Recent Advances in Silicon Quantum Dot-Based Fluorescent Biosensors
Abstract
:1. Introduction
2. Direct Synthesis of Water-Soluble SiQDs
2.1. Microwave or UV Irradiation Method
2.2. Hydrothermal Method
2.3. Stirring Method
3. Design and Fabrication of SiQD-Based Photoluminescent Biosensors
3.1. Analyte-Induced Fluorescence Changes
3.2. Hybrid with Other Materials or Molecules
3.3. Biological Ligands-Modification
4. Summary and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, B.; Wang, H.; He, Y. Fluorescent silicon-based nanomaterials imaging technology in diseases. Chem. Res. Chin. Univ. 2021, 37, 880–888. [Google Scholar] [CrossRef]
- Dasog, M.; Kehrle, J.; Rieger, B.; Veinot, J.G. Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications. Angew. Chem. Int. Ed. 2016, 55, 2322–2339. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Peng, F.; Zhong, Y.; Su, Y.; Jiang, X.; Song, C.; Yang, L.; Chu, B.; Lee, S.T.; He, Y. Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy. Adv. Mater. 2015, 27, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Hall, D.J.; Qin, Z.; Anglin, E.; Joo, J.; Mooney, D.J.; Howell, S.B.; Sailor, M.J. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat. Commun. 2013, 4, 2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, B.; He, Y. Fluorescent silicon nanomaterials: From synthesis to functionalization and application. Nano Today 2019, 26, 149–163. [Google Scholar] [CrossRef]
- Xu, G.; Zeng, S.; Zhang, B.; Swihart, M.T.; Yong, K.-T.; Prasad, P.N. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chem. Rev. 2016, 116, 12234–12327. [Google Scholar] [CrossRef]
- Littau, K.A.; Szajowski, P.J.; Muller, A.J.; Kortan, A.R.; Brus, L.E. A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J. Phys. Chem. 1993, 97, 1224–1230. [Google Scholar] [CrossRef]
- Hu, G.; Sun, Y.; Xie, Y.; Wu, S.; Zhang, X.; Zhuang, J.; Hu, C.; Lei, B.; Liu, Y. Synthesis of silicon quantum dots with highly efficient full-band UV absorption and their applications in antiyellowing and resistance of photodegradation. ACS Appl. Mater. Interfaces 2019, 11, 6634–6643. [Google Scholar] [CrossRef]
- Montalti, M.; Cantelli, A.; Battistelli, G. Nanodiamonds and silicon quantum dots: Ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 2015, 44, 4853–4921. [Google Scholar] [CrossRef]
- Dasog, M.; Bader, K.; Veinot, J.G. Influence of halides on the optical properties of silicon quantum dots. Chem. Mater. 2015, 27, 1153–1156. [Google Scholar] [CrossRef]
- Le, T.-H.; Le, D.T.T.; Tung, N.V. Synthesis of colloidal silicon quantum dot from rice husk ash. J. Chem. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Cheng, X.; Lowe, S.B.; Reece, P.J.; Gooding, J.J. Colloidal silicon quantum dots: From preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 2014, 43, 2680–2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grom, G.; Lockwood, D.; McCaffrey, J.; Labbe, H.; Fauchet, P.; White, B., Jr.; Diener, J.; Kovalev, D.; Koch, F.; Tsybeskov, L. Ordering and self-organization in nanocrystalline silicon. Nature 2000, 407, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Huang, M.; Li, W. Spatial intensity distribution model of fluorescence emission considering the spatial attenuation effect of excitation light. Opt. Express 2021, 29, 6468–6480. [Google Scholar] [CrossRef]
- Pi, X.D.; Liptak, R.W.; Campbell, S.A.; Kortshagen, U. In-flight dry etching of plasma-synthesized silicon nanocrystals. Appl. Phys. Lett. 2007, 91, 083112. [Google Scholar] [CrossRef]
- Hessel, C.M.; Reid, D.; Panthani, M.G.; Rasch, M.R.; Goodfellow, B.W.; Wei, J.; Fujii, H.; Akhavan, V.; Korgel, B.A. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 2014, 24, 393–401. [Google Scholar] [CrossRef]
- Tilley, R.D.; Yamamoto, K. The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Adv. Mater. 2006, 18, 2053–2056. [Google Scholar] [CrossRef]
- Zhong, Y.; Peng, F.; Bao, F.; Wang, S.; Ji, X.; Yang, L.; Su, Y.; Lee, S.-T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350–8356. [Google Scholar] [CrossRef]
- Warner, J.H.; Hoshino, A.; Yamamoto, K.; Tilley, R.D. Water-soluble photoluminescent silicon quantum dots. Angew. Chem. Int. Ed. 2005, 44, 4550–4554. [Google Scholar] [CrossRef]
- Pujari, S.P.; Driss, H.; Bannani, F.; van Lagen, B.; Zuilhof, H. One-pot gram-scale synthesis of hydrogen-terminated silicon nanoparticles. Chem. Mater. 2018, 30, 6503–6512. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Su, C.; Ji, X.; He, Z. New fluorescent pH sensor based on label-free silicon nanodots. Sens. Actuators B Chem. 2014, 203, 795–801. [Google Scholar] [CrossRef]
- Ding, C.; Cheng, S.; Zhang, C.; Xiong, Y.; Ye, M.; Xian, Y. Ratiometric upconversion luminescence nanoprobe with near-infrared Ag2S nanodots as the energy acceptor for sensing and imaging of pH in vivo. Anal. Chem. 2019, 91, 7181–7188. [Google Scholar] [CrossRef] [PubMed]
- Henderson, E.J.; Shuhendler, A.J.; Prasad, P.; Baumann, V.; Maier-Flaig, F.; Faulkner, D.O.; Lemmer, U.; Wu, X.Y.; Ozin, G.A. Colloidally stable silicon nanocrystals with near-infrared photoluminescence for biological fluorescence imaging. Small 2011, 7, 2507–2516. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Liu, Y.; Tsang, C.H.A.; Ma, D.D.D.; Fan, X.; Wong, N.B.; Lee, S.T. Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. 2009, 21, 661–664. [Google Scholar] [CrossRef]
- Wang, J.; Ye, D.-X.; Liang, G.-H.; Chang, J.; Kong, J.-L.; Chen, J.-Y. One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells. J. Mater. Chem. B 2014, 2, 4338–4345. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Ji, X.; He, Y. Water-dispersible fluorescent silicon nanoparticles and their optical applications. Adv. Mater. 2016, 28, 10567–10574. [Google Scholar] [CrossRef] [PubMed]
- Na, M.; Han, Y.; Chen, Y.; Ma, S.; Liu, J.; Chen, X. Synthesis of silicon nanoparticles emitting yellow-green fluorescence for visualization of pH change and determination of intracellular pH of living cells. Anal. Chem. 2021, 93, 5185–5193. [Google Scholar] [CrossRef]
- Park, H.J.; Shin, D.J.; Yu, J. Categorization of quantum dots, clusters, nanoclusters, and nanodots. J. Chem. Educ. 2021, 98, 703–709. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; Wang, Z.; Cai, N.; Au, C. Nanomaterial-based dual-emission ratiometric fluorescent sensors for biosensing and cell imaging. Polymers 2021, 13, 2540. [Google Scholar] [CrossRef]
- Grabolle, M.; Spieles, M.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Resch-Genger, U. Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Anal. Chem. 2009, 81, 6285–6294. [Google Scholar] [CrossRef]
- Wang, H.; He, Y. Recent advances in silicon nanomaterial-based fluorescent sensors. Sensors 2017, 17, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.A.; Ullah, Q.; Parveen, H.; Mukhtar, S.; Alzahrani, K.A.; Asad, M. Synthesis and photophysical investigation of novel imidazole derivative an efficient multimodal chemosensor for Cu(II) and fluoride ions. J. Photochem. Photobiol A 2021, 406, 113022. [Google Scholar] [CrossRef]
- Khan, S.A.; Ullah, Q.; Almalki, A.S.A.; Kumar, S.; Obaid, R.J.; Alsharif, M.A.; Alfaifi, S.Y.; Hashmi, A.A. Synthesis and photophysical investigation of (BTHN) Schiff base as off-on Cd2+ fluorescent chemosensor and its live cell imaging. J. Mol. Liq. 2021, 328, 115407. [Google Scholar] [CrossRef]
- Asiri, A.M.; Al-Amari, M.M.; Ullah, Q.; Khan, S.A. Ultrasound-assisted synthesis and photophysical investigation of a heterocyclic alkylated chalcone: A sensitive and selective fluorescent chemosensor for Fe3+ in aqueous media. J. Coord. Chem. 2020, 73, 2987–3002. [Google Scholar] [CrossRef]
- Khan, S.A. Multi-step synthesis, photophysical and physicochemical investigation of novel pyrazoline a heterocyclic D-π-A chromophore as a fluorescent chemosensor for the detection of Fe3+ metal ion. J. Mol. Struct. 2020, 1211, 128084. [Google Scholar] [CrossRef]
- Abd Rahman, S.F.; Yusof, N.A.; Md Arshad, M.K.; Hashim, U.; Md Nor, M.N.; Hamidon, M.N. Fabrication of Silicon Nanowire Sensors for Highly Sensitive pH and DNA Hybridization Detection. Nanomaterials 2022, 12, 2652. [Google Scholar] [CrossRef]
- Wu, S.; Zhong, Y.; Zhou, Y.; Song, B.; Chu, B.; Ji, X.; Wu, Y.; Su, Y.; He, Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc. 2015, 137, 14726–14732. [Google Scholar] [CrossRef]
- Li, W.; Liu, D.; Dong, D.; You, T. Microwave-assisted synthesis of fluorescent silicon quantum dots for ratiometric sensing of Hg (II) based on the regulation of energy transfer. Talanta 2021, 226, 122093. [Google Scholar] [CrossRef]
- Ye, H.-L.; Cai, S.-J.; Li, S.; He, X.-W.; Li, W.-Y.; Li, Y.-H.; Zhang, Y.-K. One-pot microwave synthesis of water-dispersible, high fluorescence silicon nanoparticles and their imaging applications in vitro and in vivo. Anal. Chem. 2016, 88, 11631–11638. [Google Scholar] [CrossRef]
- Zhong, Y.; Sun, X.; Wang, S.; Peng, F.; Bao, F.; Su, Y.; Li, Y.; Lee, S.-T.; He, Y. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 2015, 9, 5958–5967. [Google Scholar] [CrossRef]
- Zhou, Y.; Qi, M.; Yang, M. Fluorescence determination of lactate dehydrogenase activity based on silicon quantum dots. Spectrochim. Acta Part A 2022, 268, 120697. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Huang, B.; Guo, X.; Wang, H. A dual-responsive fluorescent sensor for Hg2+ and thiols based on N-doped silicon quantum dots and its application in cell imaging. J. Mater. Chem. B 2019, 7, 7033–7041. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-F.; Pan, M.-M.; Song, Y.-L.; Li, Z.; Wang, L.; Jiang, M.; Yu, X.; Xu, L. Beyond the fluorescence labelling of novel nitrogen-doped silicon quantum dots: The reducing agent and stabilizer for preparing hybrid nanoparticles and antibacterial applications. J. Mater. Chem. B 2022, 10, 7003–7013. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Wei, M.-X.; Huang, B.-H.; Guo, X.-F.; Wang, H. One-pot facile synthesis of green-emitting fluorescent silicon quantum dots for the highly selective and sensitive detection of nitrite in food samples. Dyes Pigm. 2021, 184, 108848. [Google Scholar] [CrossRef]
- Wen, Q.; Pan, C.; Qin, X.; Ma, Q.; Feng, S. One-pot synthesis of novel water-dispersible fluorescent silicon nanoparticles for selective Cr2O72− sensing. Anal. Methods 2021, 13, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Golsanamlou, Z.; Soleymani, J.; Abbaspour, S.; Siahi-Shadbad, M.; Rahimpour, E.; Jouyban, A. Sensing and bioimaging of lead ions in intracellular cancer cells and biomedical media using amine-functionalized silicon quantum dots fluorescent probe. Spectrochim. Acta Part A 2021, 256, 119747. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, N.; Zhao, L.; Xu, S.; Sun, Y.; Ma, P.; Song, D.; Wang, X. Colorimetric and fluorescent dual-mode measurement of blood glucose by organic silicon nanodots. ACS Appl. Nano Mater. 2020, 3, 11600–11607. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Xia, L.-Y.; Wang, H.-Y.; Chen, Z.; Wu, F.-G. One-step synthesis of ultrasmall and ultrabright organosilica nanodots with 100% photoluminescence quantum yield: Long-term lysosome imaging in living, fixed, and permeabilized cells. Nano Lett. 2018, 18, 1159–1167. [Google Scholar] [CrossRef]
- Zhu, G.; Huang, D.; Liu, L.; Yi, Y.; Wu, Y.; Huang, Y. One-step green preparation of N-doped silicon quantum dots for the on-off fluorescent determination of hydrogen peroxide. Anal. Lett. 2020, 53, 1834–1849. [Google Scholar] [CrossRef]
- Wei, N.; Sun, Y.-C.; Guo, X.-F.; Wang, H. Synthesis of sulfhydryl functionalized silicon quantum dots with high quantum yield for imaging of hypochlorite in cells and zebrafish. Microchim. Acta 2022, 189, 329. [Google Scholar] [CrossRef]
- Qi, W.; He, H.; Fu, Y.; Zhao, M.; Qi, L.; Hu, L.; Liu, C.; Li, R. Water-dispersed fluorescent silicon nanodots as probes for fluorometric determination of picric acid via energy transfer. Microchim. Acta 2018, 186, 18. [Google Scholar] [CrossRef] [PubMed]
- Phan, L.M.T.; Baek, S.H.; Nguyen, T.P.; Park, K.Y.; Ha, S.; Rafique, R.; Kailasa, S.K.; Park, T.J. Synthesis of fluorescent silicon quantum dots for ultra-rapid and selective sensing of Cr(VI) ion and biomonitoring of cancer cells. Mater. Sci. Eng. C 2018, 93, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.-H.; Shen, S.-S.; Wei, N.; Guo, X.-F.; Wang, H. Fluorescence biosensor based on silicon quantum dots and 5, 5′-dithiobis-(2-nitrobenzoic acid) for thiols in living cells. Spectrochim. Acta Part A 2020, 229, 117972. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Zhang, Y.; Wang, Y.; Wang, M.; Li, Z.; Wang, G.; Su, X. A pH-responsive fluorometric and colorimetric system based on silicon quantum dots and 4-nitrophenol for urease activity detection. Talanta 2022, 237, 122956. [Google Scholar] [CrossRef]
- Song, B.; Zhong, Y.; Wu, S.; Chu, B.; Su, Y.; He, Y. One-dimensional fluorescent silicon nanorods featuring ultrahigh photostability, favorable biocompatibility, and excitation wavelength-dependent emission spectra. J. Am. Chem. Soc. 2016, 138, 4824–4831. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Zhong, Y.; Wang, H.; Su, Y.; He, Y. One-dimensional silicon nanoshuttles simultaneously featuring fluorescent and magnetic properties. Chem. Commun. 2017, 53, 6957–6960. [Google Scholar] [CrossRef]
- Zhelev, Z.; Jose, R.; Nagase, T.; Ohba, H.; Bakalova, R.; Ishikawa, M.; Baba, Y. Enhancement of the photoluminescence of CdSe quantum dots during long-term UV-irradiation: Privilege or fault in life science research? J. Photochem. Photobiol. B 2004, 75, 99–105. [Google Scholar] [CrossRef]
- Clarke, S.J.; Hollmann, C.A.; Zhang, Z.; Suffern, D.; Bradforth, S.E.; Dimitrijevic, N.M.; Minarik, W.G.; Nadeau, J.L. Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat. Mater. 2006, 5, 409–417. [Google Scholar] [CrossRef]
- Yan, Y.-X.; Ying, M.; Feng, G.-D.; Zhang, L.; Zhu, L.-L.; Ling, X.; Rui, Y.; Jin, Q.-H. Novel strategy for synthesis of high quality CdTe nanocrystals in aqueous solution. Chem. Res. Chin. Univ. 2008, 24, 8–14. [Google Scholar] [CrossRef]
- Shabbir, H.; Tokarski, T.; Ungor, D.; Wojnicki, M. Eco friendly synthesis of carbon dot by hydrothermal method for metal ions salt identification. Materials 2021, 14, 7604. [Google Scholar] [CrossRef]
- Han, Y.; Chen, Y.; Feng, J.; Liu, J.; Ma, S.; Chen, X. One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2, 4, 6-trinitrophenol in aqueous solution. Anal. Chem. 2017, 89, 3001–3008. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Song, X.; Liu, Y.; Fu, Y.; Ye, L.; Wang, N.; Wang, F.; Li, L.; Mohammadniaei, M.; Zhang, M.; et al. Synthesis of graphene quantum dots and their applications in drug delivery. J. Nanobiotechnol. 2020, 18, 142. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Nien, C.-Y.; Albert, K.; Wen, C.-C.; Hsieh, Y.-Z.; Hsu, H.-Y. Pseudo-multicolor carbon dots emission and the dilution-induced reversible fluorescence shift. RSC Adv. 2016, 6, 44024–44028. [Google Scholar] [CrossRef]
- Govorov, A.O.; Bryant, G.W.; Zhang, W.; Skeini, T.; Lee, J.; Kotov, N.A.; Slocik, J.M.; Naik, R.R. Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies. Nano Lett. 2006, 6, 984–994. [Google Scholar] [CrossRef]
- Riegler, J.; Ditengou, F.; Palme, K.; Nann, T. Blue shift of CdSe/ZnS nanocrystal-labels upon DNA-hybridization. J. Nanobiotechnol. 2008, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Mura, S.; Ludmerczki, R.; Stagi, L.; Garroni, S.; Carbonaro, C.M.; Ricci, P.C.; Casula, M.F.; Malfatti, L.; Innocenzi, P. Integrating sol-gel and carbon dots chemistry for the fabrication of fluorescent hybrid organic-inorganic films. Sci. Rep. 2020, 10, 4770. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Li, Z.; Yao, J.; Wen, G.; Dong, C.; Li, H.-W. Enzyme free glucose sensing by amino-functionalized silicon quantum dot. Spectrochim. Acta Part A 2019, 216, 303–309. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; Zhao, B.; Li, C.; Wang, X.; Xu, L.; Long, T. Ratiometric fluorescence detection of DNA based on the inner filter effect of Ru(bpy)2(dppx)2+ toward Silicon Nanodots. ACS Omega 2021, 6, 857–862. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; Yu, X. Facile preparation of FITC-modified silicon nanodots for ratiometric pH sensing and imaging. Spectrochim. Acta Part A 2020, 234, 118276. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.; Jiang, Z.; Mao, G.; Ji, X.; He, Z. Rox-DNA functionalized silicon nanodots for ratiometric detection of mercury ions in live cells. Anal. Chem. 2018, 90, 9796–9804. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.; Cheng, S.; Ji, X.; He, Z. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement. Biosens. Bioelectron. 2017, 94, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Y.-N.; Ji, X.-H.; He, Z.-K. The ratiometric fluorescent detection of anthrax spore biomarker based on functionalized silicon nanodots. Chem. Pap. 2019, 73, 1753–1759. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, R.; Du, Y.; Liu, S.; Li, W.; Gai, S.; He, F.; Feng, L.; Yang, P. A Si-CdTe composite quantum dots probe with dual-wavelength emission for sensitively monitoring intracellular H2O2. Adv. Funct. Mater. 2022, 32, 2112083. [Google Scholar] [CrossRef]
- Ma, H.; Li, X.; Liu, X.; Deng, M.; Wang, X.; Iqbal, A.; Liu, W.; Qin, W. Fluorescent glutathione probe based on MnO2–Si quantum dots nanocomposite directly used for intracellular glutathione imaging. Sens. Actuators B 2018, 255, 1687–1693. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.; Huang, H.; Mao, G.; Ji, X.; He, Z. Silicon nanodot-based aptasensor for fluorescence turn-on detection of mucin 1 and targeted cancer cell imaging. Anal. Chim. Acta 2018, 1035, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Cai, Q.; Wang, F.; Luo, C.; Ji, X.; He, Z. One-step synthesis of Rox-DNA functionalized CdZnTeS quantum dots for the visual detection of hydrogen peroxide and blood glucose. Anal. Chem. 2017, 89, 11628–11635. [Google Scholar] [CrossRef]
- Dong, R.; Yao, Y.; Li, D.; Zhang, H.; Li, W.; Molokee, M.; Liu, Y.; Lei, B. Ratio fluorescent hybrid probe for visualized fluorescence detection of H2O2 in vitro and in vivo. Sens. Actuators B 2020, 321, 128643. [Google Scholar] [CrossRef]
- Yanagawa, H.; Inoue, A.; Sugimoto, H.; Shioi, M.; Fujii, M. Antibody-conjugated near-infrared luminescent silicon quantum dots for biosensing. MRS Commun. 2019, 9, 1079–1086. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Zhong, Y.; Jiang, X.; Peng, F.; Lu, Y.; Ji, X.; Su, Y.; He, Y. Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells. Anal. Chem. 2015, 87, 6718–6723. [Google Scholar] [CrossRef]
- Zhou, W.; Saran, R.; Liu, J. Metal sensing by DNA. Chem. Rev. 2017, 117, 8272–8325. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhang, H.; Wang, Z.; Newbigging, A.M.; Reid, M.S.; Li, X.-F.; Le, X.C. Aptamers facilitating amplified detection of biomolecules. Anal. Chem. 2015, 87, 274–292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ning, X.; Mao, G.; Ji, X.; He, Z. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching. Anal. Bioanal. Chem. 2018, 410, 3209–3216. [Google Scholar] [CrossRef] [PubMed]
Precursors | Methods | T (°C) | Time | Size (nm) | QY (%) | Ex (nm) | Em (nm) | FL (ns) | Ref. |
---|---|---|---|---|---|---|---|---|---|
APTMS/TC Diatom DAMO/L-glutathione APTES/TC APTMS/1,8-naphthalimide APTMS/TC APTMS/TC APTMS/TC/urea APTMS/TEPA DAMO/m-PD DAMO/4-aminophenol APTES/quercetin | Microwave Microwave Microwave Microwave UV irradiation Hydrothermal Hydrothermal Hydrothermal Hydrothermal Hydrothermal Hydrothermal Hydrothermal | 160 150 — 180 20–25 200 180 200 200 180 150 200 | 10 min 10 min 8 min 25 min 30 min 2 h 5 h 4 h 12 h 6 h 5 h 6 h | 2.2 3.8 2.6 4.22 2.3 2.5 2 2.55 1.8 3.5 2.0 1.9 | 25 20 0.3 47 25 32.8 — 28.8 18.4 18.5 1.6 20.34 | 345 420 350 440 420 359 350 347 360 387 420 362 | 460 620 414 505 560 448 450 440 450 503 505 437 | — 10.8 5.21 12.8 — 6.119 — 5.566 — — — — | [18] [37] [38] [39] [40] [21] [41] [42] [43] [44] [27] [45] |
APTES/AS AEEA/Rose bengal AEEA/Rose bengal AEEA/o-PD MPTMS/m-PD TEOS/TC APTES/AS DAMO/L-ascorbic acid APTMS/glucose APTMS/glucose | Hydrothermal Hydrothermal Hydrothermal Hydrothermal Hydrothermal Hydrothermal Stirring Stirring Stirring Stirring | 180 160 160 200 180 200 RT 55 60 60 | 20 h 4 h 4 h 4 h 6 h 15 h 30 min 40 min 30 min 30 min | 10 2.2 2.0 4.0 3.9 2.0 2 — 2.3 1.58 | — 100 100 54 38.5 18 21 14.2 33 8.9 | 355 510 511 350 383 347 430 410 410 380 | 445 531 525 450 492 440 530 520 480 460 | — — 4.2 4.1 8.6 3.993 10.2 — — 6.47 | [46] [47] [48] [49] [50] [51] [25] [52] [53] [54] |
Sample Type | Target Molecule | Excitation/Emission | Sensitivity | Dynamic Range | Reference |
---|---|---|---|---|---|
Tap Water | Cr2O72− | 362 nm/437 nm | 180 nM | 0.5 to 100 μM | [45] |
Aqueous | Hg2+ | 347 nm/440 nm | 24 nM | 0.1 to 4 μM | [42] |
Live Cells | pH | 365 nm/440 nm | N.A. | pH 5 to pH 10 | [27] |
Aqueous | ClO− | 383 nm/492 nm | 13 nM | 0.05 to 1.8 μM | [50] |
Aqueous | DNA | 359 nm/601 nm | 4.3 nM | 20 to 1500 nM | [68] |
MCF-7 cells | MUC1 | 359 nm/670 nm | 1.52 nM | 3.33–250 nM | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cai, N.; Chan, V. Recent Advances in Silicon Quantum Dot-Based Fluorescent Biosensors. Biosensors 2023, 13, 311. https://doi.org/10.3390/bios13030311
Zhang Y, Cai N, Chan V. Recent Advances in Silicon Quantum Dot-Based Fluorescent Biosensors. Biosensors. 2023; 13(3):311. https://doi.org/10.3390/bios13030311
Chicago/Turabian StyleZhang, Yanan, Ning Cai, and Vincent Chan. 2023. "Recent Advances in Silicon Quantum Dot-Based Fluorescent Biosensors" Biosensors 13, no. 3: 311. https://doi.org/10.3390/bios13030311
APA StyleZhang, Y., Cai, N., & Chan, V. (2023). Recent Advances in Silicon Quantum Dot-Based Fluorescent Biosensors. Biosensors, 13(3), 311. https://doi.org/10.3390/bios13030311