Simultaneous and Sensitive Detection of Three Pesticides Using a Functional Poly(Sulfobetaine Methacrylate)-Coated Paper-Based Colorimetric Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Preparation of Standard and Reagent Solution
2.3. Fabrication of the pSBMA-μPAD
2.4. Colorimetric Analysis
2.5. Real Sample Testing
3. Results
3.1. XPS Measurements
3.2. FT-IR Analysis
3.3. Evaluating Hydrophobicity, Hydrophilicity and Sensing Properties
3.4. Reaction Principle of the Three Pesticides
3.5. Colorimetric Detection for Chlorpyrifos
3.6. Colorimetric Detection for Profenofos
3.7. Colorimetric Detection for Cypermethrin
3.8. Application of the μPAD to Detection in Real Samples
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Songa, E.A.; Okonkwo, J.O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review. Talanta 2016, 155, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.B.; Chen, W.W.; Wei, J.H.; Li, X.B.; Wang, Z.; Jiang, X.Y. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal. Chem. 2012, 84, 4185–4191. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.X.; Yan, Y.; Guo, M.L.; Cao, Y.J.; Yu, Y.; Zhang, T.Y.; Huang, Y.; Wu, D. Modification-free carbon dots as turn-on fluorescence probe for detection of organophosphorus pesticides. Food Chem. 2018, 245, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Z.; Liao, Y.D.; Zhong, X.J.; Lu, J.H.; Lin, S.D.; Guo, S.Z.; Lai, X.T.; Yu, Q.F. Analysis and application of field detection technology of pesticide residues. J. Food Saf. Food Qual. 2019, 10, 5387–5392. [Google Scholar]
- Mahboob, S.; Niazi, F.; AlGhanim, K.; Sultana, S.; Al-Misned, F.; Ahmed, Z. Health risks associated with pesticide residues in water, sediments and the muscle tissues of Catla catla at Head Balloki on the River Ravi. Environ. Monit. Assess. 2015, 187, 81. [Google Scholar] [CrossRef]
- Anwar, T.; Ahmad, I.; Tahir, S. Determination of pesticide residues in fruits of Nawabshah district, Sindh, Pakistan. Pak. J. Bot. 2011, 43, 1133–1139. [Google Scholar]
- Hussain, M.; Aftab, K.; Iqbal, M.; Ali, S.; Rizwan, M.; Alkahtani, S.; Abdel-Daim, M.M. Determination of pesticide residue in brinjal sample using HPTLC and developing a cost-effective method alternative to HPLC. J. Chem. 2020, 2020, 8180320. [Google Scholar] [CrossRef]
- Wanwimolruk, S.; Kanchanamayoon, O.; Phopin, K.; Prachayasittikul, V. Food safety in Thailand 2: Pesticide residues found in Chinese kale (Brassica oleracea), a commonly consumed vegetable in Asian countries. Sci. Total Environ. 2015, 532, 447–455. [Google Scholar] [CrossRef]
- Ki, H.; Jang, H.; Oh, J.; Han, G.R.; Lee, H.; Kim, S.; Kim, M.G. Simultaneous detection of serum glucose and glycated albumin on a paper-based sensor for acute hyperglycemia and diabetes mellitus. Anal. Chem. 2020, 92, 11530–11534. [Google Scholar] [CrossRef]
- Bordbar, M.M.; Nguyen, T.A.; Arduini, F.; Bagheri, H. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Microchim. Acta. 2022, 187, 621. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA 2008, 105, 19606–19611. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Rossignol, F.; Macdonald, J. Inkjet printing for biosensor fabrication: Combining chemistry and technology for advanced manufacturing. Lab Chip 2015, 15, 2538–2558. [Google Scholar] [CrossRef]
- Hu, J.; Choi, J.R.; Wang, S.; Gong, Y.; Feng, S. Pingguan-Murphy, B.; Lu, T.J.; Xu, F. Multiple test zones for improved detection performance in lateral flow assays. Sens. Actuators B 2017, 243, 484–488. [Google Scholar] [CrossRef]
- Monisha; Shrivas, K.; Kant, T.; Patel, S.; Devi, R.; Dahariya, N.S.; Pervez, S.; Deb, M.K.; Rai, M.K.; Rai, J. Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg2+). J. Hazard. Mater. 2021, 414, 125440. [Google Scholar] [CrossRef]
- Zhang, X.B.; Zhi, H.; Zhu, M.Z.; Wang, F.Y.; Meng, H.; Feng, L. Electrochemical/visual dual-readout aptasensor for Ochratoxin A detection integrated into a miniaturized paper-based analytical device. Biosens. Bioelectron. 2021, 180, 113146. [Google Scholar] [CrossRef]
- Sheng, E.Z.; Lu, Y.X.; Xiao, Y.; Li, Z.X.; Wang, H.S.; Dai, Z.H. Simultaneous and ultrasensitive detection of three pesticides using a surface-enhanced Raman scattering-based lateral flow assay test strip. Biosens. Bioelectron. 2021, 181, 113149. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wang, D.L.; Chi, Z.; Liu, X.J.; Hong, X.Y. Acute toxicity of organophosphorus and pyrethroid insecticides to Bombyx mori. J. Econ. Entomol. 2008, 101, 360–364. [Google Scholar] [CrossRef]
- Li, C.; Zhang, G.; Wu, S.; Zhang, Q. Aptamer-based microcantilever-array biosensor for profenofos detection. Anal. Chim. Acta. 2018, 1020, 116–122. [Google Scholar] [CrossRef]
- Jiao, T.H.; Hassan, M.M.; Zhu, J.J.; Ali, S.; Ahmad, W.; Wang, J.J.; Lv, C.X.; Chen, Q.S.; Li, H.H. Quantification of deltamethrin residues in wheat by Ag@ZnO NFs-based surface-enhanced Raman spectroscopy coupling chemometric models. Food Chem. 2021, 337, 127652. [Google Scholar] [CrossRef]
- Hu, X.L.; Cao, Y.C.; Tian, Y.Y.; Qi, Y.; Fang, G.Z.; Wang, S. A molecularly imprinted fluorescence nanosensor based on upconversion metal-organic frameworks for alpha-cypermethrin specific recognition. Microchim. Acta 2020, 187, 632. [Google Scholar] [CrossRef]
- Islam, S.; Shukla, S.; Bajpai, V.K.; Han, Y.K.; Huh, Y.S.; Ghosh, A.; Gandhi, S. Microfluidic-based graphene field effect transistor for femtomolar detection of chlorpyrifos. Sci. Rep. 2019, 9, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, X.H. Comparative studies of food safety supervision administration system at home and abroad. J. Food Saf. Food Qual. 2017, 8, 2837–2840. [Google Scholar]
- Zhang, J.F.; Hu, Z.P.; Lu, C.H.; Bai, K.W.; Zhang, L.L.; Wang, T. Effect of various levels of dietary curcumin on meat quality and antioxidant profile of breast muscle in broilers. J. Agric. Food Chem. 2015, 63, 3880–3886. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.Y.; Cao, Z.Q. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Adv. Mater. 2010, 22, 920–932. [Google Scholar] [CrossRef]
- Pimentel, E.S.; Brito-Pereira, R.; Marques-Almeida, T.; Ribeiro, C.; Vaz, F.; Lanceros-Mendez, S.; Cardoso, V.F. Tailoring electrospun poly(L-lactic acid) nanofibers as substrates for microfluidic applications. ACS Appl. Mater. Interfaces 2020, 12, 60–69. [Google Scholar] [CrossRef]
- Li, Z.X.; Zhu, Y.H.; Zhang, W.J.; Xu, C.H.; Pan, Y.J.; Zhao, Y. A low-cost and high sensitive paper-based microfluidic device for rapid detection of glucose in fruit. Food Anal. Methods 2017, 10, 666–674. [Google Scholar] [CrossRef]
- Kaneko, K.; Hara, M.; Nishino, T.; Maruyama, T. One-Step Biotinylation of Cellulose Paper by Polymer Coating to Prepare a Paper-Based Analytical Device. Anal. Chem. 2020, 92, 1978–1987. [Google Scholar] [CrossRef]
- Schlenoff, J.B. Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 2014, 30, 9625–9636. [Google Scholar] [CrossRef]
- Cloutier, M.; Mantovani, D.; Rosei, F. Antibacterial coatings: Challenges, perspectives, and opportunities. Trends Biotechnol. 2015, 33, 637–652. [Google Scholar] [CrossRef]
- Liu, C.H.; Faria, A.F.; Ma, J.; Elimelech, M. Mitigation of biofilm development on thin-film composite membranes functionalized with zwitterionic polymers and silver nanoparticles. Environ. Sci. Technol. 2017, 51, 182–191. [Google Scholar] [CrossRef]
- Sun, X.H.; Li, Q.; Guo, Z.R.; Wang, K.; Gui, T.J.; Gao, C.L. Study on the core-shell reversion of PSBMA-b-PLMA nanoparticles for the fabrication of antifouling coatings. ACS Appl. Mater. Interfaces 2019, 11, 21323–21333. [Google Scholar] [CrossRef]
- Li, D.X.; Wei, Q.L.; Wu, C.X.; Zhang, X.F.; Xue, Q.H.; Zheng, T.R.; Cao, M.W. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv. Colloid. Interface. Sci. 2020, 278, 102141. [Google Scholar] [CrossRef]
- Georgouvelas, D.; Jalvo, B.; Valencia, L.; Papawassiliou, W.; Pell, A.J.; Edlund, U.; Mathew, A.P. Residual Lignin and Zwitterionic Polymer Grafts on Cellulose Nanocrystals for Antifouling and Antibacterial Applications. ACS Appl. Polym. Mater. 2020, 2, 3060–3071. [Google Scholar] [CrossRef]
- Li, J.H.; Li, M.Z.; Miao, J.; Wang, J.B.; Shao, X.S.; Zhang, Q.Q. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive. Appl. Surf. Sci. 2012, 258, 6398–6405. [Google Scholar] [CrossRef]
- Shen, X.; Liu, T.; Xia, S.B.; Liu, J.J.; Liu, P.; Cheng, F.X.; He, C.X. Polyzwitterions grafted onto polyacrylonitrile membranes by thiol- ene click chemistry for oil/water separation. Ind. Eng. Chem. Res. 2020, 59, 20382–20393. [Google Scholar] [CrossRef]
- Tang, Y.P.; Cai, T.; Loh, D.; O’Brien, G.S.; Chung, T.S. Construction of antifouling lumen surface on a poly(vinylidene fluoride) hollow fiber membrane via a zwitterionic graft copolymerization strategy. Sep. Purif. Technol. 2017, 176, 294–305. [Google Scholar] [CrossRef]
- Wang, Z.N.; Li, J.J.; Liu, Y.H.; Luo, J.B. Macroscale superlubricity achieved between zwitterionic copolymer hydrogel and sapphire in water. Mater. Des. 2020, 188, 108441. [Google Scholar] [CrossRef]
- Liang, C.Y.; Marchessault, R.H. Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J. Polym Sci. 1959, 37, 385–395. [Google Scholar] [CrossRef]
- Xiang, T.; Wang, R.; Zhao, W.F.; Sun, S.D.; Zhao, C.S. Covalent deposition of zwitterionic polymer and citric acid by click chemistry-enabled layer-by-layer assembly for improving the blood compatibility of polysulfone membrane. Langmuir 2014, 30, 5115–5125. [Google Scholar] [CrossRef]
- Badawy, M.E.; El-Aswad, A.F. Bioactive paper sensor based on the acetylcholinesterase for the rapid detection of organophosphate and carbamate pesticides. Int. J. Anal. Chem. 2014, 2014, 536823. [Google Scholar] [CrossRef] [Green Version]
- Surleva, A.; Zaharia, M.; Pintilie, O.; Sandu, I.; Tudorachi, L.; Gradinaru, R.V. Improved ninhydrin-based reagent for spectrophotometric determination of ppb levels of cyanide. Environ. Forensics 2016, 17, 48–58. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.L.; Li, M.L.; Fu, F.F.; Zhao, Y.; Yu, J. Zwitterionic polymer-grafted superhydrophilic and superoleophobic silk fabrics for anti-oil applications. Macromol. Rapid Commun. 2020, 41, 2000162. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.M.; Brown, A.A.; Huck, W.T.S. Surface-initiated polymerizations in aqueous media: Effect of initiator density. Langmuir 2002, 18, 1265–1269. [Google Scholar] [CrossRef]
- Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S. All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater. 2017, 4, 035012. [Google Scholar] [CrossRef]
Samples | Added (mg/L) | CHL Concentration (mg/L) | RSD (%) (n = 3) | ||
---|---|---|---|---|---|
μPAD | Spectrophotometry | μPAD | Spectrophotometry | ||
Apple | 10 | 9.56 | 9.88 | 4.9 | 3.7 |
20 | 20.23 | 20.01 | 2.8 | 3.1 | |
Orange | 10 | 10.57 | 9.94 | 3.8 | 4.3 |
20 | 19.73 | 21.19 | 3.6 | 3.1 | |
Spinach | 10 | 10.07 | 9.77 | 2.9 | 3.2 |
20 | 20.09 | 19.97 | 4.2 | 3.1 | |
Tomato | 10 | 9.88 | 9.52 | 5.6 | 4.9 |
20 | 20.19 | 19.03 | 2.3 | 4.7 | |
Cucumber | 10 | 9.35 | 9.81 | 5.1 | 3.6 |
20 | 20.56 | 19.32 | 2.9 | 3.4 |
Samples | Added (mg/L) | PRO Concentration (mg/L) | RSD (%) (n = 3) | ||
---|---|---|---|---|---|
μPAD | Spectrophotometry | μPAD | Spectrophotometry | ||
Apple | 10 | 10.83 | 10.07 | 5 | 4.7 |
20 | 20.21 | 20.63 | 3.9 | 4.3 | |
Orange | 10 | 9.59 | 10.55 | 2.6 | 4.1 |
20 | 19.86 | 20.06 | 3.3 | 3.8 | |
Spinach | 10 | 9.45 | 9.77 | 5.1 | 4.5 |
20 | 20.39 | 19.56 | 6.7 | 4.2 | |
Tomato | 10 | 10.38 | 9.41 | 3.5 | 2.9 |
20 | 19.92 | 21.08 | 3.7 | 6.2 | |
Cucumber | 10 | 9.79 | 10.28 | 5.2 | 4.8 |
20 | 20.02 | 21.32 | 7.3 | 4.2 |
Samples | Added (mg/L) | CYP Concentration (mg/L) | RSD (%) (n = 3) | ||
---|---|---|---|---|---|
μPAD | Spectrophotometry | μPAD | Spectrophotometry | ||
Apple | 10 | 9.79 | 10.88 | 5.7 | 4.6 |
20 | 19.75 | 20.36 | 2.9 | 3.4 | |
Orange | 10 | 9.99 | 10.58 | 2.7 | 3.3 |
20 | 20.32 | 20.76 | 4.5 | 6.1 | |
Spinach | 10 | 10.84 | 10.23 | 5.5 | 2.1 |
20 | 21.07 | 20.51 | 3.5 | 3.8 | |
Tomato | 10 | 9.09 | 10.36 | 7.2 | 4.8 |
20 | 20.95 | 19.08 | 1.9 | 2.8 | |
Cucumber | 10 | 9.79 | 10.32 | 3.7 | 4.9 |
20 | 18.91 | 20.04 | 6.2 | 6.8 |
Pesticides | CHL (LOD) | PRO (LOD) | CYP (LOD) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | 0 | 0.5 | 1 | 2 | 0 | 0.5 | 1 | 2 | 0 | 0.5 | 1 | 2 | |
Baby cabbage | − | − | + | + | − | − | + | + | − | − | + | + | |
White radish | − | − | + | + | − | − | + | + | − | − | + | + | |
Lettuce | − | − | + | + | − | − | + | + | − | − | + | + | |
Carrot | − | − | + | + | − | − | + | + | − | − | + | + | |
Spinach | − | − | + | + | − | − | + | + | − | − | + | + | |
Celery | − | − | + | + | − | − | + | + | − | − | + | + | |
Lettuce | − | − | + | + | − | − | + | + | − | − | + | + | |
Pterocladia tenuis | − | − | + | + | − | − | + | + | − | − | + | + | |
Bok choy | − | − | + | + | − | − | + | + | − | − | + | + | |
Cabbage | − | − | + | + | − | − | + | + | − | − | + | + | |
Broccoli | − | − | + | + | − | − | + | + | − | − | + | + | |
Cucumber | − | − | + | + | − | − | + | + | − | − | + | + | |
Apple | − | − | + | + | − | − | + | + | − | − | + | + | |
Orange | − | − | + | + | − | − | + | + | − | − | + | + | |
Tomato | − | − | + | + | − | − | + | + | − | − | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Yin, X.; Zhang, W.; Chen, M.; Feng, D.; Zhao, Y.; Zhu, Y. Simultaneous and Sensitive Detection of Three Pesticides Using a Functional Poly(Sulfobetaine Methacrylate)-Coated Paper-Based Colorimetric Sensor. Biosensors 2023, 13, 309. https://doi.org/10.3390/bios13030309
Zhu J, Yin X, Zhang W, Chen M, Feng D, Zhao Y, Zhu Y. Simultaneous and Sensitive Detection of Three Pesticides Using a Functional Poly(Sulfobetaine Methacrylate)-Coated Paper-Based Colorimetric Sensor. Biosensors. 2023; 13(3):309. https://doi.org/10.3390/bios13030309
Chicago/Turabian StyleZhu, Jingyang, Xinru Yin, Weiyi Zhang, Meilian Chen, Dongsheng Feng, Yong Zhao, and Yongheng Zhu. 2023. "Simultaneous and Sensitive Detection of Three Pesticides Using a Functional Poly(Sulfobetaine Methacrylate)-Coated Paper-Based Colorimetric Sensor" Biosensors 13, no. 3: 309. https://doi.org/10.3390/bios13030309
APA StyleZhu, J., Yin, X., Zhang, W., Chen, M., Feng, D., Zhao, Y., & Zhu, Y. (2023). Simultaneous and Sensitive Detection of Three Pesticides Using a Functional Poly(Sulfobetaine Methacrylate)-Coated Paper-Based Colorimetric Sensor. Biosensors, 13(3), 309. https://doi.org/10.3390/bios13030309