Analysis of the Interaction between DNA Aptamers and Cytochrome C on the Surface of Lipid Films and on the MUA Monolayer: A QCM-D Study †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Gold Nanowires
2.3. Functionalization of AuNWs with DNA Aptamers
2.4. Piezocrystal Cleaning, Preparation of Lipid Films, and MUA Monolayers with Covalently Attached Cyt C
2.5. The Principles of QCM-D and Viscoelastic Properties of Lipid Layers with Cyt C
3. Results and Discussion
3.1. The Interaction of Cytochrome C with Supported Lipid Films and with DNA Aptamers
3.2. The Interaction of DNA Aptamers with Cytochrome C Covalently Attached to the 11-Mercaptoundecanoic Layer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iverson, S.L.; Orrenius, S. The cardiolipin-cytochrome c interactions and the mitochondrial regulation of apoptosis. Arch. Biochem. Biophys. 2004, 423, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Geng, R.; Zhao, G.; Liu, M.; Li, M. A sandwich structured SiO2/cytochrome c/SiO2 on a boron-doped diamond film electrode as an electrochemical nitrite biosensor. Biomaterials 2008, 29, 2794–2901. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kim, S.-U.; Lee, J.-H.; Min, J.; Choi, J.-W. Fabrication of nano scaled protein monolayer consisting of cytochrome c on self-assembled 11-MUA layer for bioelectronic device. J. Nanosci. Nanotechnol. 2009, 9, 7136–7140. [Google Scholar] [CrossRef] [PubMed]
- Martinou, J.C.; Desagher, S.; Antonsson, B. Cytochrome c release from mitochondria: All or nothing. Nat. Cell Biol. 2000, 2, 41–43. [Google Scholar] [CrossRef]
- Goldstein, J.C.; Waterhouse, N.J.; Juin, P.; Evan, G.I.; Green, D.R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell Biol. 2000, 2, 156–162. [Google Scholar] [CrossRef]
- Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim. Biophys. Acta Bioenerg. 2006, 1757, 639–647. [Google Scholar] [CrossRef]
- Eleftheriadis, T.; Pissas, G.; Liakopoulos, V.; Stefanidis, I. Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage. Front. Immunol. 2016, 7, 1–5. [Google Scholar] [CrossRef]
- Yadav, S.; Sawarni, N.; Kumari, P.; Sharma, M. Advancement in analytical techniques fabricated for the quantitation of cytochrome c. Process Biochem. 2022, 122, 315–330. [Google Scholar] [CrossRef]
- Pataraia, S.; Liu, Y.; Lipowsky, R.; Dimova, R. Effect of cytochrome c on the phase behavior of charged multicomponent lipid membranes. Biochim. Biophys. Acta Biomembr. 2014, 1838, 2036–2045. [Google Scholar] [CrossRef]
- Trusova, V.M.; Gorbenko, G.P.; Molotkovsky, J.G.; Kinnunen, P.K.J. Cytochrome c-Lipid Interactions: New Insights from Resonance Energy Transfer. Biophys. J. 2010, 99, 1754–1763. [Google Scholar] [CrossRef]
- Bergstrom, C.L.; Beales, P.A.; Lv, Y.; Vanderlick, T.K.; Groves, J.T. Cytochrome c causes pore formation in cardiolipin-containing membranes. Proc. Natl. Acad. Sci. USA 2013, 110, 6269–6274. [Google Scholar] [CrossRef]
- Jalalvand, A.R.; Akbari, V.; Bahramikia, S. Two- and multi-way analyses of cardiolipin-cytochrome c interactions and exploiting second-order advantage for bio-sensing of cytochrome c. Sensing Bio-Sens. Res. 2022, 38, 100518. [Google Scholar] [CrossRef]
- Millo, D.; Ranieri, A.; Gross, P.; Ly, H.K.; Borsari, M.; Hildebrandt, P.; Wuite, G.J.L.; Gooijer, C.; Zwan, G. Van Der Electrochemical response of cytochrome c immobilized on smooth and roughened silver and gold surfaces chemically modified with 11-mercaptounodecanoic acid. J. Phys. Chem. C 2009, 113, 2861–2866. [Google Scholar] [CrossRef]
- Gomes, I.; Feio, M.J.; Santos, N.C.; Eaton, P.; Serro, A.P.; Saramago, B.; Pereira, E.; Franco, R. Controlled adsorption of cytochrome c to nanostructured gold surfaces. J. Nanoparticle Res. 2012, 14, 1321. [Google Scholar] [CrossRef]
- Nakano, K.; Yoshitake, T.; Yamashita, Y.; Bowden, E.F. Cytochrome c self-assembly on alkanethiol monolayer electrodes as characterized by AFM, IR, QCM, and direct electrochemistry. Langmuir 2007, 23, 6270–6275. [Google Scholar] [CrossRef]
- Manickam, P.; Kaushik, A.; Karunakaran, C.; Bhansali, S. Recent advances in cytochrome c biosensing technologies. Biosens. Bioelectron. 2017, 87, 654–668. [Google Scholar] [CrossRef]
- Stepanova, V.B.; Shurpik, D.N.; Evtugyn, V.G.; Stoikov, I.I.; Evtugyn, G.A.; Osin, Y.N.; Hianik, T. Label-free electrochemical aptasensor for cytochrome c detection using pillar[5]arene bearing neutral red. Sens. Actuators B Chem. 2016, 225, 57–65. [Google Scholar] [CrossRef]
- Shafaat, A.; Faridbod, F.; Ganjali, M.R. Label-free detection of cytochrome: C by a conducting polymer-based impedimetric screen-printed aptasensor. New J. Chem. 2018, 42, 6034–6039. [Google Scholar] [CrossRef]
- Sun, Y.; Ge, S.; Xue, J.; Zhou, X.; Lu, W.; Li, G.; Cao, X. Highly sensitive detection of cytochrome c in the NSCLC serum using a hydrophobic paper based–gold nanourchin substrate. Biomed. Opt. Express 2020, 11, 7062. [Google Scholar] [CrossRef]
- Poturnayova, A.; Castillo, G.; Subjakova, V.; Tatarko, T.; Snejdarkova, M.; Hianik, T. Optimization of cytochrome c detection by acoustic and electrochemical methods based on aptamer sensors. Sens. Actuators B Chem. 2017, 238, 817–827. [Google Scholar] [CrossRef]
- Batra, B.; Sangwan, S.; Ahlawat, J.; Sharma, M. Electrochemical sensing of cytochrome c using graphene oxide nanoparticles as platform. Int. J. Biol. Macromol. 2020, 165, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Zhang, X.; Cai, J.; Yang, P.H. A novel strategy for real-time and in situ detection of cytochrome c and caspase-9 in Hela cells during apoptosis. Analyst 2014, 139, 2499–2506. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Huang, P.-J.J.; Ding, J.; Liu, J. Aptamer-based biosensors for biomedical diagnostics. Analyst 2014, 139, 2627–2640. [Google Scholar] [CrossRef]
- He, F.; Wen, N.; Xiao, D.; Yan, J.; Xiong, H.; Cai, S.; Liu, Z.; Liu, Y. Aptamer-Based Targeted Drug Delivery Systems: Current Potential and Challenges. Curr. Med. Chem. 2020, 27, 2189–2219. [Google Scholar] [CrossRef]
- Adachi, T.; Nakamura, Y. Aptamers: A review of their chemical properties and modifications for therapeutic application. Molecules 2019, 24, 4229. [Google Scholar] [CrossRef]
- Poturnayova, A.; Leitner, M.; Snejdarkova, M.; Hinterdorfer, P.; Hianik, T.; Ebner, A. Molecular addressability of lipid membrane embedded calixarenes towards cytochrome c. J. Nanomed. Nanotechnol. 2014, 5, 202. [Google Scholar] [CrossRef]
- Subjakova, V.; Oravczova, V.; Hianik, T. Polymer nanoparticles and nanomotors modified by dna/rna aptamers and antibodies in targeted therapy of cancer. Polymers 2021, 13, 341. [Google Scholar] [CrossRef]
- Bábelová, L.; Sohová, M.E.; Poturnayová, A.; Buríková, M.; Bizík, J.; Hianik, T. Label-free electrochemical aptasensor for Jurkat cells detection as a potential diagnostic tool for leukemia. Electroanalysis 2018, 30, 1487–1495. [Google Scholar] [CrossRef]
- Poturnayova, A.; Burikova, M.; Bizik, J.; Hianik, T. DNA aptamers in the detection of leukemia cells by the thickness shear mode acoustics method. ChemPhysChem 2018, 20, 545–554. [Google Scholar] [CrossRef]
- Poturnayová, A.; Dzubinová, Ľ.; Buríková, M.; Bízik, J.; Hianik, T. Detection of breast cancer cells using acoustics aptasensor specific to HER2 receptors. Biosensors 2019, 9, 72. [Google Scholar] [CrossRef]
- Voinova, M.V.; Rodahl, M.; Jonson, M.; Kasemo, B. Viscoelastic coustic Response of layered polymer films at fluid-solid interfaces: Continuum mechanics approach. Phys. Scripta 1999, 59, 391–396. [Google Scholar] [CrossRef]
- Chinnapen, D.J.; Sen, D. Hemin-stimulated docking of cytochrome c to a hemin-DNA aptamer complex. Biochemistry 2002, 41, 5202–5212. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Fernández de Ávila, B.; Martín, A.; Soto, F.; Lopez-Ramirez, M.A.; Campuzano, S.; Vásquez-Machado, G.M.; Gao, W.; Zhang, L.; Wang, J. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 2015, 9, 6756–6764. [Google Scholar] [CrossRef]
- Liu, L.L.; Marques, L.; Correia, R.; Morgan, S.P.; Lee, S.W.; Tighe, P.; Fairclough, L.; Korposh, S. Highly sensitive label-free antibody detection using a long period fibre grating sensor. Sens. Actuators B Chem. 2018, 271, 24–32. [Google Scholar] [CrossRef]
- Vashist, S.K. Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications. Diagnostics 2012, 2, 23–33. [Google Scholar] [CrossRef]
- Mirsky, V.M.; Muss, M.; Krause, C.; Wolfbeis, O.S. Capacitive approach to determine phospholipase A2 activity toward artificial and natural substrates. Anal. Chem. 1998, 70, 3674–3678. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Lowe, C.H.R. Overview of biosensor and bioarray technologies. In Handbook of Biosensors and Biochips; Marks, R., Lowe, C.H.R., Cullen, D.C., Weetall, H.H., Karube, I., Eds.; John Wiley and Sons: London, UK, 2007; pp. 1–16. [Google Scholar] [CrossRef]
- Skládal, P. Piezoelectric biosensors. Trends Anal. Chem. 2016, 79, 127–133. [Google Scholar] [CrossRef]
- Ellis, J.S.; Thompson, M. Conformational states of nucleic acid–peptide complexes monitored by acoustic wave propagation and molecular dynamics simulation. Chem. Sci. 2011, 2, 237–255. [Google Scholar] [CrossRef]
- Garidel, P.; Blume, A. 1,2-Dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) monolayers: Influence of temperature, pH, ionic strength and binding of alkaline earth cations. Chem. Phys. Lipids 2005, 138, 50–59. [Google Scholar] [CrossRef]
- Ghosh, C.; Asif Amin, M.D.; Jana, B.; Bhattacharyya, K. Size and structure of cytochrome-c bound to gold nano-clusters: Effect of ethanol. J. Chem. Sci. 2017, 129, 841–847. [Google Scholar] [CrossRef]
- Halstenberg, S.; Heimburg, T.; Hianik, T.; Kaatze, U.; Krivanek, R. Cholesterol-induced variations in the volume and enthalpy fluctuations of lipid bilayers. Biophys. J. 1998, 75, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Larsson, C.; Rodahl, M.; Höök, F. Characterization of DNA immobilization and subsequent hybridization on a 2D arrangement of streptavidin on a biotin-modified lipid bilayer supported on SiO2. Anal. Chem. 2003, 75, 5080–5087. [Google Scholar] [CrossRef]
- Dutta, A.K.; Nayak, A.; Belfort, G. Viscoelastic properties of adsorbed and cross-linked polypeptide and protein layers at a solid–liquid interface. J. Colloid Interface Sci. 2008, 324, 55–60. [Google Scholar] [CrossRef]
- Spagnolo, S.; Muckley, E.S.; Ivanov, I.N.; Hianik, T. Analysis of trypsin activity at β-casein layers formed on hydrophobic surfaces using a multiharmonic acoustic method. Analyst 2022, 147, 461–470. [Google Scholar] [CrossRef]
- Kepplinger, C.; Lisdat, F.; Wollenberger, U. Cytochrome c/polyelectrolyte multilayers investigated by E-QCM-D: Effect of temperature on the assembly structure. Langmuir 2011, 27, 8309–8315. [Google Scholar] [CrossRef]
Parameter | Composition of the Adlayer | ||
---|---|---|---|
Lipid Film | Cyt C | DNA Aptamer | |
Δf, Hz | −150 | −77 | 70 |
ΔD, 10−5 | 3.17 | 1.18 | 1.11 |
Δm/A, ng/cm2 | 1035 | 531.3 | −483 |
h, nm | 10.14 | 3.9 | 3.3 |
σ, 1013 cm−2 | 92.7 | 2.67 | - |
ΔΓ, nm | 19.4 | 11.7 | 61.6 |
Δη, mPa·s | 0.1 | 0.05 | 1.53 |
Δμ, 105 Pa | 5.72 | 5.63 | 4.91 |
Changes in Frequency and Surface Density | Cyt C, μM | |||
---|---|---|---|---|
0.5 | 2 | 4.5 | 10 | |
Δf, Hz | −21.16 ± 6.48 | −33.60 ± 6.95 | −23.30 ± 3.25 | −22.66 ± 2.31 |
Δm/A, ng/cm2 | 146.0 ± 44.7 | 231.8 ± 48.0 | 160.8 ± 22.4 | 156.35 ± 15.9 |
h, nm | 1.08 ± 0.33 | 1.72 ± 0.36 | 1.19 ± 0.17 | 1.16 ± 0.12 |
σ, 1012 cm−2 | 7.33 ± 2.24 | 11.64 ± 2.41 | 8.10 ± 1.13 | 7.84 ± 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatarko, M.; Spagnolo, S.; Csiba, M.; Šubjaková, V.; Hianik, T. Analysis of the Interaction between DNA Aptamers and Cytochrome C on the Surface of Lipid Films and on the MUA Monolayer: A QCM-D Study. Biosensors 2023, 13, 251. https://doi.org/10.3390/bios13020251
Tatarko M, Spagnolo S, Csiba M, Šubjaková V, Hianik T. Analysis of the Interaction between DNA Aptamers and Cytochrome C on the Surface of Lipid Films and on the MUA Monolayer: A QCM-D Study. Biosensors. 2023; 13(2):251. https://doi.org/10.3390/bios13020251
Chicago/Turabian StyleTatarko, Marek, Sandro Spagnolo, Martin Csiba, Veronika Šubjaková, and Tibor Hianik. 2023. "Analysis of the Interaction between DNA Aptamers and Cytochrome C on the Surface of Lipid Films and on the MUA Monolayer: A QCM-D Study" Biosensors 13, no. 2: 251. https://doi.org/10.3390/bios13020251
APA StyleTatarko, M., Spagnolo, S., Csiba, M., Šubjaková, V., & Hianik, T. (2023). Analysis of the Interaction between DNA Aptamers and Cytochrome C on the Surface of Lipid Films and on the MUA Monolayer: A QCM-D Study. Biosensors, 13(2), 251. https://doi.org/10.3390/bios13020251