Smart Mask as Wearable for Post-Pandemic Personal Healthcare
Abstract
:1. Introduction
2. Filtration Strategies in Masks
2.1. Structural Design and Filtration Mechanism
2.2. Material Selection
2.2.1. Nanofiber-Based Filters
2.2.2. Functional Additives
Base Fiber | Additive(s) | Introduced Properties and Advantages | Ref. |
---|---|---|---|
Cellulose | MTMS 1 | Silanization modification to obtain super-hydrophobicity | [85] |
Cotton | Hydroxyapatite nanowire | Biocompatibility, environmental friendliness, improved flexibility | [80] |
Nylon | Ag nanowire | Transparent conductor for electrostatic field with excellent conductivity and electrical stability | [42] |
PAN | Ag nanowires/NP 2 | Antibacterial, antiviral | [68,86] |
PMIA | LiCl | High conductivity to endow Taylor cone during electrospinning | [65] |
PPy 3 | Nanoscale Cu3(BTC)2(H2O)3 MOFs 4 | Gas capture and gas detection of ammonia | [78] |
PU 5 | LiCl | Reduce membrane pore size, robustize mechanical property, enhance purification capacity | [87] |
PU | Si3N4, SiO2 | Serve as ferroelectric inorganic electrets during fabrication, improves mechanical property | [74] |
PVA, PEO 6 | Nitrogen-doped TiO2 | Makes fiber photocatalytic, bacteria disinfection under light irradiation | [88] |
PVDF | TiO2 NP | Makes fiber photocatalytic, antifouling, helps crystallization of PVDF molecules | [60] |
PVDF | GPS 7 modified SiO2 NP | Charge enhancer that improves electret effect | [63] |
PVDF | ZnO nanowires | Introduced semi-conductivity for photodetectors, enable toxic gas detection | [89] |
2.3. Electrospinning as an Approach for Filter Membrane
3. Mask More Than a Filter
3.1. Intelligent and Green Wearables
3.2. Macroscopic Physiological Signal Monitoring
3.3. Disease Diagnosis and Monitoring
4. Next-Generation Mask Design
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease 2019 (COVID-19): Situation Report, 73; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Adanur, S.; Jayswal, A. Filtration Mechanisms and Manufacturing Methods of Face Masks: An Overview. J. Ind. Text. 2022, 51, 3683S–3717S. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, D.; He, H.; Ramakrishna, S. Electrospun Ultrafine Fibers for Advanced Face Masks. Mater. Sci. Eng. R Rep. 2021, 143, 100594. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.; Huang, A.; Li, Z.; Tufekci, Z.; Zdimal, V.; van der Westhuizen, H.-M.; von Delft, A.; Price, A.; Fridman, L.; Tang, L.-H.; et al. An Evidence Review of Face Masks against COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2014564118. [Google Scholar] [CrossRef] [PubMed]
- Larson, E.L.; Ferng, Y.-H.; Wong-McLoughlin, J.; Wang, S.; Haber, M.; Morse, S.S. Impact of Non-Pharmaceutical Interventions on URIs and Influenza in Crowded, Urban Households. Public Health Rep. 2010, 125, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.; Wu, J.T.; Liu, D.; Leung, G.M. First-Wave COVID-19 Transmissibility and Severity in China Outside Hubei after Control Measures, and Second-Wave Scenario Planning: A Modelling Impact Assessment. Lancet 2020, 395, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, Y.; Li, M.; Qian, X.; Dai, S.Y. Mask or No Mask for COVID-19: A Public Health and Market Study. PLoS ONE 2020, 15, e0237691. [Google Scholar] [CrossRef]
- Eikenberry, S.E.; Mancuso, M.; Iboi, E.; Phan, T.; Eikenberry, K.; Kuang, Y.; Kostelich, E.; Gumel, A.B. To Mask or Not to Mask: Modeling the Potential for Face Mask Use by the General Public to Curtail the COVID-19 Pandemic. Infect. Dis. Model. 2020, 5, 293–308. [Google Scholar] [CrossRef]
- Kutter, J.S.; Spronken, M.I.; Fraaij, P.L.; Fouchier, R.A.; Herfst, S. Transmission Routes of Respiratory Viruses among Humans. Curr. Opin. Virol. 2018, 28, 142–151. [Google Scholar] [CrossRef]
- Elias, B.; Bar-Yam, Y. Could Air Filtration Reduce COVID-19 Severity and Spread; New England Complex Systems Institute: Cambridge, MA, USA, 2020; p. 4. [Google Scholar]
- Sundarrajan, S.; Tan, K.L.; Lim, S.H.; Ramakrishna, S. Electrospun Nanofibers for Air Filtration Applications. Procedia Eng. 2014, 75, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Kampa, M.; Castanas, E. Human Health Effects of Air Pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Lippmann, M.; Albert, R.E. The Effect of Particle Size on the Regional Deposition of Inhaled Aerosols in the Human Respiratory Tract. Am. Ind. Hyg. Assoc. J. 1969, 30, 257–275. [Google Scholar] [CrossRef]
- Hatch, T.F. Distribution and Deposition of Inhaled Particles in Respiratory Tract. Bacteriol. Rev. 1961, 25, 237–240. [Google Scholar] [CrossRef]
- Pinelli, F.; Miceli, M. Smart Sensors for Volatile Organic Compounds (VOCs) and Their Possible Application as End of Service Life Indicator (ESLI) for Respirator Cartridges. In Advances in Chemical Engineering, Soft Robotics; Magagnin, L., Rossi, F., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 57, pp. 197–231. [Google Scholar]
- Priya, A.K.; Suresh, R.; Kumar, P.S.; Rajendran, S.; Vo, D.-V.N.; Soto-Moscoso, M. A Review on Recent Advancements in Photocatalytic Remediation for Harmful Inorganic and Organic Gases. Chemosphere 2021, 284, 131344. [Google Scholar] [CrossRef]
- Liu, H.; Cao, C.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. Progress on Particulate Matter Filtration Technology: Basic Concepts, Advanced Materials, and Performances. Nanoscale 2020, 12, 437–453. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.-H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef]
- Polidori, A.; Fine, P.M.; White, V.; Kwon, P.S. Pilot Study of High-Performance Air Filtration for Classroom Applications. Indoor Air 2013, 23, 185–195. [Google Scholar] [CrossRef]
- Bräuner, E.V.; Forchhammer, L.; Møller, P.; Barregard, L.; Gunnarsen, L.; Afshari, A.; Wåhlin, P.; Glasius, M.; Dragsted, L.O.; Basu, S.; et al. Indoor Particles Affect Vascular Function in the Aged: An Air Filtration–Based Intervention Study. Am. J. Respir. Crit. Care Med. 2008, 177, 419–425. [Google Scholar] [CrossRef]
- World Health Organization. Laboratory biosafety manual, fourth edition and associated monographs. In Personal Protective Equipment; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-001141-0. [Google Scholar]
- Yusuf, M.; Madhu, A. Smart Nanotextiles for Filtration. In Smart Nanotextiles; John Wiley and Sons: Hoboken, NJ, USA, 2022; pp. 341–358. ISBN 978-1-119-65487-2. [Google Scholar]
- Han, S.; Kim, J.; Ko, S.H. Advances in Air Filtration Technologies: Structure-Based and Interaction-Based Approaches. Mater. Today Adv. 2021, 9, 100134. [Google Scholar] [CrossRef]
- Hinds, W.C.; Zhu, Y. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; John Wiley and Sons: Hoboken, NJ, USA, 2022; ISBN 978-1-119-49404-1. [Google Scholar]
- Liu, R.; Ji, D.; Zhou, G.; Liu, Z.; Xu, Q.; Ramakrishna, S. Electrospun Nanofibers for Personal Protection in Mines. Chem. Eng. J. 2021, 404, 126558. [Google Scholar] [CrossRef]
- Rasouli, M.; Pirsalami, S.; Zebarjad, S.M. Study on the Formation and Structural Evolution of Bead-on-String in Electrospun Polysulfone Mats. Polym. Int. 2020, 69, 822–832. [Google Scholar] [CrossRef]
- Korycka, P.; Mirek, A.; Kramek-Romanowska, K.; Grzeczkowicz, M.; Lewińska, D. Effect of Electrospinning Process Variables on the Size of Polymer Fibers and Bead-on-String Structures Established with a 23 Factorial Design. Beilstein J. Nanotechnol. 2018, 9, 2466–2478. [Google Scholar] [CrossRef] [Green Version]
- Lyu, C.; Zhao, P.; Xie, J.; Dong, S.; Liu, J.; Rao, C.; Fu, J. Electrospinning of Nanofibrous Membrane and Its Applications in Air Filtration: A Review. Nanomaterials 2021, 11, 1501. [Google Scholar] [CrossRef]
- Shin, J.; Jeong, S.; Kim, J.; Choi, Y.Y.; Choi, J.; Lee, J.G.; Kim, S.; Kim, M.; Rho, Y.; Hong, S.; et al. Dynamic Pore Modulation of Stretchable Electrospun Nanofiber Filter for Adaptive Machine Learned Respiratory Protection. ACS Nano 2021, 15, 15730–15740. [Google Scholar] [CrossRef]
- Zhong, J.; Li, Z.; Takakuwa, M.; Inoue, D.; Hashizume, D.; Jiang, Z.; Shi, Y.; Ou, L.; Nayeem, M.O.G.; Umezu, S.; et al. Smart Face Mask Based on an Ultrathin Pressure Sensor for Wireless Monitoring of Breath Conditions. Adv. Mater. 2022, 34, 2107758. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, T.; Liu, L.; Du, W.; Wang, S. Ultra-Fine SiO 2 Nanofilament-Based PMIA: A Double Network Membrane for Efficient Filtration of PM Particles. Sep. Purif. Technol. 2018, 202, 357–364. [Google Scholar] [CrossRef]
- Jeerapan, I.; Sangsudcha, W.; Phokhonwong, P. Wearable Energy Devices on Mask-Based Printed Electrodes for Self-Powered Glucose Biosensors. Sens. Bio Sens. Res. 2022, 38, 100525. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, H.; Zeng, Y.; Xue, J.; Cao, X.; Wang, N.; Wang, Z. Intelligent Facemask Based on Triboelectric Nanogenerator for Respiratory Monitoring. Nano Energy 2022, 91, 106612. [Google Scholar] [CrossRef]
- Ghatak, B.; Banerjee, S.; Ali, S.B.; Bandyopadhyay, R.; Das, N.; Mandal, D.; Tudu, B. Design of a Self-Powered Triboelectric Face Mask. Nano Energy 2021, 79, 105387. [Google Scholar] [CrossRef]
- Liu, G.; Nie, J.; Han, C.; Jiang, T.; Yang, Z.; Pang, Y.; Xu, L.; Guo, T.; Bu, T.; Zhang, C.; et al. Self-Powered Electrostatic Adsorption Face Mask Based on a Triboelectric Nanogenerator. ACS Appl. Mater. Interfaces 2018, 10, 7126–7133. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Liu, L.; Yu, J.; Ding, B. A Fluffy Dual-Network Structured Nanofiber/Net Filter Enables High-Efficiency Air Filtration. Adv. Funct. Mater. 2019, 29, 1904108. [Google Scholar] [CrossRef]
- Wang, N.; Si, Y.; Wang, N.; Sun, G.; El-Newehy, M.; Al-Deyab, S.S.; Ding, B. Multilevel Structured Polyacrylonitrile/Silica Nanofibrous Membranes for High-Performance Air Filtration. Sep. Purif. Technol. 2014, 126, 44–51. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Liang, M.; Ke, Q.; Fang, Y.; Xu, H.; Jin, X.; Huang, C. Honeycomb-like Polysulphone/Polyurethane Nanofiber Filter for the Removal of Organic/Inorganic Species from Air Streams. J. Hazard. Mater. 2018, 347, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Ding, B.; Yu, J. Youlo Hsieh Direct Fabrication of Highly Nanoporous Polystyrene Fibers via Electrospinning. ACS Appl. Mater. Interfaces 2010, 2, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, X.; Ding, B.; Yu, J.; Sun, G. Tunable Fabrication of Three-Dimensional Polyamide-66 Nano-Fiber/Nets for High Efficiency Fine Particulate Filtration. J. Mater. Chem. 2011, 22, 1445–1452. [Google Scholar] [CrossRef]
- Ge, J.; Zong, D.; Jin, Q.; Yu, J.; Ding, B. Biomimetic and Superwettable Nanofibrous Skins for Highly Efficient Separation of Oil-in-Water Emulsions. Adv. Funct. Mater. 2018, 28, 1705051. [Google Scholar] [CrossRef]
- Jeong, S.; Cho, H.; Han, S.; Won, P.; Lee, H.; Hong, S.; Yeo, J.; Kwon, J.; Ko, S.H. High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network. Nano Lett. 2017, 17, 4339–4346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.W.; Liu, B.Y.H. Theoretical Study of Aerosol Filtration by Fibrous Filters. Aerosol Sci. Technol. 1982, 1, 147–161. [Google Scholar] [CrossRef]
- Pich, J.; Emi, H.; Kanaoka, C. Coulombic Deposition Mechanism in Electret Filters. J. Aerosol Sci. 1987, 18, 29–35. [Google Scholar] [CrossRef]
- Brown, R.C. Capture of Dust Particles in Filters by Linedipole Charged Fibres. J. Aerosol Sci. 1981, 12, 349–356. [Google Scholar] [CrossRef]
- Wang, C.-S. Electrostatic Forces in Fibrous Filters—A Review. Powder Technol. 2001, 118, 166–170. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Rapid Expert Consultation on the Effectiveness of Fabric Masks for the COVID-19 Pandemic (April 8, 2020); National Academies Press: Washington, DC, USA, 2020; p. 25776. ISBN 978-0-309-67658-8. [Google Scholar]
- Kwong, L.H.; Wilson, R.; Kumar, S.; Crider, Y.S.; Reyes Sanchez, Y.; Rempel, D.; Pillarisetti, A. Review of the Breathability and Filtration Efficiency of Common Household Materials for Face Masks. ACS Nano 2021, 15, 5904–5924. [Google Scholar] [CrossRef]
- Yi, N.; Gao, Y.; Lo Verso, A.; Zhu, J.; Erdely, D.; Xue, C.; Lavelle, R.; Cheng, H. Fabricating Functional Circuits on 3D Freeform Surfaces via Intense Pulsed Light-Induced Zinc Mass Transfer. Mater. Today 2021, 50, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Ersahin, M.E.; Ozgun, H.; Dereli, R.K.; Ozturk, I.; Roest, K.; van Lier, J.B. A Review on Dynamic Membrane Filtration: Materials, Applications and Future Perspectives. Bioresour. Technol. 2012, 122, 196–206. [Google Scholar] [CrossRef]
- Singha, I.; Kumar Mishrab, P. Nano-Membrane Filtration a Novel Application of Nanotechnology for Waste Water Treatment. Mater. Today Proc. 2020, 29, 327–332. [Google Scholar] [CrossRef]
- Maity, S.; Mishra, B.; Nayak, K.; Dubey, N.C.; Tripathi, B.P. Zwitterionic Microgel Based Anti(-Bio) Fouling Smart Membranes for Tunable Water Filtration and Molecular Separation. Mater. Today Chem. 2022, 24, 100779. [Google Scholar] [CrossRef]
- Zangmeister, C.D.; Radney, J.G.; Staymates, M.E.; Vicenzi, E.P.; Weaverw, J.L. Hydration of Hydrophilic Cloth Face Masks Enhances the Filtration of Nanoparticles. ACS Appl. Nano Mater. 2021, 4, 2694–2701. [Google Scholar] [CrossRef] [PubMed]
- Tcharkhtchi, A.; Abbasnezhad, N.; Zarbini Seydani, M.; Zirak, N.; Farzaneh, S.; Shirinbayan, M. An Overview of Filtration Efficiency through the Masks: Mechanisms of the Aerosols Penetration. Bioact. Mater. 2021, 6, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Fallah, Z. Ionic Liquid-Based Antimicrobial Materials for Water Treatment, Air Filtration, Food Packaging and Anticorrosion Coatings. Adv. Colloid Interface Sci. 2021, 294, 102454. [Google Scholar] [CrossRef] [PubMed]
- Robert, B.; Nallathambi, G. A Concise Review on Electrospun Nanofibres/Nanonets for Filtration of Gaseous and Solid Constituents (PM2.5) from Polluted Air. Colloid Interface Sci. Commun. 2020, 37, 100275. [Google Scholar] [CrossRef]
- Kosmider, K.; Scott, J. Polymeric Nanofibres Exhibit an Enhanced Air Filtration Performance. Filtr. Sep. 2002, 39, 20–22. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Zhang, M.; Feng, Z.; Yu, D.-G.; Wang, K. Electrospun Nanofiber Membranes for Air Filtration: A Review. Nanomaterials 2022, 12, 1077. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Han, J.; Wang, F.; Shao, W.; Xiong, R.; Zhang, Q.; Pan, H.; Yang, Y.; Samal, S.K.; Zhang, F.; et al. Electrospun Nanofibers Membranes for Effective Air Filtration. Macromol. Mater. Eng. 2017, 302, 1600353. [Google Scholar] [CrossRef]
- Cao, X.; Ma, J.; Shi, X.; Ren, Z. Effect of TiO2 Nanoparticle Size on the Performance of PVDF Membrane. Appl. Surf. Sci. 2006, 253, 2003–2010. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Zhou, M.; Xian, Y.; Shui, Y.; Wu, M.; Yao, Y. Super-Hydrophilic Electrospun PVDF/PVA-Blended Nanofiber Membrane for Microfiltration with Ultrahigh Water Flux. J. Appl. Polym. Sci. 2020, 137, 48416. [Google Scholar] [CrossRef]
- Zaarour, B.; Tina, H.; Zhu, L.; Jin, X. Branched Nanofibers with Tiny Diameters for Air Filtration via One-Step Electrospinning. J. Ind. Text. 2022, 51, 1105S–1117S. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.; Si, Y.; Yin, X.; Yu, J.; Ding, B. Electrospun Polyvinylidene Fluoride/SiO2 Nanofibrous Membranes with Enhanced Electret Property for Efficient Air Filtration. Compos. Commun. 2019, 13, 57–62. [Google Scholar] [CrossRef]
- Matulevicius, J.; Kliucininkas, L.; Martuzevicius, D.; Krugly, E.; Tichonovas, M.; Baltrusaitis, J. Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications. J. Nanomater. 2014, 2014, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, H.; Yin, X.; Li, Z.; Yu, J.; Ding, B. Tailoring Mechanically Robust Poly (m-Phenylene Isophthalamide) Nanofiber/Nets for Ultrathin High-Efficiency Air Filter. Sci. Rep. 2017, 7, 40550. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Lu, T.; Cui, J.; Ma, W.; Qu, Q.; Zhang, X.; Zhang, Y.; Zhu, M.; Xiong, R.; Huang, C. Morphology Engineering Processed Nanofibrous Membranes with Secondary Structure for High-Performance Air Filtration. Sep. Purif. Technol. 2022, 294, 121093. [Google Scholar] [CrossRef]
- Upadhyaya, L. Self-Assembled Smart Filtration Membranes from Block Copolymers and Inorganic Nanoparticles. Ph.D. Thesis, Université Montpellier, Montpellier, France, Universidad de Zaragoza, Zaragoza, Spain, 2016. [Google Scholar]
- Park, K.; Kang, S.; Park, J.; Hwang, J. Fabrication of Silver Nanowire Coated Fibrous Air Filter Medium via a Two-Step Process of Electrospinning and Electrospray for Anti-Bioaerosol Treatment. J. Hazard. Mater. 2021, 411, 125043. [Google Scholar] [CrossRef]
- Xia, M.; Xiong, Z.; Yao, Z.; Wu, Y.; Cheng, Q.; Xu, J.; Liu, K.; Wang, D. A Novel Gradient Structured Nanofiber and Silver Nanowire Composite Membrane for Multifunctional Air Filters, Oil Water Separation, and Health Monitoring Flexible Wearable Devices. J. Colloid Interface Sci. 2023, 630, 484–493. [Google Scholar] [CrossRef]
- Rastgar, M.; Fleck, J.; Graessner, R.; Taghipour, A.; Sadrzadeh, M. Smart Harvesting and In-Situ Application of Piezoelectricity in Membrane Filtration Systems. J. Membr. Sci. 2022, 660, 120819. [Google Scholar] [CrossRef]
- Martínez-Camacho, A.P.; Cortez-Rocha, M.O.; Castillo-Ortega, M.M.; Burgos-Hernández, A.; Ezquerra-Brauer, J.M.; Plascencia-Jatomea, M. Antimicrobial Activity of Chitosan Nanofibers Obtained by Electrospinning. Polym. Int. 2011, 60, 1663–1669. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Airborne Bioaerosols and Their Impact on Human Health. J. Environ. Sci. 2018, 67, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Komaladewi, A.A.I.A.S.; Khoiruddin, K.; Surata, I.W.; Subagia, I.D.G.A.; Wenten, I.G. Recent Advances in Antimicrobial Air Filter. E3S Web Conf. 2018, 67, 03016. [Google Scholar] [CrossRef]
- Liu, F.; Li, M.; Shao, W.; Yue, W.; Hu, B.; Weng, K.; Chen, Y.; Liao, X.; He, J. Preparation of a Polyurethane Electret Nanofiber Membrane and Its Air-Filtration Performance. J. Colloid Interface Sci. 2019, 557, 318–327. [Google Scholar] [CrossRef]
- Brincat, J.-P.; Sardella, D.; Muscat, A.; Decelis, S.; Grima, J.N.; Valdramidis, V.; Gatt, R. A Review of the State-of-the-Art in Air Filtration Technologies as May Be Applied to Cold Storage Warehouses. Trends Food Sci. Technol. 2016, 50, 175–185. [Google Scholar] [CrossRef]
- Barea, E.; Montoro, C.; Navarro, J.A.R. Toxic Gas Removal—Metal–Organic Frameworks for the Capture and Degradation of Toxic Gases and Vapours. Chem. Soc. Rev. 2014, 43, 5419–5430. [Google Scholar] [CrossRef] [Green Version]
- Peterson, G.W.; Wagner, G.W.; Balboa, A.; Mahle, J.; Sewell, T.; Karwacki, C.J. Ammonia Vapor Removal by Cu3(BTC)2 and Its Characterization by MAS NMR. J. Phys. Chem. C 2009, 113, 13906–13917. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Zhang, H.; Huang, P.; Xiang, C.; Zou, Y.; Xu, F.; Sun, L. Inducement of Nanoscale Cu–BTC on Nanocomposite of PPy–RGO and Its Performance in Ammonia Sensing. Mater. Res. Bull. 2018, 99, 152–160. [Google Scholar] [CrossRef]
- Yogeswaran, U.; Chen, S.-M. A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material. Sensors 2008, 8, 290–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Z.-C.; Yang, R.-L.; Zhu, Y.-J.; Chen, F.-F.; Dong, L.-Y. Flexible Hydroxyapatite Ultralong Nanowire-Based Paper for Highly Efficient and Multifunctional Air Filtration. J. Mater. Chem. A 2017, 5, 17482–17491. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, C.; Chen, Y.; Nie, Z. Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. Nanomaterials 2022, 12, 2336. [Google Scholar] [CrossRef]
- Xia, S.-Y.; Long, Y.; Huang, Z.; Zi, Y.; Tao, L.-Q.; Li, C.-H.; Sun, H.; Li, J. Laser-Induced Graphene (LIG)-Based Pressure Sensor and Triboelectric Nanogenerator towards High-Performance Self-Powered Measurement-Control Combined System. Nano Energy 2022, 96, 107099. [Google Scholar] [CrossRef]
- Zhong, H.; Zhu, Z.; Lin, J.; Cheung, C.F.; Lu, V.L.; Yan, F.; Chan, C.-Y.; Li, G. Reusable and Recyclable Graphene Masks with Outstanding Superhydrophobic and Photothermal Performances. ACS Nano 2020, 14, 6213–6221. [Google Scholar] [CrossRef]
- Huang, L.; Xu, S.; Wang, Z.; Xue, K.; Su, J.; Song, Y.; Chen, S.; Zhu, C.; Tang, B.Z.; Ye, R. Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask. ACS Nano 2020, 14, 12045–12053. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Cai, C.; Ma, R.; Deng, Y.; Tu, L.; Fan, Y.; Lu, D. Super-Hydrophobic Cellulose Nanofiber Air Filter with Highly Efficient Filtration and Humidity Resistance. ACS Appl. Mater. Interfaces 2021, 13, 24032–24041. [Google Scholar] [CrossRef]
- Bortolassi, A.C.C.; Nagarajan, S.; de Araújo Lima, B.; Guerra, V.G.; Aguiar, M.L.; Huon, V.; Soussan, L.; Cornu, D.; Miele, P.; Bechelany, M. Efficient Nanoparticles Removal and Bactericidal Action of Electrospun Nanofibers Membranes for Air Filtration. Mater. Sci. Eng. C 2019, 102, 718–729. [Google Scholar] [CrossRef] [Green Version]
- Zuo, F.; Zhang, S.; Liu, H.; Fong, H.; Yin, X.; Yu, J.; Ding, B. Free-Standing Polyurethane Nanofiber/Nets Air Filters for Effective PM Capture. Small 2017, 13, 1702139. [Google Scholar] [CrossRef]
- Li, Q.; Yin, Y.; Cao, D.; Wang, Y.; Luan, P.; Sun, X.; Liang, W.; Zhu, H. Photocatalytic Rejuvenation Enabled Self-Sanitizing, Reusable, and Biodegradable Masks against COVID-19. ACS Nano 2021, 15, 11992–12005. [Google Scholar] [CrossRef]
- Kang, D.H.; Kim, N.K.; Kang, H.W. Hybrid Structure of a ZnO Nanowire Array on a PVDF Nanofiber Membrane/Nylon Mesh for Use in Smart Filters: Photoconductive PM Filters. Appl. Sci. 2021, 11, 8006. [Google Scholar] [CrossRef]
- Ullah, S.; Ullah, A.; Lee, J.; Jeong, Y.; Hashmi, M.; Zhu, C.; Joo, K.I.; Cha, H.J.; Kim, I.S. Reusability Comparison of Melt-Blown vs. Nanofiber Face Mask Filters for Use in the Coronavirus Pandemic. ACS Appl. Nano Mater. 2020, 3, 7231–7241. [Google Scholar] [CrossRef]
- Doshi, J.; Reneker, D.H. Electrospinning Process and Applications of Electrospun Fibers. J. Electrost. 1995, 35, 151–160. [Google Scholar] [CrossRef]
- Jaworek, A.; Krupa, A.; Lackowski, M.; Sobczyk, A.T.; Czech, T.; Ramakrishna, S.; Sundarrajan, S.; Pliszka, D. Nanocomposite Fabric Formation by Electrospinning and Electrospraying Technologies. J. Electrost. 2009, 67, 435–438. [Google Scholar] [CrossRef]
- Arica, T.A.; Isık, T.; Guner, T.; Horzum, N.; Demir, M.M. Advances in Electrospun Fiber-Based Flexible Nanogenerators for Wearable Applications. Macro Mater. Eng 2021, 306, 2100143. [Google Scholar] [CrossRef]
- Reneker, D.H.; Yarin, A.L.; Zussman, E.; Xu, H. Electrospinning of Nanofibers from Polymer Solutions and Melts. In Advances in Applied Mechanics; Elsevier: Amsterdam, The Netherlands, 2007; Volume 41, pp. 43–346. ISBN 978-0-12-002057-7. [Google Scholar]
- Lu, T.; Cui, J.; Qu, Q.; Wang, Y.; Zhang, J.; Xiong, R.; Ma, W.; Huang, C. Multistructured Electrospun Nanofibers for Air Filtration: A Review. ACS Appl. Mater. Interfaces 2021, 13, 23293–23313. [Google Scholar] [CrossRef]
- Shen, H.; Zhou, Z.; Wang, H.; Zhang, M.; Han, M.; Durkin, D.P.; Shuai, D.; Shen, Y. Development of Electrospun Nanofibrous Filters for Controlling Coronavirus Aerosols. Environ. Sci. Technol. Lett. 2021, 8, 545–550. [Google Scholar] [CrossRef]
- Mousavi, E.S.; Kananizadeh, N.; Martinello, R.A.; Sherman, J.D. COVID-19 Outbreak and Hospital Air Quality: A Systematic Review of Evidence on Air Filtration and Recirculation. Environ. Sci. Technol. 2021, 55, 4134–4147. [Google Scholar] [CrossRef]
- Lv, D.; Zhu, M.; Jiang, Z.; Jiang, S.; Zhang, Q.; Xiong, R.; Huang, C. Green Electrospun Nanofibers and Their Application in Air Filtration. Macromol. Mater. Eng. 2018, 303, 1800336. [Google Scholar] [CrossRef]
- Park, J.; Yoon, J.; Kim, K.-H. Critical Review of the Material Criteria of Building Sustainability Assessment Tools. Sustainability 2017, 9, 186. [Google Scholar] [CrossRef]
- Yang, H.; Fan, F.R.; Xi, Y.; Wu, W. Bio-Derived Natural Materials Based Triboelectric Devices for Self-Powered Ubiquitous Wearable and Implantable Intelligent Devices. Adv. Sustain. Sustain. 2020, 4, 2000108. [Google Scholar] [CrossRef]
- An, B.W.; Shin, J.H.; Kim, S.-Y.; Kim, J.; Ji, S.; Park, J.; Lee, Y.; Jang, J.; Park, Y.-G.; Cho, E.; et al. Smart Sensor Systems for Wearable Electronic Devices. Polymers 2017, 9, 303. [Google Scholar] [CrossRef] [PubMed]
- Guler, S.D.; Gannon, M.; Sicchio, K. (Eds.) Designing for the Body, on the Body. In Crafting Wearables: Blending Technology with Fashion; Apress: Berkeley, CA, USA, 2016; pp. 111–117. ISBN 978-1-4842-1808-2. [Google Scholar]
- Kim, J.; Lee, J.; Son, D.; Choi, M.K.; Kim, D.-H. Deformable Devices with Integrated Functional Nanomaterials for Wearable Electronics. Nano Converg. 2016, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Zhang, W.; Tiwari, N.; Yan, H.; Li, T.; Cheng, H. Multimodal Sensors with Decoupled Sensing Mechanisms. Adv. Sci. 2022, 9, 2202470. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Wang, C.; Jin, H.; Li, J.; Yang, L.; Zheng, Y.; Wen, Y.; Tan, B.H.; Loh, X.J.; Chen, X. Lab-on-Mask for Remote Respiratory Monitoring. ACS Mater. Lett. 2020, 2, 1178–1181. [Google Scholar] [CrossRef]
- Suo, J.; Liu, Y.; Wu, C.; Chen, M.; Huang, Q.; Liu, Y.; Yao, K.; Chen, Y.; Pan, Q.; Chang, X.; et al. Wide-Bandwidth Nanocomposite-Sensor Integrated Smart Mask for Tracking Multiphase Respiratory Activities. Adv. Sci. 2022, 9, 2203565. [Google Scholar] [CrossRef]
- Klum, M.; Urban, M.; Tigges, T.; Pielmus, A.-G.; Feldheiser, A.; Schmitt, T.; Orglmeister, R. Wearable Cardiorespiratory Monitoring Employing a Multimodal Digital Patch Stethoscope: Estimation of ECG, PEP, LVET and Respiration Using a 55 Mm Single-Lead ECG and Phonocardiogram. Sensors 2020, 20, 2033. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Ahmed, M.Y.; Rahman, M.M.; Nemati, E.; Islam, B.; Vatanparvar, K.; Nathan, V.; McCaffrey, D.; Kuang, J.; Gao, J.A. Automated Time Synchronization of Cough Events from Multimodal Sensors in Mobile Devices. In Proceedings of the 2020 International Conference on Multimodal Interaction, ACM: Virtual Event, The Netherlands, 21 October 2020; pp. 614–619. [Google Scholar]
- Liu, J.; Wang, H.; Liu, T.; Wu, Q.; Ding, Y.; Ou, R.; Guo, C.; Liu, Z.; Wang, Q. Multimodal Hydrogel-Based Respiratory Monitoring System for Diagnosing Obstructive Sleep Apnea Syndrome. Adv. Funct. Mater. 2022, 32, 2204686. [Google Scholar] [CrossRef]
- Galliani, M.; Ferrari, L.M.; Ismailova, E. Interdigitated Organic Sensor in Multimodal Facemask’s Barrier Integrity and Wearer’s Respiration Monitoring. Biosensors 2022, 12, 305. [Google Scholar] [CrossRef]
- Gjoreski, H.; Mavridou, I.I.; Fatoorechi, M.; Kiprijanovska, I.; Gjoreski, M.; Cox, G.; Nduka, C. EmteqPRO: Face-Mounted Mask for Emotion Recognition and Affective Computing. In Proceedings of the Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers, ACM: Virtual, New York, NY, USA, 21 September 2021; pp. 23–25. [Google Scholar]
- Hoffman, A.S. “Intelligent” Polymers in Medicine and Biotechnology. Artif. Organs. 1995, 19, 458–467. [Google Scholar] [CrossRef]
- Jingcheng, L.; Reddy, V.S.; Jayathilaka, W.A.D.M.; Chinnappan, A.; Ramakrishna, S.; Ghosh, R. Intelligent Polymers, Fibers and Applications. Polymers 2021, 13, 1427. [Google Scholar] [CrossRef] [PubMed]
- Dutta, K.; De, S. Smart Responsive Materials for Water Purification: An Overview. J. Mater. Chem. A 2017, 5, 22095–22112. [Google Scholar] [CrossRef]
- Shi, Q.; Sun, J.; Hou, C.; Li, Y.; Zhang, Q.; Wang, H. Advanced Functional Fiber and Smart Textile. Adv. Fiber Mater. 2019, 1, 3–31. [Google Scholar] [CrossRef] [Green Version]
- Sarc, R.; Curtis, A.; Kandlbauer, L.; Khodier, K.; Lorber, K.E.; Pomberger, R. Digitalisation and Intelligent Robotics in Value Chain of Circular Economy Oriented Waste Management—A Review. Waste Manag. 2019, 95, 476–492. [Google Scholar] [CrossRef] [PubMed]
- Souzandeh, H.; Wang, Y.; Netravali, A.N.; Zhong, W.-H. Towards Sustainable and Multifunctional Air-Filters: A Review on Biopolymer-Based Filtration Materials. Polym. Rev. 2019, 59, 651–686. [Google Scholar] [CrossRef]
- Song, Y.; Bao, J.; Hu, Y.; Cai, H.; Xiong, C.; Yang, Q.; Tian, H.; Shi, Z. Forward Polarization Enhanced All-Polymer Based Sustainable Triboelectric Nanogenerator from Oriented Electrospinning PVDF/Cellulose Nanofibers for Energy Harvesting. Sustain. Energy Fuels 2022, 6, 2377–2386. [Google Scholar] [CrossRef]
- Chen, X.; Rogers, J.A.; Lacour, S.P.; Hu, W.; Kim, D.-H. Materials Chemistry in Flexible Electronics. Chem. Soc. Rev. 2019, 48, 1431–1433. [Google Scholar] [CrossRef]
- Ma, Z.; Kong, D.; Pan, L.; Bao, Z. Skin-Inspired Electronics: Emerging Semiconductor Devices and Systems. J. Semicond. 2020, 41, 041601. [Google Scholar] [CrossRef]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive Polymers: Towards a Smart Biomaterial for Tissue Engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Zhuang, M.; Xu, H. Stretchable Polymer Composite with a 3D Segregated Structure of PEDOT:PSS for Multifunctional Touchless Sensing. ACS Appl. Mater. Interfaces 2019, 11, 45301–45309. [Google Scholar] [CrossRef]
- Lehmann, S.; Gilbert, B.; Maffeis, T.; Grichine, A.; Pignot-Paintrand, I.; Clavaguera, S.; Rachidi, W.; Seve, M.; Charlet, L. In Vitro Dermal Safety Assessment of Silver Nanowires after Acute Exposure: Tissue vs. Cell Models. Nanomaterials 2018, 8, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Wu, H.; Zhang, J.; Han, M.; Meng, B.; Zhang, H. Self-Powered Wireless Smart Patch for Healthcare Monitoring. Nano Energy 2017, 32, 479–487. [Google Scholar] [CrossRef]
- Matthews, J.; Kim, J.; Yeo, W. Advances in Biosignal Sensing and Signal Processing Methods with Wearable Devices. Anal. Sens. 2022, e202200062. [Google Scholar] [CrossRef]
- Guler, S.D.; Gannon, M.; Sicchio, K. (Eds.) Speculations on Wearable Futures. In Crafting Wearables: Blending Technology with Fashion; Apress: Berkeley, CA, USA, 2016; pp. 183–195. ISBN 978-1-4842-1808-2. [Google Scholar]
- Wang, Y.; Zhang, L.; Zhang, Z.; Sun, P.; Chen, H. High-Sensitivity Wearable and Flexible Humidity Sensor Based on Graphene Oxide/Non-Woven Fabric for Respiration Monitoring. Langmuir 2020, 36, 9443–9448. [Google Scholar] [CrossRef]
- Lee, P.; Kim, H.; Kim, Y.; Choi, W.; Zitouni, M.S.; Khandoker, A.; Jelinek, H.F.; Hadjileontiadis, L.; Lee, U.; Jeong, Y. Beyond Pathogen Filtration: Possibility of Smart Masks as Wearable Devices for Personal and Group Health and Safety Management. JMIR Mhealth Uhealth 2022, 10, e38614. [Google Scholar] [CrossRef]
- Yao, H.; Yang, W.; Cheng, W.; Tan, Y.J.; See, H.H.; Li, S.; Ali, H.P.A.; Lim, B.Z.H.; Liu, Z.; Tee, B.C.K. Near–Hysteresis-Free Soft Tactile Electronic Skins for Wearables and Reliable Machine Learning. Proc. Natl. Acad. Sci. USA 2020, 117, 25352–25359. [Google Scholar] [CrossRef]
- Banerjee, A.; Maity, S.; Mastrangelo, C.H. Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, IoT, and the Role of Machine Learning in Smart Biosensors. Sensors 2021, 21, 1253. [Google Scholar] [CrossRef]
- Tan, P.; Xi, Y.; Chao, S.; Jiang, D.; Liu, Z.; Fan, Y.; Li, Z. An Artificial Intelligence-Enhanced Blood Pressure Monitor Wristband Based on Piezoelectric Nanogenerator. Biosensors 2022, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- AL-Khalidi, F.Q.; Saatchi, R.; Burke, D.; Elphick, H.; Tan, S. Respiration Rate Monitoring Methods: A Review: Respiration Rate Monitoring Methods. Pediatr. Pulmonol. 2011, 46, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Cretikos, M.A.; Bellomo, R.; Hillman, K.; Chen, J.; Finfer, S.; Flabouris, A. Respiratory Rate: The Neglected Vital Sign. Med. J. Aust. 2008, 188, 657–659. [Google Scholar] [CrossRef]
- Apps, M.C.; Sheaff, P.C.; Ingram, D.A.; Kennard, C.; Empey, D.W. Respiration and Sleep in Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 1985, 48, 1240–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Wang, H.; Yuan, W.; Li, Y.; Gao, P.; Tiwari, N.; Chen, X.; Wang, Z.; Niu, G.; Cheng, H. Wearable Pressure Sensors Based on MXene/Tissue Papers for Wireless Human Health Monitoring. ACS Appl. Mater. Interfaces 2021, 13, 60531–60543. [Google Scholar] [CrossRef]
- Ye, Z.; Ling, Y.; Yang, M.; Xu, Y.; Zhu, L.; Yan, Z.; Chen, P.-Y. A Breathable, Reusable, and Zero-Power Smart Face Mask for Wireless Cough and Mask-Wearing Monitoring. ACS Nano 2022, 16, 5874–5884. [Google Scholar] [CrossRef]
- Escobedo, P.; Fernández-Ramos, M.D.; López-Ruiz, N.; Moyano-Rodríguez, O.; Martínez-Olmos, A.; Pérez de Vargas-Sansalvador, I.M.; Carvajal, M.A.; Capitán-Vallvey, L.F.; Palma, A.J. Smart Facemask for Wireless CO2 Monitoring. Nat. Commun. 2022, 13, 72. [Google Scholar] [CrossRef]
- Güder, F.; Ainla, A.; Redston, J.; Mosadegh, B.; Glavan, A.; Martin, T.J.; Whitesides, G.M. Paper-Based Electrical Respiration Sensor. Angew. Chem. Int. Ed. 2016, 55, 5727–5732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chun, S.; Kim, D.W.; Kim, J.; Pang, C. A Transparent, Glue-Free, Skin-Attachable Graphene Pressure Sensor with Micropillars for Skin-Elasticity Measurement. Nanotechnology 2019, 30, 335501. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.Q.; Soenksen, L.R.; Donghia, N.M.; Angenent-Mari, N.M.; de Puig, H.; Huang, A.; Lee, R.; Slomovic, S.; Galbersanini, T.; Lansberry, G.; et al. Wearable Materials with Embedded Synthetic Biology Sensors for Biomolecule Detection. Nat. Biotechnol. 2021, 39, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.; Wadekar, S.; DeCubellis, K.; Jackson, G.W.; Chiu, A.S.; Pagneux, Q.; Saada, H.; Engelmann, I.; Ogiez, J.; Loze-Warot, D.; et al. A Mask-Based Diagnostic Platform for Point-of-Care Screening of Covid-19. Biosens. Bioelectron. 2021, 192, 113486. [Google Scholar] [CrossRef]
- Xue, Q. An Intelligent Face Mask Integrated with High Density Conductive Nanowire Array for Directly Exhaled Coronavirus Aerosols Screening. Biosens. Bioelectron. 2021, 186, 113286. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.M.; Abdulwhhab, M.; Birring, S.S.; De Kock, E.; Garton, N.J.; Townsend, E.; Pareek, M.; Al-Taie, A.; Pan, J.; Ganatra, R.; et al. Exhaled Mycobacterium Tuberculosis Output and Detection of Subclinical Disease by Face-Mask Sampling: Prospective Observational Studies. Lancet Infect. Dis. 2020, 20, 607–617. [Google Scholar] [CrossRef]
- Tam, V.C.; Tam, S.Y.; Poon, W.K.; Law, H.K.W.; Lee, S.W. A Reality Check on the Use of Face Masks during the COVID-19 Outbreak in Hong Kong. eClinicalMedicine 2020, 22, 100356. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.V.; Eden, M.J.; Oakes, J.M.; Bellini, C.; Fernandez, L.A. Quantitative Method for Comparative Assessment of Particle Removal Efficiency of Fabric Masks as Alternatives to Standard Surgical Masks for PPE. Matter 2020, 3, 950–962. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tokura, H.; Guo, Y.P.; Wong, A.S.W.; Wong, T.; Chung, J.; Newton, E. Effects of Wearing N95 and Surgical Facemasks on Heart Rate, Thermal Stress and Subjective Sensations. Int. Arch. Occup. Env. Health 2005, 78, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Zhiqing, L.; Yongyun, C.; Wenxiang, C.; Mengning, Y.; Yuanqing, M.; Zhenan, Z.; Haishan, W.; Jie, Z.; Kerong, D.; Huiwu, L.; et al. Surgical Masks as Source of Bacterial Contamination during Operative Procedures. J. Orthop. Transl. 2018, 14, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Prabha, K.R.; Nataraj, B.; Swathi, P.; Tharani, V.R.; Vinola, A. IoT Based Smart Mask for Health Monitoring. In Proceedings of the 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 20–22 October 2022; pp. 568–572. [Google Scholar]
- Rajani Kumari, L.V.; Jaffery, M.A.; Nigam, K.S.S.; Manaswi, G.; Tharangini, P. Deep Learning-Based Smart Mask for Social Distancing. In Proceedings of the Sustainable Communication Networks and Application; Karrupusamy, P., Balas, V.E., Shi, Y., Eds.; Springer Nature: Singapore, 2022; pp. 213–228. [Google Scholar]
- Hyysalo, J.; Dasanayake, S.; Hannu, J.; Schuss, C.; Rajanen, M.; Leppänen, T.; Doermann, D.; Sauvola, J. Smart Mask—Wearable IoT Solution for Improved Protection and Personal Health. Internet Things 2022, 18, 100511. [Google Scholar] [CrossRef]
Multimodal Sensing | Sensing Mechanism | Characteristics | Ref. |
---|---|---|---|
Heart rate, SpO2 | Photoplethysmography sensor | Long-time and real-time remote monitoring of vital signs | [105] |
Skin temperature | Thermistor sensor | [105] | |
Multiphase respiratory activities | Piezo-impedance property of CNT/PDMS | A wide bandwidth dynamic pressure range with data processing and classification by machine learning | [106] |
Cardiorespiratory monitoring of ECG 1, LVET 2, PEP 3 | ECG via a wireless, multimodal stethoscope patch and validates LVET and PEP estimation from respiratory flow through a facial mask | Good performances with patient in the supine, lateral, and prone position | [107] |
Cough events | Audio and accelerometer sensors from multiple devices | Cross-correlation based adaptive time synchronization algorithm to ensure accurate time synchronization during concise event of cough | [108] |
Respiration monitoring and OSAS 4 diagnose | Capacitance and resistance change of cellulose-based hydrogel | Capacitance of hydrogel sensor changes with mechanical variation and resistance responds to thermal stimulus | [109] |
Dampness and respiration rate monitoring | Printed interdigitated electrode patterns to sense resistive and capacitive change by exhaled humidity | Identify breathing patterns and evaluate infection signs | [110] |
Facial and head physiological signals | 3 sensor modalities to measure facial muscle movements and motions | ML assisted analyzation of wearer’s context and affective state | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yin, J.; Ramakrishna, S.; Ji, D. Smart Mask as Wearable for Post-Pandemic Personal Healthcare. Biosensors 2023, 13, 205. https://doi.org/10.3390/bios13020205
Li J, Yin J, Ramakrishna S, Ji D. Smart Mask as Wearable for Post-Pandemic Personal Healthcare. Biosensors. 2023; 13(2):205. https://doi.org/10.3390/bios13020205
Chicago/Turabian StyleLi, Jingcheng, Jing Yin, Seeram Ramakrishna, and Dongxiao Ji. 2023. "Smart Mask as Wearable for Post-Pandemic Personal Healthcare" Biosensors 13, no. 2: 205. https://doi.org/10.3390/bios13020205
APA StyleLi, J., Yin, J., Ramakrishna, S., & Ji, D. (2023). Smart Mask as Wearable for Post-Pandemic Personal Healthcare. Biosensors, 13(2), 205. https://doi.org/10.3390/bios13020205