Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis
Abstract
:1. Introduction
2. Preparation of COFs and Improvement to Their Electrochemistry Performance
2.1. Preparation of COFs
2.1.1. Solvothermal Synthesis
2.1.2. Mechanochemical Synthesis
2.1.3. Solvent-Free Synthesis
2.1.4. Microwave-Assisted Synthesis
2.1.5. Sonochemical Synthesis
2.2. Strategies to Improve Electrochemistry Performance of COFs
2.2.1. COF/Carbon Materials
2.2.2. COF/Metal Nanoparticles
2.2.3. COF/Metallic Oxides
2.2.4. COF/Conducting Polymers
3. Applications in Food Safety Analysis
3.1. Bisphenols
3.2. Antibiotics
3.3. Pesticides
3.4. Heavy Metal Ions
3.5. Fungal Toxin and Bacterium
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elfadil, D.; Lamaoui, A.; Pelle, F.D.; Amine, A.; Compagnone, D. Molecularly imprinted polymers combined with electrochemical sensors for food contaminants analysis. Molecules 2021, 26, 4607. [Google Scholar] [CrossRef]
- Suresh, R.; Rajendran, S.; Senthil Kumar, P.; Hong, T.K.A.; Soto-Moscoso, M.; Jalil, A.A. Recent developments on graphene and its derivatives based electrochemical sensors for determinations of food contaminants. Food. Chem. Toxicol. 2022, 165, 113169. [Google Scholar] [CrossRef]
- Manikandan, V.S.; Adhikari, B.; Chen, A. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst 2018, 143, 4537. [Google Scholar] [CrossRef]
- Hou, X.D.; Xu, H.; Zhen, T.Y.; Wu, W. Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis. Trends. Food. Sci. Tech. 2020, 105, 76–92. [Google Scholar] [CrossRef]
- Maculewicz, J.; Świacka, K.; Stepnowski, P.; Dołżonek, J.; Bielińska, B. Ionic liquids as potentially hazardous pollutants: Evidences of their presence in the environment and recent analytical developments. J. Hazard. Mater. 2022, 437, 129353. [Google Scholar] [CrossRef]
- Steiner, D.; Malachová, A.; Sulyok, M.; Krska, R. Challenges and future directions in LC-MS-based multiclass method development for the quantification of food contaminants. Anal. Bioanal. Chem. 2021, 413, 25–34. [Google Scholar] [CrossRef]
- Invanova, A.S.; Merkuleva, A.D.; Andreev, S.V.; Sakharov, K.A. Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food. Chem. 2019, 283, 431–436. [Google Scholar] [CrossRef]
- Feng, C.; Xu, Q.; Qiu, X.L.; Jin, Y.; Ji, J.Y.; Lin, Y.J.; Le, S.Y.; Wang, G.Q.; Lu, D.S. Comprehensive strategy for analysis of pesticide multi-residues in food by GC–MS/MS and UPLC-Q-Orbitrap. Food. Chem. 2020, 320, 126576. [Google Scholar] [CrossRef]
- Wen, X.; Neethirajan, S. Ensuring food safety: Quality monitoring using microfluidics. Trends. Food. Sci. Tech. 2017, 65, 10–22. [Google Scholar]
- Sun, Z.C.; Lv, J.W.; Liu, X.; Tang, Z.W.; Wang, X.R.; Xu, Y.; Hammock, B.D. Development of a nanobody-aviTag fusion protein and its application in a streptavidin-biotin-amplified enzyme-linked immunosorbent assay for ochratoxin a in cereal. Anal. Chem. 2018, 90, 10628–10634. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Zhong, Y.H.; Li, G.K.; Hu, Y.F. Rapid analysis of quinoxalines in feeds by a fluorescence sensor based ontetraphenylmethane porous organic framework membrane. Sensor. Actuat. B. Chem. 2022, 356, 131350. [Google Scholar] [CrossRef]
- Santos, A.D.C.; Fonseca, F.A.; Lião, L.M.; Alcantara, G.B.; Barison, A. High-resolution magic angle spinning nuclear magnetic resonance in foodstuff analysis. Trac. Trend. Anal. Chem. 2015, 73, 10–18. [Google Scholar] [CrossRef]
- Ferrari, A.G.; Crapnell, R.D.; Banks, C.E. Electroanalytical overview: Electrochemical sensing platforms for food and drink safety. Biosensors 2021, 11, 291. [Google Scholar] [CrossRef]
- Li, T.; Shang, D.W.; Gao, S.W.; Wang, B.; Kong, H.; Yang, G.Z.; Shu, W.D.; Xu, P.L.; Wei, G. Two-Dimensional material-based electrochemical sensors/biosensors for food safety and biomolecular detection. Biosensors 2022, 12, 314. [Google Scholar] [CrossRef]
- Gan, T.; Wang, Z.K.; Shi, Z.X.; Zheng, D.Y.; Sun, J.Y.; Liu, Y.M. Graphene oxide reinforced core-shell structured Ag@Cu2O with tunable hierarchical morphologies and their morphology-dependent electrocatalytic properties for bio-sensing applications. Biosens. Bioelectron. 2018, 112, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.J.; Wang, Q.W.; Xue, S.J.; Wang, G.L.; Zou, Z.Q.; Yu, N.F.; Huang, Q.H.; Fu, L.J.; Wu, Y.P. A sensor of liquid methanol for direct methanol fuel cells. Anal. Chim. Acta. 2021, 1177, 338785. [Google Scholar] [CrossRef] [PubMed]
- Shanbhag, M.M.; Shetti, N.P.; Kulkarni, R.M.; Chandra, P. Nanostructured Ba/ZnO modified electrode as a sensor material for detection of organosulfur thiosalicylic acid. Microchem. J. 2020, 159, 105409. [Google Scholar] [CrossRef]
- Li, F.Z.; Ni, B.B.; Zheng, Y.R.; Huang, Y.X.; Li, G.L. A simple and efficient voltammetric sensor for dopamine determination based on ZnO nanorods/electro-reduced graphene oxide composite. Surf. Interfaces 2021, 26, 101375. [Google Scholar] [CrossRef]
- Murugan, P.; Nagarajan, R.D.; Shetty, B.H.; Govindasamy, M.; Sundramoothy, A.K. Recent trends in the applications of thermally expanded graphite for energy storage and sensors–A review. Nanoscale Adv. 2021, 3, 6294–6309. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.P.; Zhang, L.N.; Zhang, Y.C.; Shen, L. Phosphorus-doped graphene-based electrochemical sensor for sensitive detection of acetaminophen. Anal. Chim. Acta. 2018, 1036, 26–32. [Google Scholar] [CrossRef]
- Kajal, N.; Singh, V.; Gupta, R.; Gautam, S. Metal organic frameworks for electrochemical sensor applications: A review. Environ. Res. 2022, 204, 112320. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.C.; Sun, X.; Zha, X.Q.; Khan, S.U.; Wang, Y. Ultrasensitive electrochemical detection of butylated hydroxy anisole via metalloporphyrin covalent organic frameworks possessing variable catalytic active sites. Biosensors 2022, 12, 975. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.X.; Nie, B.B.; Qu, X.Y.; Wang, M.H.; Yang, J.; Li, G.X. Histostar-functionalized covalent organic framework for electrochemical detection of exosomes. Biosensors 2022, 12, 704. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wu, N.; Wang, L.Y.; Song, Y.H.; Du, Y.; Ma, G.R. Biosensor based on covalent organic framework immobilized acetylcholinesterase for ratiometric detection of carbaryl. Biosensors 2022, 12, 625. [Google Scholar] [CrossRef]
- Martínez-Periñán, E.; Martínez-Fernández, M.; Segura, J.L.; Lorenzo, E. Electrochemical (bio)sensors based on covalent organic frameworks (COFs). Sensors 2022, 22, 4758. [Google Scholar] [CrossRef]
- Zha, X.Q.; Sun, X.; Chu, H.C.; Wang, Y. Synthesis of bimetallic covalent organic framework nanocomposite for enhanced electrochemical detection of gallic acid. Colloid. Surf. A 2022, 651, 129748. [Google Scholar] [CrossRef]
- Zhang, X.L.; Li, G.L.; Wu, D.; Zhng, B.; Hu, N.; Wang, H.L.; Liu, J.H.; Wu, Y.N. Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Biosens. Bioelectron. 2019, 145, 111699. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.L.; Wu, Z.; Wen, W.; Zhang, X.H.; Wang, S.F. Electrochemical sensor based on confined synthesis of gold nanoparticles @covalent organic frameworks for the detection of bisphenol A. Anal. Chim. Acta 2023, 1239, 340743. [Google Scholar] [CrossRef]
- Wang, J.Y.; Hu, H.Y.; Lu, S.L.; Hu, J.D.; Zhu, H.; Duan, F.; Du, M.L. Conductive metal and covalent organic frameworks for electrocatalysis: Design principles, recent progress and perspective. Nanoscale 2022, 14, 277–288. [Google Scholar] [CrossRef]
- Cȏté, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keefe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.Q.; Li, X.; Peh, S.B.; Yuan, Y.D.; Wang, Y.X.; Ji, D.X.; Peng, S.J.; Liu, G.L.; Ying, S.M.; Yuan, D.Q.; et al. Restriction of molecular rotors in ultrathin two-dimensional covalent organic framework nanosheets for sensing signal amplification. Chem. Mater. 2019, 31, 146–160. [Google Scholar] [CrossRef]
- Lyu, H.; Diercks, C.S.; Zhu, C.H.; Yaghi, O.M. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 6848–6852. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Gan, S.X.; Zhang, X.; Li, H.; Qi, Q.Y.; Cui, F.Z.; Lu, J.; Zhao, X. Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde. J. Am. Chem. Soc. 2019, 141, 14981–14986. [Google Scholar] [CrossRef]
- Wang, K.W.; Jia, Z.F.; Bai, Y.; Wang, X.; Hodgkiss, S.E.; Chen, L.J.; Chong, S.Y.; Wang, X.Y.; Yang, H.F.; Xu, Y.J.; et al. Synthesis of stable thiazole-linked covalent organic frameworks via a multicomponent reaction. J. Am. Chem. Soc. 2020, 142, 11131–11138. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.R.; Li, F.F.; Xu, R.H.; Zhang, C.R.; Chen, X.R.; Yan, R.H.; Liang, R.P.; Qiu, J.D. Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater. Angew. Chem. Int. Ed. 2020, 59, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Jagt, R.V.D.; Vasileiadis, A.; Veldhuizen, H.; Shao, P.P.; Feng, X.; Ganapathy, S.; Habisreutinger, N.C.; Veen, M.A.V.D.; Wang, C.; Wagemaker, M.; et al. Synthesis and structure-property relationships of polyimide covalent organic frameworks for carbon dioxide capture and (aqueous) sodium-ion batteries. Chem. Mater. 2021, 33, 818–833. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 5328–5331. [Google Scholar] [CrossRef] [PubMed]
- Preet, K.; Gupta, G.; Kotal, M.; Kansal, S.K.; Salunke, D.B.; Sharma, H.K.; Sahoo, S.C.; Voort, P.V.D.; Roy, S. Mechanochemial synthesis of a new triptycene-based imine- linked covalent organic polymer for degradation of organic dye. Cryst. Growth. Des. 2019, 19, 2525–2530. [Google Scholar] [CrossRef]
- Lv, H.Z.; Zhao, X.L.; Niu, H.Y.; He, S.J.; Tang, Z.; Wu, F.C.; Giesy, J.P. Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J. Hazard. Mater. 2019, 369, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Zhao, W.J.; Niu, H.Y.; Cai, Y.Q. Mechanochemical construction 2D/2D covalent organic nanosheets heterojunctions based on substoichiometric covalent organic frameworks. ACS Appl. Mater. Interfaces 2021, 13, 42035–42043. [Google Scholar] [CrossRef]
- Wang, Z.F.; Yang, Y.; Zhao, Z.F.; Zhang, P.H.; Zhang, Y.S.; Liu, J.J.; Ma, S.Q.; Cheng, P.; Chen, Y.; Zhang, Z.J. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat. Commun. 2021, 12, 1982. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Meng, F.C.; Wu, D.Q.; Zhang, F. Synthesis of vinylene-linked covalent organic frameworks by monomer self-catalyzed sctivation of knoevenagel condensation. J. Am. Chem. Soc. 2022, 144, 3653–3659. [Google Scholar] [CrossRef] [PubMed]
- Li, S.X.; Ma, R.; Xu, S.Q.; Zheng, T.Y.; Fu, G.G.; Wu, Y.L.; Liao, Z.Q.; Kuang, Y.B.; Hou, Y.; Wang, D.S.; et al. Direct construction of isomeric benzobisoxazole-vinylene-linked covalent organic frameworks with distinct photocatalytic properties. J. Am. Chem. Soc. 2022, 144, 13953–13960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.H.; Wang, Z.F.; Yang, Y.; Wang, S.; Wang, T.; Liu, J.J.; Cheng, P.; Chen, Y.; Zhang, Z.J. Melt polymerization synthesis of a class of robust self-shaped olefin-linked COF foams as high-efficiency separators. Sci. China. Chem. 2022, 6, 65. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Chen, X.P.; Li, B.Y.; Zhao, S.; Niu, L.W.; Zhang, Z.J.; Chen, Y. Spatial regulation of acceptor units in olefin-linked COFs toward highly efficient photocatalytic H2 evolution. Adv. Sci. 2022, 9, 2203832. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Mao, T.H.; Hao, L.Q.; Sun, T.K.; Wang, T.H.; Cheng, P.; Chen, Y.; Wang, Z.F.; Zhang, Z.J. Solvent-free synthesis of C=N linked two-dimensional covalent organic frameworks. Macromol. Rapid. Commun. 2022, 2200722, 1–8. [Google Scholar] [CrossRef]
- Campbell, N.L.; Clowes, R.; Ritchie, L.K.; Cooper, A.I. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 2009, 21, 204–206. [Google Scholar] [CrossRef]
- Ren, S.J.; Bojdys, M.J.; Dawson, R.; Laybourn, A.; Khimyak, Y.Z.; Adams, D.J.; Cooper, A.I. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 2012, 24, 2357–2361. [Google Scholar] [CrossRef]
- Zhang, W.; Qiu, L.G.; Yuan, Y.P.; Xie, A.J.; Shen, Y.H.; Zhu, J.F. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives. J. Hazard. Mater. 2012, 221–222, 147–154. [Google Scholar] [CrossRef]
- Wei, H.; Chai, S.Z.; Hu, N.T.; Yang, Z.; Wei, L.M.; Wang, L. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 2015, 51, 12178. [Google Scholar] [CrossRef]
- Ding, Y.S.; Wang, Y.; Su, Y.J.; Yang, Z.; Liu, J.Q.; Hua, X.L.; Wei, H. A novel channel-wall engineering strategy for two-dimensional cationic covalent organic frameworks: Microwave-assisted anion exchange and enhanced carbon dioxide capture. Chin. Chem. Lett. 2020, 31, 193–196. [Google Scholar] [CrossRef]
- Chen, L.; Du, J.C.; Zhou, W.; Shen, H.Z.; Tan, L.X.; Zhou, C.L.; Dong, L.C. Microwave-Assisted solvothermal synthesis of covalent organic frameworks (COFs) with stable superhydrophobicity for oil/water separation. Chem-Asian. J. 2020, 15, 3421–3427. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.T.; Kim, J.; Cho, H.Y.; Kim, S.; Ahn, W.S. Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv. 2021, 2, 10179–10181. [Google Scholar] [CrossRef]
- Yoo, J.T.; Lee, S.H.; Hirata, S.; Kim, C.R.; Lee, C.K.; Shiraki, T.; Nakashima, N.; Shim, J.K. In situ synthesis of covalent organic frameworks (COFs) on carbon nanotubes and graphenes by sonochemical reaction for CO2 adsorbents. Chem. Lett. 2015, 44, 560–562. [Google Scholar] [CrossRef]
- Zhao, W.; Yan, P.Y.; Yang, H.F.; Bahri, M.; James, A.M.; Chen, H.M.; Liu, L.J.; Li, B.Y.; Pang, Z.F.; Clowes, R.; et al. Using sound to synthesize covalent organic frameworks in water. Nat. Synth. 2022, 1, 87–95. [Google Scholar] [CrossRef]
- Kumar, S.; Lgnacz, G.; Szekely, G. Synthesis of covalent organic frameworks using sustainable solvents and machine learning. Green Chem. 2021, 23, 8932–8939. [Google Scholar] [CrossRef]
- Aykol, M.; Montoya, J.H.; Hummelshøj, J. Rational solid-state synthesis routes for inorganic materials. J. Am. Chem. Soc. 2021, 143, 9244–9259. [Google Scholar] [CrossRef]
- Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X.M. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Mater. Today Nano 2020, 11, 100076. [Google Scholar] [CrossRef]
- Pokhrel, N.; Vabbina, P.K.; Pala, N. Sonochemistry: Science and engineering. Ultrason. Sonochem. 2016, 29, 104–128. [Google Scholar] [CrossRef]
- Sun, Y.F.; He, J.B.; Waterhouse, G.I.N.; Xu, L.H.; Zhang, H.Y.; Qiao, X.G.; Xu, Z.X. A selective molecularly imprinted electrochemical sensor with GO@COF signal amplification for the simultaneous determination of sulfadiazine and acetaminophen. Sensor. Actuat. B Chem. 2019, 300, 126993. [Google Scholar] [CrossRef]
- Pan, F.; Tong, C.Y.; Wang, Z.Y.; Han, H.T.; Liu, P.; Pan, D.W.; Zhu, R.L. Nanocomposite based on graphene and intercalated covalent organic frameworks with hydrosulphonyl groups for electrochemical determination of heavy metal ions. Microchim. Acta 2021, 188, 295. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Xie, Y.; Yang, Y.X.; Liang, H.H.; Wang, L.; Song, Y.H. Electroactive covalent organic frameworks/carbon nanotubes composites for electrochemical sensing. ACS Appl. Nano Mater. 2020, 3, 1412–1419. [Google Scholar] [CrossRef]
- Yuan, R.R.; Yan, Z.J.; He, H.M. Crystal engineering of C60 fullerenes trapped in covalent organic frameworks for enhanced electrochemical impedimetric aptasensing performance. Appl. Surf. Sci. 2022, 573, 151556. [Google Scholar] [CrossRef]
- Wu, N.; Wang, L.Y.; Xie, Y.; Du, Y.; Song, Y.H.; Wang, L. Double signal ratiometric electrochemical riboflavin sensor based on macroporous carbon/electroactive thionine-contained covalent organic framework. J. Colloid Interfaces Sci. 2022, 608, 219–226. [Google Scholar] [CrossRef]
- Zhu, P.H.; Li, S.S.; Zhou, S.; Ren, N.; Ge, S.G.; Zhang, Y.; Wang, Y.F.; Yu, J.H. In situ grown COFs on 3D strutted graphene aerogel for electrochemical detection of NO released from living cells. Chem. Eng. J. 2021, 420, 127559. [Google Scholar] [CrossRef]
- Arul, P.; Huang, S.T.; Gowthaman, N.S.K.; Shankar, S. Simultaneous electrochemical determination of DNA nucleobases using AgNPs embedded covalent organic framework. Microchim. Acta 2021, 188, 358. [Google Scholar] [CrossRef]
- Sun, L.; Guo, H.; Pan, Z.L.; Liu, B.Q.; Zhang, T.T.; Yang, M.; Wu, N.; Zhang, J.Y.; Yang, F.; Yang, W. In-situ reducing platinum nanoparticles on covalent organic framework as a sensitive electrochemical sensor for simultaneous detection of catechol, hydroquinone and resorcinol. Colloids Surf. A 2022, 635, 128114. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, T.; Chen, Y.L.; Wang, Y.; Wang, L. Fabrication of core-shell magnetic covalent organic frameworks composites and their application for highly sensitive detection of luteolin. Talanta 2020, 213, 120843. [Google Scholar] [CrossRef]
- Chu, H.C.; Sun, X.; Zha, X.Q.; Zhang, Y.; Wang, Y. Synthesis of core-shell structured metal oxide@covalent organic framework composites as a novel electrochemical platform for dopamine sensing. Colloids Surf. A 2022, 648, 129238. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, Y.X.; Wang, L.Y.; Wang, L.; Chen, S.H. An ultrafine ZnO/ZnNi2O4@porous carbon@covalent-organic framework for electrochemical detection of paracetamol and tert-butyl hydroquinone. J. Alloy. Compd. 2022, 906, 164369. [Google Scholar] [CrossRef]
- Pan, Z.L.; Guo, H.; Sun, L.; Liu, B.Q.; Chen, Y.; Zhang, T.T.; Wang, M.Y.; Peng, L.P.; Yang, W. A novel electrochemical platform based on COF/La2O3/MWCNTS for simultaneous detection of dopamine and uric acid. Colloids Surf. A 2022, 635, 128083. [Google Scholar] [CrossRef]
- Mulzer, C.R.; Shen, L.X.; Bisbey, R.P.; McKone, J.R.; Zhang, N.; Abruña, H.D.; Dichtel, W.R. Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Central Sci. 2016, 2, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chen, Y.L.; Sun, X.; Wang, Y.; Wang, Y. Conducting polymer engineered covalent organic framework as a novel electrochemical amplifier for ultrasensitive detection of acetaminophen. Chin. Chem. Lett. 2021, 32, 2061–2065. [Google Scholar] [CrossRef]
- Xie, F.; Yang, M.; Jiang, M.; Huang, X.J.; Liu, W.Q.; Xie, P.H. Carbon-based nanomaterials–A promising electrochemical sensor toward persistent toxic substance. Trac-Trend. Anal. Chem. 2019, 119, 115624. [Google Scholar] [CrossRef]
- Lu, S.Y.; Wang, S.L.; Wu, P.; Wang, D.Q.; Yi, J.C.; Li, L.; Ding, P.; Pan, H.Z. A composite prepared from covalent organic framework and gold nanoparticles for the electrochemical determination of enrofloxacin. Adv. Powder Technol. 2021, 32, 2106–2115. [Google Scholar] [CrossRef]
- Wang, L.J.; Gao, W.L.; Ng, S.; Pumera, M. Chiral protein-covalent organic framework 3D-Printed structures as chiral biosensors. Anal. Chem. 2021, 93, 5277–5283. [Google Scholar] [CrossRef]
- Pang, Y.H.; Wang, Y.Y.; Shen, X.F.; Qiao, J.Y. Covalent organic framework modified carbon cloth for ratiometric electrochemical sensing of bisphenol A and S. Microchim. Acta 2022, 189, 189. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Pang, Y.H.; Shen, X.F.; Jiang, R.; Wang, Y.Y. Covalent organic framework DQTP modified pencil graphite electrode for simultaneous determination of bisphenol A and bisphenol S. Talanta 2022, 236, 122859. [Google Scholar] [CrossRef]
- Goulart, L.A.; Teixeira, A.R.L.; Ramalho, D.A.; Terezo, A.J.; Castilho, M. Development of an analytical method for the determination of tert-butylhydroquinone in soybean biodiesel. Fuel 2014, 115, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Xie, Y.; Sun, X.; Wang, Y.; Wang, Y. Tunable construction of crystalline and shape-tailored Co3O4@TAPB-DMTP-COF composites for the enhancement of tert-butylhydroquinone electrocatalysis. Sensor. Actuat. B Chem. 2021, 331, 129438. [Google Scholar] [CrossRef]
- Yang, Y.K.; Shi, Z.; Wang, X.M.; Bai, B.Q.; Qin, S.; Li, J.D.; Jing, X.; Tian, Y.; Fang, G.Z. Portable and on-site electrochemical sensor based on surface molecularly imprinted magnetic covalent organic framework for the rapid detection of tetracycline in food. Food Chem. 2022, 395, 133532. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.H.; Pang, C.H.; Li, S.H.; Xiong, Y.H.; Li, J.P.; Luo, J.H.; Yang, Y. Synthesis of Zr-coordinated amide porphyrin-based two-dimensional covalent organic framework at liquid-liquid interface for electrochemical sensing of tetracycline. Biosens. Bioelectron. 2019, 146, 111734. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.R.; Liu, Z.B.; Sun, H.; He, H.M. Porphyrin-based porous organic frameworks for the ultrasensitive electrochemical impedimetric aptasensing of oxytetracycline. Appl. Surf. Sci. 2021, 569, 151038. [Google Scholar] [CrossRef]
- Sun, Y.F.; Xu, L.H.; Waterhouse, G.I.N.; Wang, M.L.; Qiao, X.G.; Xu, Z.X. Novel three-dimensional electrochemical sensor with dual signal amplification based on MoS2 nanosheets and high-conductive NH2-MWCNT@COF for sulfamerazine determination. Sensor. Actuat. B Chem. 2019, 281, 107–114. [Google Scholar] [CrossRef]
- Sun, Y.F.; Waterhouse, G.I.N.; Xu, L.H.; Qiao, X.G.; Xu, Z.X. Three-dimensional electrochemical sensor with covalent organic framework decorated carbon nanotubes signal amplification for the detection of furazolidone. Sensor. Actuat. B Chem. 2020, 321, 128501. [Google Scholar] [CrossRef]
- Yuan, R.R.; He, H.M. Construction of an electrochemical aptasensor based on a carbazole-bearing porous organic polymer for rapid and ultrasensitive detection of penicillin. Appl. Surf. Sci. 2021, 563, 150307. [Google Scholar] [CrossRef]
- Han, Z.Y.; Zhang, H.; Li, H.K.; Zhu, Q.Q.; He, H.M. Ingenious construction of an electrochemical aptasensor based on a Au@COF/GO-NH2 composite with excellent detection performance. J. Mater. Chem. C 2021, 9, 4576. [Google Scholar] [CrossRef]
- Xiao, Y.W.; Wu, N.; Wang, L.; Chen, L.L. A novel paper-based electrochemical biosensor based on N, O-rich covalent organic frameworks for carbaryl detection. Biosensors 2022, 12, 899. [Google Scholar] [CrossRef]
- Liu, C.; Cai, L.; Wang, X.H.; Guo, Y.; Fang, G.Z.; Wang, S. Construction of molecularly imprinted sensor based on covalent organic frameworks DAFB-DCTP-doped carbon nitride nanosheets with high electrochemiluminescence activity for sensitive detection of carbaryl. Microchem. J. 2022, 178, 107416. [Google Scholar] [CrossRef]
- Wang, L.Y.; Wu, N.; Wang, L.; Song, Y.H.; Ma, G.R. Accurate detection of organophosphorus pesticides based on covalent organic framework nanofiber with a turn-on strategy. Sensor. Actuat. B Chem. 2022, 372, 132608. [Google Scholar] [CrossRef]
- Niu, K.; Zhang, Y.Y.; Chen, J.P.; Lu, X.B. 2D conductive covalent organic frameworks with abundant carbonyl groups for electrochemical sensing. ACS Sens. 2022, 7, 3551–3559. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, S.; Shan, J.J.; Bai, X.T. Novel electrochemical acetylcholinesterase biosensor based on core-shell covalent organic Framework@Multi-Walled carbon nanotubes (COF@MWCNTs) composite for detection of malathion. Int. J. Electrochem. Sci. 2022, 17, 220543. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zhou, M.Y.; Jin, C.; Zeng, J.X.; Huang, C.; Song, Q.Y.; Song, Y.G. Preparation of a sensor based on biomass porous carbon/covalent-organic frame composites for pesticide residues detection. Front. Chem. 2020, 8, 643. [Google Scholar] [CrossRef] [PubMed]
- Sarvestani, M.R.J.; Madrakian, T.; Afkhami, A. Simultaneous determination of Pb2+ and Hg2+ at food specimens by a melamine-based covalent organic framework modified glassy carbon electrode. Food Chem. 2023, 402, 134246. [Google Scholar] [CrossRef] [PubMed]
- Sarvestani, M.R.J.; Madrakian, T.; Afkhami, A. Ultra-trace levels voltammetric determination of Pb2+ in the presence of Bi3+ at food samples by a Fe3O4@Schiff base Network1 modified glassy carbon electrode. Talanta 2022, 250, 123716. [Google Scholar] [CrossRef]
- Yin, J.Q.; Zhai, H.G.; Wang, Y.; Wang, B.; Chu, G.L.; Guo, Q.; Zhang, Y.H.; Sun, X.; Guo, Y.M.; Zhang, Y.Y. COF/MWCNTs/CLS Based electrochemical sensor for simultaneous and sensitive detection of multiple heavy metal ions. Food Anal. Method. 2022, 15, 3244–3256. [Google Scholar] [CrossRef]
- Guo, L.L.; Wang, Y.Y.; Pang, Y.H.; Shen, X.F.; Yang, N.C.; Ma, Y.; Zhang, Y. In situ growth of covalent organic frameworks TpBD on electrode for electrochemical determination of aflatoxin M1. J. Electroanal. Chem. 2021, 881, 114931. [Google Scholar] [CrossRef]
- Xiao, S.; Yang, X.; Wu, J.Y.; Liu, Q.L.; Li, D.F.; Huang, S.F.; Xie, H.Z.; Yu, Z.Z.; Gan, N. Reusable electrochemical biosensing platform based on egg yolk antibody-labeled magnetic covalent organic framework for on-site detection of Escherichia coli in foods. Sensor. Actuat. B Chem. 2022, 369, 132320. [Google Scholar] [CrossRef]
- Deceuninck, Y.; Bichon, E.; Gény, T.; Veyrand, B.; Grandin, F.; Viguié, C.; Marchand, P.; Bizec, B.L. Quantitative method for conjugated metabolites of bisphenol A and bisphenol S determination in food of animal origin by ultra high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2019, 1601, 232–242. [Google Scholar] [CrossRef]
- Fernandes, P.; Martens, E. Antibiotics in late clinical development. Biochem. Pharmacol. 2017, 133, 152–163. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, D.; Freitas, A.; Pouca, A.S.V.; Barbosa, J.; Ramos, F. The use of ultra-high-pressure-liquid-chromatography tandem time-of-flight mass spectrometry as a confirmatory method in drug residue analysis: Application to the determination of antibiotics in piglet liver. J. Chromatogr. B 2017, 6, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.X.; Lai, K.Q.; Rasco, B.A.; Huang, Y.Q. Determination of carbaryl pesticide in Fuji apples using surface-enhanced raman spectroscopy coupled with multivariate analysis. LWT Food Sci. Technol. 2015, 60, 352–357. [Google Scholar] [CrossRef]
- Harshit, D.; Charmy, K.; Nrupesh, P. Organophosphorus pesticides determination by novel HPLC and spectrophotometric method. Food Chem. 2017, 230, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Fathabad, A.E.; Shariatifar, N.; Moazzen, M.; Nazmara, S.; Fakhri, Y.; Alimohammadi, M.; Azari, A.; Khaneghah, A.M. Determination of heavy metal content of processed fruit products from Tehran’s market using ICP-OES: A risk assessment study. Food Chem. Toxicol. 2018, 115, 436–446. [Google Scholar] [CrossRef]
- Jia, Y.M.; Zhou, G.H.; Wang, X.D.; Zhang, Y.Z.; Li, Z.G.; Liu, P.L.; Yu, B.; Zhang, J. A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta 2020, 219, 121342. [Google Scholar] [CrossRef]
Synthesis Methods | Energy | Time (min) | Temperature (°C) | Solvents | Advantages | Disadvantages | Refs. |
---|---|---|---|---|---|---|---|
Solvothermal synthesis | Oven heater | 2–9 d | 80–200 | 1,4-dioxane; acetic acid; TFA; Toluene; DMSO; o-DCB; EtOH; m-cresol; NMP; isoquinoline | The most commonly used synthesis method; High crystallinity | Long reaction time; require organic solvents | [30,31,32,33,34,35,36] |
Mechanochemical synthesis | Mechanical force | 5–300 | RT | - | Simple, time-saving, solvent-free and operable at room temperature | Low surface areas and inferior crystallinity | [37,38,39,40] |
Solvent-free synthesis | Oven heater | 3–5 d | 120–200 | - | Environmental protection; High crystallinity | Requires solid state catalytics, high temperature and pressure | [41,42,43,44,45,46] |
Microwave-assisted synthesis | Microwave radiation | 30–360 | 80–110 | TfOH; DMSO; Mesitylene; 1,4-dioxane; acetic acid | Less reaction time, higher yields, environmental protection and lower energy consumption | Low crystallinity | [47,48,49,50,51,52] |
Sonochemical synthesis | Ultrasonic radiation | 60–120 | RT | Mesitylene; 1,4-dioxane; acetic acid | Fast synthesis rate and significantly reduced energy consumption; High crystallinity | Require high temperature | [53,54,55] |
Methods | Advantages | Disadvantages | Refs. |
---|---|---|---|
COF/Carbon Materials | Large surface areas, abundant active sites and excellent conductivity | The binding mechanism remains unclear | [60,61,62,63,64,65] |
COF/Metal Nanoparticles | Many kinds of metal nanoparticles; Faster electron transfer rate and excellent electrical conductivity | High cost of metal nanoparticles | [66,67] |
COF/Metallic Oxides | Excellent conductivity and functionality; Large surface areas | Tedious preparation process | [68,69,70,71] |
COF/Conducting Polymers | Simple preparation; Remarkable electrocatalytic performance | Few types of conductive materials | [72,73] |
Working Electrode | Samples | Techniques | Analytes | Linear Range (μmol/L) | LOD m (μmol/L) | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|---|---|---|
Bisphenols | ||||||||
COF/AgNPs/CC a | waters, tea, juice, beer | DPV e | Bisphenol A | 0.5–100 | 0.15 | Better reproducibility, wider linear range and low LOD | The types of bisphenol compounds detected are limited | [77] |
Bisphenol S | 0.5–100 | 0.15 | ||||||
DQTP/PGE b | Acidic food | DPV | Bisphenol A | 0.5–30 | 0.15 | [78] | ||
Bisphenol S | 0.5–30 | 0.15 | ||||||
CtpPa-2/GCE | Bottles | DPV | Bisphenol A | 0.1–50 | 0.02 | [79] | ||
Bisphenol S | 0.5–50 | 0.09 | ||||||
Co3O4@TAPB-DMTP-COF/GCE | Edible oil | DPV | Tert-butyl hydroquinone | 0.05–1.0; 1.0–400 | 0.002 | [80] | ||
Antibiotics | ||||||||
Fe3O4@COFs@MIPs/SPE c | Milk, Chicken | DPV | Tetracycline | 1 × 10−10–1 × 10−4 g/mL | 2.4 × 10−1 g/mL | Excellent stability, superior anti-interference ability and can detect different types of antibiotics | It is difficult to realize simultaneous detection of multiple antibiotics | [81] |
Zr-amide-Por-based 2D COF/GCE | Milk | ECL f | Tetracycline | 5 × 10−6–6 × 10−5 | 2.3 × 10−6 | [82] | ||
Fe-PPOF/AE d | Milk | EIS g | Oxytetracycline | 2.2 × 10−8–1.09 × 10−3 | 4.45 × 10−9 | [83] | ||
MoS2/NH2-MWCNT@COF/GCE | Pork, chicken | DPV | Sulfamerazine | 3.0 × 10−4–2.0 × 10−1 | 1.1 × 10−4 | [84] | ||
MIP/GO@COF/GCE | Beef and fodder | DPV | Sulfadiazine | 0.5–200 | 0.16 | [61] | ||
COF@NH2-CNT/GCE | Chicken, lamb | DPV | Furazolidone | 0.2–100 | 77.5 × 10−3 | [85] | ||
atp/POP/AE | Milk | EIS | Penicillin | 0.001–10 mg/L | 3.2 × 10−4 mg/L | [86] | ||
Au@COF/GO-NH2/AE | Milk | EIS | Chloramphenicol | 0.155–3.09 × 10−3 | 4.99 × 10−8 | [87] | ||
Pesticides | ||||||||
AChE/COFDHNDA-BTH/GCE | Lettuce juice | CV h | Carbaryl | 0.48–35 | 0.16 | Fast response, high sensitivity, good selectivity and practicability | Multiple pesticides cannot be analyzed at the same time | [88] |
MIPs/DAFB-DCTP@CNNs/GCE | Milk, fruit wine | ECL | Carbaryl | 1 × 10−7–50 | 4.67 × 10−8 | [89] | ||
AChE/COFTab-Dva/GCE | lettuce | DPV | DDVP l | 0.33–30 | 0.11 | [90] | ||
GC/COF1/AChE/GCE | cucumber | CV | Paraoxon | 10–1000 μg/L | 1.4 μg/L | [91] | ||
COF@MWCNTs/GCE | Spinach | DPV | Malathion | 1 × 10−3–10 | 0.5 × 10−3 | [92] | ||
COF-LZU1/3D-KSCs | Schisandra chinensis | DPV | Trichlorfon | 0.2–19 μg/L | 0.067 μg/L | [93] | ||
Heavy metal ions | ||||||||
SNW1/GCE | Black Tea, Rice, Pepper, Salt | ASSWV i | Pb2+ | 0.01–0.3 | 0.00072 | [94] | ||
Hg2+ | 0.05–0.3 | 0.01211 | Superior wide linear responses, low LOD; some working electrodes can enable simultaneous analysis of multiple metal ions | There are few COF-based electrode materials for heavy metal ions detection | ||||
Fe3O4@SNW1/GCE | Red pepper powder; black tea, rice | SWASV j | Pb2+ | 0.003–0.3 | 0.95 × 10−3 | [95] | ||
COF/MWCNTs/CLS/Nafion/GCE | Mushroom | SWASV | Cu2+ | 0.6–63.5 μg/L | 0.2 μg/L | [96] | ||
Pb2+ | 2.1–207.2 μg/L | 0.7 μg/L | ||||||
Cd2+ | 1.1–112.4 μg/L | 0.4 μg/L | ||||||
Fungal toxin, bacterium | ||||||||
TpBD-GCE | Milk samples | DPV | Aflatoxin M1 | 0.5–80 μg/L | 0.15 μg/L | High selectivity and sensitivity; good accuracy and speed | Limited useful electrode materials | [97] |
m-COF@IgY/SPE | Milk, beef, shrimp | SWV k | E. coli | 10–108 CFU/mL | 3 CFU/mL | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Wang, Y.; Li, G. Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis. Biosensors 2023, 13, 291. https://doi.org/10.3390/bios13020291
Lu Z, Wang Y, Li G. Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis. Biosensors. 2023; 13(2):291. https://doi.org/10.3390/bios13020291
Chicago/Turabian StyleLu, Zhenyu, Yingying Wang, and Gongke Li. 2023. "Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis" Biosensors 13, no. 2: 291. https://doi.org/10.3390/bios13020291