Lippi, G.; Veraldi, G.F.; Fraccaroli, M.; Manzato, F.; Cordiano, C.; Guidi, G. Variation of Plasma D-Dimer Following Surgery: Implications for Prediction of Postoperative Venous Thromboembolism. Clin. Exp. Med. 2001, 1, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, N.; Zhang, L.; Meng, H.; Li, Z. Aptamer-Based Sensors for Thrombin Detection Application. Chemosensors 2022, 10, 255. [Google Scholar] [CrossRef]
- Kim, H.; An, Z.; Jang, C.H. Label-Free Optical Detection of Thrombin Using a Liquid Crystal-Based Aptasensor. Microchem. J. 2018, 141, 71–79. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Arora, K. Chapter 8—Electrochemical Biosensors for Early Detection of Cancer. In Biosensor Based Advanced Cancer Diagnostics; Khan, R., Parihar, A., Sanghi, S.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 123–151. ISBN 978-0-12-823424-2. [Google Scholar]
- Yousef, H.; Liu, Y.; Zheng, L. Nanomaterial-Based Label-Free Electrochemical Aptasensors for the Detection of Thrombin. Biosensors 2022, 12, 253. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, Z.; Rouhi, N.; Safarpour, H.; Zebardast, N.; Zare, H. The Recent Progress in DNAzymes-Based Aptasensors for Thrombin Detection. Crit. Rev. Anal. Chem. 2022, 1–22. [Google Scholar] [CrossRef]
- García-Miranda Ferrari, A.; Carrington, P.; Rowley-Neale, S.J.; Banks, C.E. Recent Advances in Portable Heavy Metal Electrochemical Sensing Platforms. Environ. Sci. Water Res. Technol. 2020, 6, 2676–2690. [Google Scholar] [CrossRef]
- Srivastava, K.R.; Awasthi, S.; Mishra, P.K. Biosensors/Molecular Tools for Detection of Waterborne Pathogens; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128187838. [Google Scholar]
- Sun, C.; Han, Q.; Wang, D.; Xu, W.; Wang, W.; Zhao, W.; Zhou, M. A Label-Free and High Sensitive Aptamer Biosensor Based on Hyperbranched Polyester Microspheres for Thrombin Detection. Anal. Chim. Acta 2014, 850, 33–40. [Google Scholar] [CrossRef]
- Topkaya, S.N.; Azimzadeh, M.; Ozsoz, M. Electrochemical Biosensors for Cancer Biomarkers Detection: Recent Advances and Challenges. Electroanalysis 2016, 28, 1402–1419. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable Electrochemical Sensing Methodologies for On-Site Detection of Pesticide Residues in Fruits and Vegetables. Coord. Chem. Rev. 2022, 453, 214305. [Google Scholar] [CrossRef]
- Yan, F.; Wang, F.; Chen, Z. Aptamer-Based Electrochemical Biosensor for Label-Free Voltammetric Detection of Thrombin and Adenosine. Sens. Actuators B Chem. 2011, 160, 1380–1385. [Google Scholar] [CrossRef]
- Lei, S.; Xu, L.; Liu, Z.; Zou, L.; Li, G.; Ye, B. An Enzyme-Free and Label-Free Signal-on Aptasensor Based on DNAzyme-Driven DNA Walker Strategy. Anal. Chim. Acta 2019, 1081, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhao, J.; Ma, Z. Improved Binding Induced Self-Assembled DNA to Achieve Ultrasensitive Electrochemical Proximity Assay. Sens. Actuators B Chem. 2020, 304, 127278. [Google Scholar] [CrossRef]
- Zhang, S.; Rong, F.; Guo, C.; Duan, F.; He, L.; Wang, M.; Zhang, Z.; Kang, M.; Du, M. Metal—Organic Frameworks (MOFs) Based Electrochemical Biosensors for Early Cancer Diagnosis In Vitro. Coord. Chem. Rev. 2021, 439, 213948. [Google Scholar] [CrossRef]
- Yu, H.; Han, J.; An, S.; Xie, G.; Chen, S. Ce(III, IV)-MOF Electrocatalyst as Signal-Amplifying Tag for Sensitive Electrochemical Aptasensing. Biosens. Bioelectron. 2018, 109, 63–69. [Google Scholar] [CrossRef]
- Xie, F.T.; Zhao, X.L.; Chi, K.N.; Yang, T.; Hu, R.; Yang, Y.H. Fe-MOFs as Signal Probes Coupling with DNA Tetrahedral Nanostructures for Construction of Ratiometric Electrochemical Aptasensor. Anal. Chim. Acta 2020, 1135, 123–131. [Google Scholar] [CrossRef]
- Wu, H.; Li, M.; Wang, Z.; Yu, H.; Han, J.; Xie, G.; Chen, S. Highly Stable Ni-MOF Comprising Triphenylamine Moieties as a High-Performance Redox Indicator for Sensitive Aptasensor Construction. Anal. Chim. Acta 2019, 1049, 74–81. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, G.; Chen, W.; Liu, Q.; Zhang, X.X.; Zhang, X.X.; Liu, Q. Electrochemical Sandwich-Type Thrombin Aptasensor Based on Dual Signal Amplification Strategy of Silver Nanowires and Hollow Au–CeO2. Biosens. Bioelectron. 2020, 150, 111846. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, S.; Chen, Z.; Zhao, C.; Wang, L.; Liu, S. Allosteric Kissing Complex-Based Electrochemical Biosensor for Sensitive, Regenerative and Versatile Detection of Proteins. Biosens. Bioelectron. 2018, 105, 42–48. [Google Scholar] [CrossRef]
- Sun, J.; Wang, G.; Cheng, H.; Han, Y.; Li, Q.; Jiang, C. An Antifouling Electrochemical Aptasensor Based on Hyaluronic Acid Functionalized Polydopamine for Thrombin Detection in Human Serum. Bioelectrochemistry 2022, 145, 108073. [Google Scholar] [CrossRef]
- Kong, L.; Wang, D.; Chai, Y.; Yuan, Y.; Yuan, R. Electrocatalytic Efficiency Regulation between Target-Induced HRP-Mimicking DNAzyme and GOx with Low Background for Ultrasensitive Detection of Thrombin. Anal. Chem. 2019, 91, 10289–10294. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, B.; Jamei, H.R.; Ensafi, A.A. Lysozyme Aptasensor Based on a Glassy Carbon Electrode Modified with a Nanocomposite Consisting of Multi-Walled Carbon Nanotubes, Poly(Diallyl Dimethyl Ammonium Chloride) and Carbon Quantum Dots. Microchim. Acta 2018, 185, 180. [Google Scholar] [CrossRef]
- Bai, L.; Chen, Y.; Bai, Y.; Chen, Y.; Zhou, J.; Huang, A. Fullerene-Doped Polyaniline as New Redox Nanoprobe and Catalyst in Electrochemical Aptasensor for Ultrasensitive Detection of Mycobacterium Tuberculosis MPT64 Antigen in Human Serum. Biomaterials 2017, 133, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Eivazzadeh-Keihan, R.; Noruzi, E.B.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Gorab, M.G.; Hashemi, S.M.; Javanshir, S.; Cohan, R.A. Applications of Carbon-Based Conductive Nanomaterials in Biosensors. Chem. Eng. J. 2022, 442, 136183. [Google Scholar] [CrossRef]
- Jamei, H.R.; Rezaei, B.; Ensafi, A.A. Ultra-Sensitive and Selective Electrochemical Biosensor with Aptamer Recognition Surface Based on Polymer Quantum Dots and C60/MWCNTs—Polyethylenimine Nanocomposites for Analysis of Thrombin Protein; Elsevier B.V.: Amsterdam, The Netherlands, 2021; Volume 138, ISBN 8415683111. [Google Scholar]
- Nur Topkaya, S.; Cetin, A.E. Electrochemical Aptasensors for Biological and Chemical Analyte Detection. Electroanalysis 2021, 33, 277–291. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, G.; Zhang, M.; Xu, G.; Lin, J.; Luo, X. Aptamer Based Label Free Thrombin Assay Based on the Use of Silver Nanoparticles Incorporated into Self-Polymerized Dopamine. Microchim. Acta 2018, 185, 2–8. [Google Scholar] [CrossRef]
- Devarakonda, S.; Ganapathysubramanian, B.; Shrotriya, P. Impedance-Based Nanoporous Anodized Alumina/ITO Platforms for Label-Free Biosensors. ACS Appl. Mater. Interfaces 2022, 14, 150–158. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Radinekiyan, F.; Madanchi, H.; Aliabadi, H.A.M.; Maleki, A. Graphene Oxide/Alginate/Silk Fibroin Composite as a Novel Bionanostructure with Improved Blood Compatibility, Less Toxicity and Enhanced Mechanical Properties. Carbohydr. Polym. 2020, 248, 116802. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Zhang, Y.; Deng, D.; He, H.; Luo, L.; Wang, Z. A Label-Free Electrochemical Aptasensor Based on Graphene Oxide/Double-Stranded DNA Nanocomposite. Colloids Surf. B Biointerfaces 2016, 145, 160–166. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, T.; Gu, Y.; Yan, X.; Lu, N.; Liu, H.; Xu, Z.; Xing, Y.; Song, Y.; Zhang, Z.; et al. An Electrochemical Thrombin Aptasensor Based on the Use of Graphite-like C3N4 Modified with Silver Nanoparticles. Microchim. Acta 2020, 187. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; He, D.; Qing, T.; He, X.; Wang, K.; Mao, Y. Triple-Helix Molecular Switch-Induced Hybridization Chain Reaction Amplification for Developing a Universal and Sensitive Electrochemical Aptasensor. RSC Adv. 2016, 6, 90310–90317. [Google Scholar] [CrossRef]
- Niu, Y.; Chu, M.; Xu, P.; Meng, S.; Zhou, Q.; Zhao, W.; Zhao, B.; Shen, J. An Aptasensor Based on Heparin-Mimicking Hyperbranched Polyester with Anti-Biofouling Interface for Sensitive Thrombin Detection. Biosens. Bioelectron. 2018, 101, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, W.; Zhao, F.; Xu, C.; Fan, G.; Liu, Q.; Zhang, X.; Zhang, X. Electrochemical Sandwich-Type Thrombin Aptasensor Based on Silver Nanowires & Particles Decorated Electrode and the Signal Amplifier of Pt Loaded Hollow Zinc Ferrite. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125804. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Yan, T.; Fan, D.; Du, B.; Ma, H.; Wei, Q. Ultrasensitive Electrochemical Aptasensor for the Detection of Thrombin Based on Dual Signal Amplification Strategy of Au@GS and DNA-CoPd NPs Conjugates. Biosens. Bioelectron. 2016, 80, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, P.; Su, K.; Li, X.; Qin, Z.; Xu, W.; Chen, J.; Li, C.; Qiu, J. Electrochemical Aptasensor for Thrombin Using Co-Catalysis of Hemin/G-Quadruplex DNAzyme and Octahedral Cu(2)O-Au Nanocomposites for Signal Amplification. Biosens. Bioelectron. 2018, 99, 338–345. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Ding, C.; Luo, X. Ratiometric Antifouling Electrochemical Biosensors Based on Multifunctional Peptides and MXene Loaded with Au Nanoparticles and Methylene Blue. ACS Appl. Mater. Interfaces 2021, 13, 20388–20396. [Google Scholar] [CrossRef]
- Hu, Q.; Bao, Y.; Gan, S.; Zhang, Y.; Han, D.; Niu, L. Amplified Electrochemical Biosensing of Thrombin Activity by RAFT Polymerization. Anal. Chem. 2020, 92, 3470–3476. [Google Scholar] [CrossRef]
- Hua, X.; Zheng, T.; Zhao, J.; Xu, W. Recycling of Proximity Binding-Based DNA Architecture Driven by Hairpin Strand Displacement for Amplified Electrochemical Aptasensor. J. Electrochem. Soc. 2019, 166, B1689–B1694. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, X.; Deng, R.; Liu, Q.; Xia, J.; Wang, Z. DNA Synergistic Enzyme-Mediated Cascade Reaction for Homogeneous Electrochemical Bioassay. Biosens. Bioelectron. 2019, 142, 111510. [Google Scholar] [CrossRef]
- Zhang, J.; Qiang, Y.; Xu, X. An Ultrasensitive Electrochemical Aptasensor for Thrombin Detection Using MoS 2 Nanoparticles Loaded Iron-Porphyrinic Metal-Organic Framework as Signal Amplifier. J. Electrochem. Soc. 2020, 167, 087503. [Google Scholar] [CrossRef]
- Konari, M.; Heydari-Bafrooei, E.; Dinari, M. Efficient Immobilization of Aptamers on the Layered Double Hydroxide Nanohybrids for the Electrochemical Proteins Detection. Int. J. Biol. Macromol. 2021, 166, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Xu, X.; Cao, G.; Xia, J.; Wang, Z.; Liu, Q. Electrochemical Thrombin Aptasensor Based on Using Magnetic Nanoparticles and Porous Carbon Prepared by Carbonization of a Zinc(II)-2-Methylimidazole Metal-Organic Framework. Microchim. Acta 2019, 186, 659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liao, F.; Wang, M.; Zhang, L.; Xiong, J.; Xiong, W. Enzyme-free Recycling Amplification-based Sensitive Electrochemical Thrombin Aptasensor. Electroanalysis 2021, 33, 1152–1159. [Google Scholar] [CrossRef]
- Qiu, W.; Wang, Q.; Yano, N.; Kataoka, Y.; Handa, M.; Gao, F.; Tanaka, H. Flexible Fl Ower-like MOF of Cu2 (Trans-1,4-Cyclohexanedicarboxylic Acid) 2 as the Electroactive Matrix Material for Label-Free and Highly Sensitive Sensing of Thrombin. Electrochim. Acta 2020, 353, 136611. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, J.; Zhang, F.; Wang, Z.; Liu, Q. Ultrasensitive Label-Free Homogeneous Electrochemical Aptasensor Based on Sandwich Structure for Thrombin Detection. Sens. Actuators B Chem. 2018, 267, 412–418. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, M.; Li, X.; Zhang, X.; Chen, J. A New Electrochemical Aptasensor for Sensitive Assay of a Protein Based on the Dual-Signaling Electrochemical Ratiometric Method and DNA Walker Strategy. Chem. Commun. 2018, 54, 10359–10362. [Google Scholar] [CrossRef]
- Fan, Y.; Liao, F.; Wu, W.; Hong, N.; Cheng, L.; Zhong, Y.; Cui, H.; Ma, G.; Wei, G.; Xiong, J.; et al. A Novel Modification-Free Thrombin Electrochemical Sensing Based Homogeneous Strategy. Sens. Actuators B Chem. 2020, 318, 128045. [Google Scholar] [CrossRef]
- Cheng, L.; Xu, C.; Cui, H.; Liao, F.; Hong, N.; Ma, G.; Xiong, J.; Fan, H. A Sensitive Homogenous Aptasensor Based on Tetraferrocene Labeling for Thrombin Detection. Anal. Chim. Acta 2020, 1111, 1–7. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Ran, X.X.; Chen, A.Y.; Chai, Y.Q.; Yuan, R.; Zhuo, Y. Efficient Electrochemical Self-Catalytic Platform Based on l -Cys-Hemin/G-Quadruplex and Its Application for Bioassay. Anal. Chem. 2018, 90, 9109–9116. [Google Scholar] [CrossRef]
- Chen, Y.; Xiang, J.; Liu, B.; Chen, Z.; Zuo, X. Gold Nanoparticle-Engineered Electrochemical Aptamer Biosensor for Ultrasensitive Detection of Thrombin. Anal. Methods 2020, 12, 3729–3733. [Google Scholar] [CrossRef]
- Liao, Y.; Gao, J.; Zhang, Y.; Zhou, Y.; Yuan, R.; Xu, W. Proximity Ligation-Responsive Catalytic Hairpin Assembly-Guided DNA Dendrimers for Synergistically Amplified Electrochemical Biosensing. Sens. Actuators B Chem. 2020, 322, 128566. [Google Scholar] [CrossRef]
- Ren, Q.; Mou, J.; Guo, Y.; Wang, H.; Cao, X.; Zhang, F.; Xia, J.; Wang, Z. Simple Homogeneous Electrochemical Target-Responsive Aptasensor Based on Aptamer Bio-Gated and Porous Carbon Nanocontainer Derived from ZIF-8. Biosens. Bioelectron. 2020, 166, 112448. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Yang, K. Voltammetric Aptasensor for Thrombin by Using a Gold Microelectrode Modified with Graphene Oxide Decorated with Silver Nanoparticles. Microchim. Acta 2018, 185, 407. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xi, K.; Xiao, S.; Ngai, S.; Zhou, C.; He, M.; Shi, K.; Yu, Y. Self-Assembled Perylenetetracarboxylic Acid-Reduced Graphene Oxide Film for High-Sensitive Impedimetric Determination of Thrombin. Surf. Coat. Technol. 2020, 402, 126491. [Google Scholar] [CrossRef]
- Zhang, T.; Song, Y.; Xing, Y.; Gu, Y.; Yan, X.; Liu, H.; Lu, N.; Xu, H.; Xu, Z.; Zhang, Z.; et al. The Synergistic Effect of Au-COF Nanosheets and Artificial Peroxidase Au@ZIF-8(NiPd) Rhombic Dodecahedra for Signal Amplification for Biomarker Detection. Nanoscale 2019, 11, 20221–20227. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Feng, P.; Han, Q.; Liu, W.; Lu, Y.; Song, C.; Li, F. Photodriven Regeneration of G—Quadruplex Aptasensor for Sensitively Detecting Thrombin. Anal. Chem. 2020, 92, 7419–7424. [Google Scholar] [CrossRef]
- Yang, H.; Hu, P.; Tang, J.; Cheng, Y.; Wang, F.; Chen, Z. A Bifunctional Electrochemical Aptasensor Based on AuNPs-Coated ERGO Nanosheets for Sensitive Detection of Adenosine and Thrombin. J. Solid State Electrochem. 2021, 25, 1383–1391. [Google Scholar] [CrossRef]
- Jin, C.; Cheng, M.; Wei, G.; Hong, N.; Cheng, L.; Huang, H.; Jiang, Y.; Zhang, J. A Sensitive Thrombin Aptasensor Based on Target Circulation Strategy. Anal. Sci. 2021, 37, 1221–1226. [Google Scholar] [CrossRef]
- Qing, M.; Sun, Z.; Wang, L.; Du, S.Z.; Zhou, J.; Tang, Q.; Luo, H.Q.; Li, N.B. CRISPR/Cas12a-Regulated Homogeneous Electrochemical Aptasensor for Amplified Detection of Protein. Sens. Actuators B Chem. 2021, 348, 130713. [Google Scholar] [CrossRef]
- Li, W.; Zhao, D.; Tian, D.; Zhai, M.; Xu, H.; Zheng, L.; Li, S.; Sang, Y. Electrochemical Aptasensor Based on Proximity Binding-Induced DNA Networked for Enzyme-Free and Ultrasensitive Detection of Thrombin. J. Electroanal. Chem. 2021, 895, 115447. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Mahmoudi, T.; Chenab, K.K.; Baradaran, B.; Hashemzaei, M.; Radinekiyan, F.; Mokhtarzadeh, A.; Maleki, A. Dengue Virus: A Review on Advances in Detection and Trends—From Conventional Methods to Novel Biosensors. Microchim. Acta 2019, 186, 329. [Google Scholar] [CrossRef] [PubMed]
- Borisov, S.M.; Wolfbeis, O.S. Optical biosensors. Chem. Rev. 2008, 108, 423–461. [Google Scholar] [CrossRef] [PubMed]
- Damborský, P.; Švitel, J.; Katrlík, J. Optical Biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, J.; Zhang, F.; Wang, Z.; Liu, Q. A Dual-Channel Homogeneous Aptasensor Combining Colorimetric with Electrochemical Strategy for Thrombin. Biosens. Bioelectron. 2018, 120, 15–21. [Google Scholar] [CrossRef]
- Duan, W.; Wang, X.; Wang, H.; Li, F. Fluorescent and Colorimetric Dual-Mode Aptasensor for Thrombin Detection Based on Target-Induced Conjunction of Split Aptamer Fragments. Talanta 2018, 180, 76–80. [Google Scholar] [CrossRef]
- Xu, M.; Xing, S.; Xu, X.; Fu, P.; Zhao, C. Label-free colorimetric aptasensor for highly sensitive and selective detection of proteins by using PNA/DNA hybrids and a cyanine dye. Anal. Methods 2018, 10, 3824–3829. [Google Scholar] [CrossRef]
- Qu, H.; Fan, C.; Chen, M.; Zhang, X.; Yan, Q.; Wang, Y.; Zhang, S.; Gong, Z.; Shi, L.; Li, X.; et al. Recent Advances of Fluorescent Biosensors Based on Cyclic Signal Amplification Technology in Biomedical Detection. J. Nanobiotechnol. 2021, 19, 403. [Google Scholar] [CrossRef]
- Lotfi, A.; Nikkhah, M.; Moshaii, A. Development of Metal-Enhanced Fluorescence-Based Aptasensor for Thrombin Detection Using Silver Dendritic Nanostructures. Plasmonics 2019, 14, 561–568. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, L.; Zhang, Y.; Dong, Y. An Enzyme-and Label-Free Fluorescence Aptasensor for Detection of Thrombin Based on Graphene Oxide and g-Quadruplex. Sensors 2019, 19, 4424. [Google Scholar] [CrossRef]
- Chen, X.; Li, T.; Tu, X.; Luo, L. Label-Free Fluorescent Aptasensor for Thrombin Detection Based on Exonuclease I Assisted Target Recycling and SYBR Green I Aided Signal Amplification. Sens. Actuators B Chem. 2018, 265, 98–103. [Google Scholar] [CrossRef]
- Ma, L.; Sun, N.; Zhang, J.; Tu, C.; Cao, X.; Duan, D.; Diao, A.; Man, S. Polyethylenimine-Coated Fe3O4 Nanoparticles Effectively Quench Fluorescent DNA, Which Can Be Developed as a Novel Platform for Protein Detection. Nanoscale 2017, 9, 17699–17703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wei, C. An Aptasensor for the Label-Free Detection of Thrombin Based on Turn-on Fluorescent DNA-Templated Cu/Ag Nanoclusters. RSC Adv. 2020, 10, 35374–35380. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, G.; Zhong, Z.T.; Asif, M.; Aziz, A.; Song, L.; Zhang, S.; Liu, B.; Chen, W.; Zhao, Y. Di Extension of Duplex Specific Nuclease Sensing Application with RNA Aptamer. Talanta 2022, 242, 123314. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, J.; Xie, Y.N.; Zhang, X.; Jiang, X.; Hou, X.; Wu, P. Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots. Anal. Chem. 2018, 90, 2939–2945. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tang, D.; Yao, Y.; Hou, X.; Wu, P. Aggregation-Induced Phosphorescence Enhancement of Mn-Doped ZnS Quantum Dots: The Role of Dot-to-Dot Distance. Nanoscale 2018, 10, 9236–9244. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Zhang, J.; Zhou, R.; Xie, Y.-N.; Hou, X.; Xu, K.; Wu, P. Phosphorescent Inner Filter Effect-Based Sensing of Xanthine Oxidase and Its Inhibitors with Mn-Doped ZnS Quantum Dots. Nanoscale 2018, 10, 8477–8482. [Google Scholar] [CrossRef]
- Xiong, Y.; Liang, M.; Cheng, Y.; Zou, J.; Li, Y. An “off-on” Phosphorescent Aptasensor for the Detection of Thrombin Based on PRET. Analyst 2019, 144, 161–171. [Google Scholar] [CrossRef]
- Zhong, J.; Yuan, Z.; Lu, C. Layered-Nanomaterial-Amplified Chemiluminescence Systems and Their Analytical Applications. Anal. Bioanal. Chem. 2016, 408, 8731–8746. [Google Scholar] [CrossRef]
- Seidel, M.; Niessner, R. Chemiluminescence Microarrays in Analytical Chemistry: A Critical Review. Anal. Bioanal. Chem. 2014, 406, 5589–5612. [Google Scholar] [CrossRef]
- Yang, D.; He, Y.; Sui, Y.; Chen, F. Determination of Catechol in Water Based on Gold Nanoclusters-Catalyzed Chemiluminescence. J. Lumin. 2017, 187, 186–192. [Google Scholar] [CrossRef]
- Wang, J.; Song, Z. Ultrasensitive Determination of Cadmium in Rice by Flow Injection Chemiluminescence Analysis. Food Anal. Methods 2014, 7, 1671–1676. [Google Scholar] [CrossRef]
- Iranifam, M. Analytical Applications of Chemiluminescence Methods for Cancer Detection and Therapy. TrAC Trends Anal. Chem. 2014, 59, 156–183. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Xu, H.; Ding, C.; Lin, Y.; Luo, C.; Wei, Q. A Chemiluminescence Aptasensor for Thrombin Detection Based on Aptamer-Conjugated and Hemin/G-Quadruplex DNAzyme Signal-Amplified Carbon Fiber Composite. Anal. Chim. Acta 2018, 1043, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Zou, P.; Liu, Y.; Wang, H.; Wu, J.; Zhu, F.; Wu, H. G-Quadruplex DNAzyme-Based Chemiluminescence Biosensing Platform Based on Dual Signal Ampli Fi Cation for Label-Free and Sensitive Detection of Protein. Biosens. Bioelectron. 2016, 79, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Mohammadinejad, A.; Kazemi Oskuee, R.; Eivazzadeh-Keihan, R.; Rezayi, M.; Baradaran, B.; Maleki, A.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Development of Biosensors for Detection of Alpha-Fetoprotein: As a Major Biomarker for Hepatocellular Carcinoma. TrAC Trends Anal. Chem. 2020, 130, 115961. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, D.; Zhuo, Y.; Chai, Y.Q.; Yuan, R. Novel Tri-Layer Self-Enhanced Ru(II) Complex-Based Nanoparicles for Signal-on Electrochemiluminescent Aptasensor Construction. Electrochim. Acta 2016, 212, 734–743. [Google Scholar] [CrossRef]
- Wang, H.M.; Fang, Y.; Yuan, P.X.; Wang, A.J.; Luo, X.; Feng, J.J. Construction of Ultrasensitive Label-Free Aptasensor for Thrombin Detection Using Palladium Nanocones Boosted Electrochemiluminescence System. Electrochim. Acta 2019, 310, 195–202. [Google Scholar] [CrossRef]
- You, X.; Lin, W.; Wu, H.; Dong, Y.; Chi, Y. Carbon Dot Capped Gold Nanoflowers for Electrochemiluminescent Aptasensor of Thrombin. Carbon N. Y. 2018, 127, 653–657. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, H.M.; Gu, Y.X.; Yu, L.; Wang, A.J.; Yuan, P.X.; Feng, J.J. Highly Enhanced Electrochemiluminescence Luminophore Generated by Zeolitic Imidazole Framework-8-Linked Porphyrin and Its Application for Thrombin Detection. Anal. Chem. 2020, 92, 3206–3212. [Google Scholar] [CrossRef]
- Khonsari, Y.N.; Sun, S. Electrochemiluminescent Aptasensor for Thrombin Using Nitrogen-Doped Graphene Quantum Dots. Microchim. Acta 2018, 185, 430. [Google Scholar] [CrossRef]
- Hao, N.; Hua, R.; Chen, S.; Zhang, Y.; Zhou, Z.; Qian, J.; Liu, Q.; Wang, K. Multiple Signal-Amplification via Ag and TiO2 Decorated 3D Nitrogen Doped Graphene Hydrogel for Fabricating Sensitive Label-Free Photoelectrochemical Thrombin Aptasensor. Biosens. Bioelectron. 2018, 101, 14–20. [Google Scholar] [CrossRef]
- Li, Y.; Chen, F.; Luan, Z.; Zhang, X. A Versatile Cathodic “Signal-on” Photoelectrochemical Platform Based on a Dual-Signal Amplification Strategy. Biosens. Bioelectron. 2018, 119, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhong, X.; Huang, L.; Deng, H.; Yuan, R.; Yuan, Y. C60@C3N4 Nanocomposites as Quencher for Signal-off Photoelectrochemical Aptasensor with Au Nanoparticle Decorated Perylene Tetracarboxylic Acid as Platform. Anal. Chim. Acta 2019, 1077, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Tang, J.; Huang, D.; Zou, L.; Ye, B. Quenched Sandwich-Type Photoelectrochemical Aptasensor for Protein Detection Based on Exciton Energy Transfer. Talanta 2019, 198, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, Z.; Tian, Y.; Guo, Q.; Nie, G. A Simple Label-Free Photoelectrochemical Aptasensor for Ultrasensitive Detection of Thrombin. Microchem. J. 2020, 159, 105452. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Baradaran, B.; de la Guardia, M.; Hejazi, M.; Sohrabi, H.; Mokhtarzadeh, A.; Maleki, A. Recent Progress in Optical and Electrochemical Biosensors for Sensing of Clostridium Botulinum Neurotoxin. TrAC Trends Anal. Chem. 2018, 103, 184–197. [Google Scholar] [CrossRef]
- Kotlarek, D.; Curti, F.; Vorobii, M.; Corradini, R.; Careri, M.; Knoll, W.; Rodriguez-Emmenegger, C.; Dostálek, J. Surface Plasmon Resonance-Based Aptasensor for Direct Monitoring of Thrombin in a Minimally Processed Human Blood. Sens. Actuators B Chem. 2020, 320, 128380. [Google Scholar] [CrossRef]
- Gopinath, S.C.B.; Awazu, K.; Fujimaki, M. Waveguide-Mode Sensors as Aptasensors. Sensors 2012, 12, 2136–2151. [Google Scholar] [CrossRef]
- Alamrani, N.A.; Greenway, G.M.; Pamme, N.; Goddard, N.J.; Gupta, R. A Feasibility Study of a Leaky Waveguide Aptasensor for Thrombin. Analyst 2019, 144, 6048–6054. [Google Scholar] [CrossRef]
- Sypabekova, M.; Korganbayev, S.; González-Vila, Á.; Caucheteur, C.; Shaimerdenova, M.; Ayupova, T.; Bekmurzayeva, A.; Vangelista, L.; Tosi, D. Functionalized Etched Tilted Fiber Bragg Grating Aptasensor for Label-Free Protein Detection. Biosens. Bioelectron. 2019, 146, 111765. [Google Scholar] [CrossRef]
- Sun, D.; Sun, L.P.; Guo, T.; Guan, B.O. Label-Free Thrombin Detection Using a Tapered Fiber-Optic Interferometric Aptasensor. J. Light. Technol. 2019, 37, 2756–2761. [Google Scholar] [CrossRef]
- Pasternack, R.F.; Giannetto, A.; Bustamante, C.; Collings, P.J.; Gibbs, E.J. Porphyrin Assemblies on DNA as Studied by a Resonance Light-Scattering Technique. J. Am. Chem. Soc. 1993, 115, 5393–5399. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Chen, X.Q.; Dong, Z.; Xu, M. The Application of Resonance Light Scattering Technique for the Determination of Tinidazole in Drugs. J. Autom. Methods Manag. Chem. 2007, 2007. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Liu, J.; Hong, M.; Li, X.; Ma, Y.; Yue, Q.; Li, C.Z. A Reusable Aptasensor of Thrombin Based on DNA Machine Employing Resonance Light Scattering Technique. Biosens. Bioelectron. 2017, 92, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Pourreza, N.; Ghomi, M. Hydrogel Based Aptasensor for Thrombin Sensing by Resonance Rayleigh Scattering. Anal. Chim. Acta 2019, 1079, 180–191. [Google Scholar] [CrossRef]
- Liu, G.; Gurung, A.S.; Qiu, W. Lateral Flow Aptasensor for Simultaneous Detection of Platelet-Derived Growth Factor-BB (PDGF-BB) and Thrombin. Molecules 2019, 24, 756. [Google Scholar] [CrossRef]
- Chuong, T.T.; Pallaoro, A.; Chaves, C.A.; Li, Z.; Lee, J.; Eisenstein, M.; Stucky, G.D.; Moskovits, M.; Soh, H.T. Dual-Reporter SERS-Based Biomolecular Assay with Reduced False-Positive Signals. Proc. Natl. Acad. Sci. USA 2017, 114, 9056–9061. [Google Scholar] [CrossRef]
- Jiang, N.; Zhu, T.; Hu, Y. Competitive Aptasensor with Gold Nanoparticle Dimers and Magnetite Nanoparticles for SERS-Based Determination of Thrombin. Microchim. Acta 2019, 186, 747. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.; Tan, X.; Feng, D.; Yan, J.; Zhang, H.; Chen, X.; Huang, Z.; Han, H. A Cyclic Catalysis Enhanced Electrochemiluminescence Aptasensor Based 3D Graphene/Photocatalysts Cu2O-MWCNTs. Electrochim. Acta 2018, 282, 672–679. [Google Scholar] [CrossRef]
- Tian, C.; Wang, L.; Luan, F.; Fu, X.; Zhuang, X.; Chen, L. A Novel Electrochemiluminescent Emitter of Europium Hydroxide Nanorods and Its Application in Bioanalysis. Chem. Commun. 2019, 55, 12479–12482. [Google Scholar] [CrossRef]
- Shan, Y.; Jin, X.; Gong, M.; Lv, L.; Li, L.; Jiang, M.; Wang, X. A Sandwich-Type Electrochemiluminescence Aptasensor for Thrombin Based on Functional Co-Polymer Electrode Using Ru (Bpy)32+ Doped Nanocomposites as Signal-Amplifying Tags. Electroanalysis 2019, 31, 1570–1579. [Google Scholar] [CrossRef]
- Wang, S.; Hao, T.; Yu, X.; Gai, P.; Guo, Z. Development of electrochemiluminescent inhibition method for determination of gentian violet in aquatic water. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 89, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Zhang, H.; Tan, X.; Ai, C.; Li, M.; Yan, J.; Liu, M.; Wu, Y.; Feng, D. Nitrogen-Doped Graphene Quantum Dots Doped Silica Nanoparticles as Enhancers for Electrochemiluminescence Thrombin Aptasensors Based on 3D Graphene. J. Solid State Electrochem. 2019, 23, 2579–2588. [Google Scholar] [CrossRef]
- Aktas, G.B.; Skouridou, V.; Masip, L. Sandwich-Type Aptasensor Employing Modified Aptamers and Enzyme-DNA Binding Protein Conjugates. Anal. Bioanal. Chem. 2019, 411, 3581–3589. [Google Scholar] [CrossRef]
- Muto, Y.; Hirao, G.; Zako, T. Transcription-Based Amplified Colorimetric Thrombin Sensor Using Non-Crosslinking Aggregation of DNA-Modified Gold Nanoparticles. Sensors 2021, 21, 4318. [Google Scholar] [CrossRef]
- Kim, J.; Moon, B.; Hwang, E.; Shaban, S. Solid-State Colorimetric Polydiacetylene Liposome Biosensor Sensitized by Gold Nanoparticles. Analyst 2021, 146, 1682–1688. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Z.; Ding, C.; Luo, X. Ratiometric Antifouling Electrochemiluminescence Biosensor Based on Bi- Functional Peptides and Low Toxic Quantum Dots. Sens. Actuators B Chem. 2020, 322, 128613. [Google Scholar] [CrossRef]
- Huang, Q.; Luo, F.; Lin, C.; Wang, J.; Qiu, B.; Lin, Z. Electrochemiluminescence Biosensor for Thrombin Detection Based on Metal Organic Framework with Electrochemiluminescence Indicator Embedded in the Framework. Biosens. Bioelectron. 2021, 189, 113374. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, L.; Yang, Y.; Liang, W.; Yuan, R.; Xiao, D. Conductive Covalent Organic Frameworks with Conductivity- and Pre-Reduction-Enhanced Electrochemiluminescence for Ultrasensitive Biosensor Construction. Anal. Chem. 2022, 94, 3685–3692. [Google Scholar] [CrossRef]
- Ataman Sadık, D.; Boyacı, İ.H.; Mutlu, M. Mixed Monolayer Decorated SPR Sensing Surface for Thrombin Detection. J. Pharm. Biomed. Anal. 2019, 176, 112822. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, H.; Li, W.; Dong, Y.; Chi, Y. Analytica Chimica Acta A Novel Hybrid Platform of G-C 3 N 4 Nanosheets/Nucleic-Acid-Stabilized Silver Nanoclusters for Sensing Protein. Anal. Chim. Acta 2019, 1091, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, B.; Lu, Q.; Li, X.; Weng, C.; Yan, X.; Hong, J. A Versatile Fluorometric Aptasensing Scheme Based on the Use of a Hybrid Material Composed of Polypyrrole Nanoparticles and DNA-Silver Nanoclusters: Application to the Determination of Adenosine, Thrombin, or Interferon-Gamma. Microchim. Acta 2019, 186, 365. [Google Scholar] [CrossRef] [PubMed]
- Suo, T.; Sohail, M.; Ma, Y.; Li, B.; Chen, Y.; Zhang, X.; Zhou, X. A Versatile Turn-on Fl Uorometric Biosensing pro Fi Le Based on Split Aptamers- Involved Assembly of Nanocluster Beacon Sandwich. Sens. Actuators B Chem. 2020, 324, 128586. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Zhu, X.; Wang, Y.; Yang, H.; Wang, Z. A Rapid and Ultrasensitive Thrombin Biosensor Based on a Rationally Designed Trifunctional Protein. Adv. Healthc. Mater. 2020, 9, 2000364. [Google Scholar] [CrossRef]
- Cheng, W.; Pan, J.; Yang, J.; Zheng, Z.; Lu, F.; Chen, Y.; Gao, W. A Photoelectrochemical Aptasensor for Thrombin Based on the Use of Carbon Quantum Dot-Sensitized TiO2 and Visible-Light Photoelectrochemical Activity. Microchim. Acta 2018, 185, 263. [Google Scholar] [CrossRef]
- Zou, L.; Yang, L.; Zhan, Y.; Huang, D.; Ye, B. Photoelectrochemical Aptasensor for Thrombin Based on Au-RGO-CuS as Signal Amplification Elements. Microchim. Acta 2020, 187, 433. [Google Scholar] [CrossRef]
- Zhang, Q.; Lyu, H.; Li, N.; Liu, Q.; Zhang, X.; Zhang, X. Visible light driven photoelectrochemical thrombin aptasensor based on uniform TiO2 nanotube arrays modified with CuOx and perylene-3,4,9,10-tetracarboxylic acid. Electrochim. Acta 2020, 354, 136774. [Google Scholar] [CrossRef]
- Geng, W.C.; Li, D.L.; Sang, J.L.; Pan, L.L.; Jiang, Z.L.; Liu, C.; Li, Y.J. Engineering One-Dimensional Trough-like Au-Ag2S Nano-Hybrids for Plasmon-Enhanced Photoelectrodetection of Human α-Thrombin. J. Mater. Chem. B 2020, 8, 10346–10352. [Google Scholar] [CrossRef]
- Zhu, M.; Zhong, X.; Deng, H.; Huang, L.; Yuan, R.; Yuan, Y. Dependent Signal Quenching and Enhancing Triggered by Bipedal DNA Walker for Ultrasensitive Photoelectrochemical Biosensor. Biosens. Bioelectron. 2019, 143, 111618. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, B.; Wang, J.; Guo, Q.; Yang, X.; Nie, G. A Separated Type Cathode Photoelectrochemical Aptasensor for Thrombin Detection Based on Novel Organic Polymer Heterojunction Photoelectric Material. Microchem. J. 2022, 175, 107140. [Google Scholar] [CrossRef]
- Cennamo, N.; Pasquar, L.; Arcadio, F.; Vanzetti, L.E.; Bossi, A.M.; Zeni, L. D-Shaped Plastic Optical Fibre Aptasensor for Fast Thrombin Detection in Nanomolar Range. Sci. Rep. 2019, 9, 18740. [Google Scholar] [CrossRef]
- Cui, H.; Fu, X.; Yang, L.; Xing, S.; Wang, X.F. 2D Titanium Carbide Nanosheets Based Fluorescent Aptasensor for Sensitive Detection of Thrombin. Talanta 2021, 228, 122219. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhou, Q.; Wang, L.; Zhu, X.; Cui, K.; Peng, X.; Steele, T.W.J.; Chen, H.; Xu, H.; Zhou, Y. A Fluorescence Kinetic-Based Aptasensor Employing Stilbene Isomerization for Detection of Thrombin. Materials 2021, 14, 6927. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Xiang, W.; Yuan, Y.; Dong, Y.; Yue, C. Electrochemiluminescence of Ru(Bpy)32+ in 1-Ethyl-3-Methylimidazolium Tetrafluoroborate Salt and Its Application in the Fabrication of Biosensor for Thrombin. J. Electrochem. Soc. 2021, 168, 116509. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Y.; Huang, M.; Yang, K.; Tian, J.; Lu, J. Photoelectrochemical Aptasensing for Thrombin Based on Exonuclease III-Assisted Recycling Signal Amplification and Nanoceria Enzymatic Strategy. Talanta 2021, 233, 122577. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wu, Y.; Tan, X.; Wu, J.; Huang, K.; Mi, Y.; Ou, P.; Wei, F. Flower-like Titanium Dioxide as Novel Co-Reaction Accelerator for Ultrasensitive “off–on” Electrochemiluminescence Aptasensor Construction Based on 2D g-C3N4 Layer for Thrombin Detection. J. Solid State Electrochem. 2022, 26, 959–971. [Google Scholar] [CrossRef]
- Yu, T.; Wei, D.M.; Li, Z.; Pan, L.J.; Zhang, Z.L.; Tian, Z.Q.; Liu, Z. Target-Modulated Sensitization of Upconversion Luminescence by NIR-Emissive Quantum Dots: A New Strategy to Construct Upconversion Biosensors. Chem. Commun. 2020, 56, 1976–1979. [Google Scholar] [CrossRef]
- Chen, H.J.; Chen, R.L.C.; Hsieh, B.C.; Hsiao, H.Y.; Kung, Y.; Hou, Y.T.; Cheng, T.J. Label-Free and Reagentless Capacitive Aptasensor for Thrombin. Biosens. Bioelectron. 2019, 131, 53–59. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Ozalp, C.; Oztekin, M.; Guler, U.; Salih, B.; Arica, M.Y. Design of an Aptamer-Based Magnetic Adsorbent and Biosensor Systems for Selective and Sensitive Separation and Detection of Thrombin. Talanta 2019, 191, 59–66. [Google Scholar] [CrossRef]
- Wang, A.; Ma, X.; Ye, Y.; Luo, F.; Guo, L.; Qiu, B.; Lin, Z.; Chen, G. A Simple and Convenient Aptasensor for Protein Using an Electronic Balance as a Readout. Anal. Chem. 2018, 90, 1087–1091. [Google Scholar] [CrossRef]
- Fu, Q.; Wu, Z.; Du, D.; Zhu, C.; Lin, Y.; Tang, Y. Versatile Barometer Biosensor Based on Au@Pt Core/Shell Nanoparticle Probe. ACS Sens. 2017, 2, 789–795. [Google Scholar] [CrossRef] [PubMed]
Transduction Method | Signal Probe | Signal Amplification | Detection Limit | Linear Range | Ref |
---|---|---|---|---|---|
DPV | Tetraferrocene | Target-triggered CHA | 0.28 pM | 0.001–3.125 nM | [21] |
DPV | MXene-Au-MB | Ferrocene (Fc) | 16.1 fM | 0.1 pM to 10 nM | [71] |
SWV | CPAD and ferrocenylmethyl methacrylate | Ferrocene | 0.062 pM | 10−250 μU mL−1 | [72] |
DPV | A1-TB-A2 (binding-based DNA architecture) | [Ru(NH3)6]3+ | 32 fM | 100 fM to10 nM | [73] |
SWV | Au nanoparticles | Alkaline phosphatase (ALP) | 0.26 fM | 1 fM to 10 nM | [74] |
DPV | Methylene blue (MB) | Pb2+-dependent DNAzyme | 1.8 pM | 5 pM to 5 nM | [26] |
EIS | MoS2/PCN-223-Fe | PCN-223-Fe | 0.03 pM | 0.1 pM to 100 nM | [75] |
DPV | ZnCr-LDH | Multi-walled carbon nanotubes (MWCNT) | 0.1 fM | 0.005 pM–12 nM | [76] |
DPV | Conductive supramolecular polymer hydrogel (CSPH) | TBA1 and MNP-TBA2 | 0.64 pM | 1 pM to10 nM | [29] |
DPV | Methylene blue (MB) | MNPs | 0.8 fM | 10 fM to100 nM | [77] |
DPV | Bisferrocene | CHA + bisferrocene | 0.18 pM | 0.25 pM–2.5 nM | [78] |
CV and DPV | Cu2(CHDC)2 | AuNPs | 0.01 fM | 0.2 to 1.0 mM | [79] |
SWV | HAP nanoparticles and MNPs | Graphene | 0.03 fM | 0.1 fM to 1.0 nM | [80] |
SWV | MB-DNA/Fc-DNA | AuNPs | 56 fM | 0.1 pM to 10 pM | [81] |
DPV | Bisferrocene | Bisferrocene | 0.8 pM | 1.2 pM-12 nM | [82] |
DPV | Tetraferrocene | Tetraferrocene | 0.126 pM | 18 pM–1.8 × 10 nM | [83] |
DPV | Fc-PHNs | L-Cys | 0.032 pM | 0.1 pM to 80 nM | [84] |
SWV | [Ru(NH3)6]3+ | AuNPs | 23.6 pM | 0.05–100 nM | [85] |
SWV | S1@PtNPs and S2@PtNPs | PtNPs and MnTMPyP | 10.7 aM | 1 fM to 100 nM | [86] |
DPV | Methylene blue (MB) | _ | 0.57 fM | 1 fM to 1 nM | [87] |
SWV | TBA1-AgNP-GO | AgNP-GO | 0.03 nM | 0.05–5 nM | [88] |
EIS | Reduced graphene oxide (rGO) | 3, 4, 9, 10-perylenetetracarboxylic acid (PTCA) | 0.2 pM | 1 pM–100 nM | [89] |
Amperometry | TBA 2–Au@ZIF-8(NiPd) | Au-COFs | 15 fM | 0.1 pM to 20 nM | [90] |
DPV | Ferrocene and Azobenzene | _ | 3 pM | 2.48 ± 0.02 and 20.26 ± 0.98 nM | [91] |
DPV | Methylene blue | AuNPs coated ERGO nanosheets | 0.17 nM | 0.5 to 10 nM | [92] |
DPV | Tetraferrocene | CHA + tetraferrocene | 0.06 pM | 0.12 pM–1.2nM | [93] |
SWV | Methylene blue-modified Ot (MB-Ot) | RCA-CRISPR/Cas12a | 1.26 fM | 100 fM–10 nM | [94] |
DPV | _ | HCR | 0.56 pM | 1 pM–1 nM | [95] |
Transduction Method | Modified Materials | Detection Limit | Linear Range | Ref |
---|---|---|---|---|
ECL | 3Dgraphene/Cu2OMWCNTs/RuSiNPs | 1.3 × 10−15 M | 5.0 × 10−15 to 5.0 × 10−11 M | [144] |
ECL | EHNs/GCE | 0.01 fM | 0.01 fM–10 pM | [145] |
ECL | RuAg/SiO2NPs@TBA II and PTG-AuNPs | 1 fM | 2 fM–2 pM | [146] |
ECL | Ru(bpy)32+ (RuND) and ferrocene | 0.74 pM | 1.0 × 10−12 to 1.0 × 10−9 M | [147] |
ECL | 3D graphene/Ru-PtNPs/cDNA/BSA/NGQDs@SiO2 | 23.1 fM | 2.0 pM−50 nM | [148] |
ECL | Ru(bpy)32+/β-CD-AuNPs/Nafion/GCE | 0.23 pM | 0.4 to 1000 pM | [30] |
Colorimetry | GOx-dHP and HRP-scCro | 0.92 nM | 0.5–10 nM | [149] |
Colorimetry | AuNPs | 4 nM | 3.1–25 nM | [150] |
Colorimetry | AuNP-PDA liposome | _ | _ | [151] |
ECL | PAMAM-QDs and Au@Luminol | 1.82 fM | 10 fM to 1 nM | [152] |
ECL | Ru-PEI-L-lys-ZIF-8 and PtNPs | 0.02 aM | 1 fM to 10 pM | [153] |
ECL | HHTP-HATP-COF/S2O82− | 62.1 aM | 100 aM to 1 nM | [154] |
SPR | 3,3′Dithiodipropionic acid di (N-hydroxysuccinimide ester) (DSP) and MCH | 6.0 nM | 30–100 nM | [155] |
Fluorescent | CNNS/AgNCs | 0.3 nM | 1–800 nM | [156] |
Fluorescent | DNA-AgNCs/PPyNPs | 0.58 nM | 2–40 nM | [157] |
Fluorescent | DNA-AgNCs and GRS | 300 pM | 500 pM to 1600 nM | [158] |
Fluorescent | smURFP and hydrophobin HGFI | 0.2 aM | 1.07 aM to 0.01 mM | [159] |
PEC | ITO/TiO2/CQD | 0.83 pM | 1.0 to 250 pM | [160] |
PEC | Au-rGO-CuS and CuInS2/b-TiO2 | 30 fM | 0.1 pM to 10 nM | [161] |
PEC | TiO2NTs/CuOx/PTCA/Pt | 55 fM | 0.0003 nM to 10 nM | [162] |
PEC | Au–Ag2S | 0.67 pM | 1.0 to 10.0 pM | [163] |
PEC | Perylene-3,4,9,10-tetracarboxylic acid (PTCA) and ferrocene | 0.17 fM | 0.5 fM–100 nM | [164] |
PEC | P5FIn/PEDOT/ITO and aptamer/erGO/ITO | 0.041 pM | 0.10 × 10−3 nM–10.0 nM | [165] |
Plasmonic plastic optical fiber | Gold and poly ethylene glycol (PEG) | 1 nM | 1.6–60 nM | [166] |
Fluorescent | Fluorescein amidite (FAM) and Ti3C2 MXene | 5.27 pM | 20–200 pM | [167] |
Fluorescent | stilbene | 0.205 µM | 0.01 to 2.5 µM | [168] |
ECL | Ru(bpy)32+ in 1-ethyl-3-methylimidazolium Tetrafluoroborate (EMImBF4) | 0.74 pM | 1.0 × 10−12 to 1.0 × 10−9 M | [169] |
PEC | TNA/g-C3N4 | 3.4 fM | 0.01–500 pM | [170] |
ECL | f1-TiO2/g-C3N4/PDA | 8.9 × 10−12 M | 1.0 × 10−11 to 1.0 × 10−5 M | [171] |
luminescence resonance energy transfer (LRET) | Ag2Se QDs | 0.034 nM | 0.1 nM to 125 nM | [172] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eivazzadeh-Keihan, R.; Saadatidizaji, Z.; Maleki, A.; de la Guardia, M.; Mahdavi, M.; Barzegar, S.; Ahadian, S. Recent Progresses in Development of Biosensors for Thrombin Detection. Biosensors 2022, 12, 767. https://doi.org/10.3390/bios12090767
Eivazzadeh-Keihan R, Saadatidizaji Z, Maleki A, de la Guardia M, Mahdavi M, Barzegar S, Ahadian S. Recent Progresses in Development of Biosensors for Thrombin Detection. Biosensors. 2022; 12(9):767. https://doi.org/10.3390/bios12090767
Chicago/Turabian StyleEivazzadeh-Keihan, Reza, Zahra Saadatidizaji, Ali Maleki, Miguel de la Guardia, Mohammad Mahdavi, Sajjad Barzegar, and Samad Ahadian. 2022. "Recent Progresses in Development of Biosensors for Thrombin Detection" Biosensors 12, no. 9: 767. https://doi.org/10.3390/bios12090767
APA StyleEivazzadeh-Keihan, R., Saadatidizaji, Z., Maleki, A., de la Guardia, M., Mahdavi, M., Barzegar, S., & Ahadian, S. (2022). Recent Progresses in Development of Biosensors for Thrombin Detection. Biosensors, 12(9), 767. https://doi.org/10.3390/bios12090767