Biomimetic Electrochemical Sensors Based on Core-Shell Imprinted Polymers for Targeted Sunset Yellow Estimation in Environmental Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of MMIPs and MNIPs
2.3. Characterization
2.4. Electrochemical Assay
2.5. Electrochemical Sensor Design and Manufacturing
2.6. Sorption/Binding Assay
3. Results
3.1. Scanning Electron Microscopy
3.2. Fourier-Transform Infrared Spectroscopy
3.3. Elemental Study Using Energy-Dispersive X-rays
3.4. XRD Analysis
3.5. Binding and Sorption Studies
3.6. Electrochemical Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Khan, A.; Ali, N.; Malik, S.; Khan, H.; Ali, N.; Bilal, M. Designing, characterization, and evaluation of chitosan-zinc selenide nanoparticles for visible-light-induced degradation of tartrazine and sunset yellow dyes. Environ. Res. 2022, 213, 113722. [Google Scholar] [CrossRef]
- Khan, A.; Malik, S.; Ali, N.; Nguyen, T.A.; Bilal, M. Nanoadsorbents as a green approach for removal of environmental pollutants. In Nano-Bioremediation: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 435–454. [Google Scholar]
- Arooj, M.; Parambath, J.B.; Ali, N.; Khan, A.; Malik, S.; Bilal, M.; Mohamed, A.A. Experimental and theoretical review on covalent coupling and elemental doping of carbon nanomaterials for environmental photocatalysis. Crit. Rev. Solid State Mater. Sci. 2022, 48, 215–256. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.; Khan, H.; Ali, N.; Sartaj, S.; Malik, S.; Bilal, M. Development and characterization of regenerable chitosan-coated nickel selenidenano-photocatalytic system for decontamination of toxic azo dyes. Int. J. Biol. Macromol. 2021, 182, 866–878. [Google Scholar] [CrossRef]
- Nawaz, A.; Khan, A.; Ali, N.; Mao, P.; Gao, X.; Ali, N.; Khan, H. Synthesis of ternary-based visible light nano-photocatalyst for decontamination of organic dyes-loaded wastewater. Chemosphere 2022, 289, 133121. [Google Scholar] [CrossRef]
- Sartaj, S.; Ali, N.; Khan, A.; Malik, S.; Bilal, M.; Khan, M.; Khan, S. Performance evaluation of photolytic and electrochemical oxidation processes for enhanced degradation of food dyes laden wastewater. Water Sci. Technol. 2020, 81, 971–984. [Google Scholar] [CrossRef] [Green Version]
- Aliabadi, R.S.; Mahmoodi, N.O. Synthesis and characterization of polypyrrole, polyaniline nanoparticles and their nanocomposite for removal of azo dyes; sunset yellow and Congo red. J. Clean. Prod. 2018, 179, 235–245. [Google Scholar] [CrossRef]
- Lima, V.V.; Dalla Nora, F.B.; Peres, E.C.; Reis, G.S.; Lima, É.C.; Oliveira, M.L.; Dotto, G.L. Synthesis and characterization of biopolymers functionalized with APTES (3–aminopropyltriethoxysilane) for the adsorption of sunset yellow dye. J. Environ. Chem. Eng. 2019, 7, 103410. [Google Scholar] [CrossRef]
- Da Cruz, R.S.; Ribeiro, J.S.; de Moura, L.S.; Lopes, R.B.; do CarmoFreitas Faial, K.; Gul, K.; Taube, P.S. Determination of Heavy Metals by Inductively Coupled Plasma Optical Emission Spectrometry in Water Samples from Lake Iripixi, Oriximiná, PA, Brazil. Water Air Soil Pollut. 2022, 233, 247. [Google Scholar] [CrossRef]
- Bişgin, A.T. Simultaneous preconcentration and determination of brilliant blue and sunset yellow in foodstuffs by solid-phase extraction combined UV-vis spectrophotometry. J. AOAC Int. 2018, 101, 1850–1856. [Google Scholar] [CrossRef]
- Kizil, N.; Basaran, E.; Erbilgin, D.; Yola, M.L.; Uzcan, F.; Soylak, M. Deep eutectic solvent (DES) based dispersive Liquid-Phase microextraction of Sunset yellow FCF in food and pharmaceutical products. Microchem. J. 2022, 181, 107734. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Li, W.; Yang, Y.; Qin, P.; Zhang, X.; Lu, M. Magnetic graphene oxide nanocomposites as the adsorbent for extraction and pre-concentration of azo dyes in different food samples followed by high-performance liquid chromatography analysis. Food Addit. Contam. Part A 2018, 35, 2099–2110. [Google Scholar] [CrossRef]
- Malik, S.; Khan, A.; Rahman, G.; Ali, N.; Khan, H.; Khan, S.; Sotomayor, M.D. Core-shell magnetic molecularly imprinted polymer for selective recognition and detection of sunset yellow in aqueous environment and real samples. Environ. Res. 2022, 212, 113209. [Google Scholar] [CrossRef]
- Khan, S.; Wong, A.; Zanoni, M.V.B.; Sotomayor, M.D.P.T. Electrochemical sensors based on biomimetic magnetic molecularly imprinted polymer for selective quantification of methyl green in environmental samples. Mater. Sci. Eng. C 2019, 103, 109825. [Google Scholar] [CrossRef]
- Kudur Jayaprakash, G.; Swamy, B.K.; Flores-Moreno, R.; Pineda-Urbina, K. Theoretical and Cyclic Voltammetric Analysis of Asparagine and Glutamine Electrocatalytic Activities for Dopamine Sensing Applications. Catalysts 2023, 13, 100. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Y.; Peng, R.; Cui, Q.; Luo, Y.; Li, L. Co-precipitation method to prepare molecularly imprinted fluorescent polymer nanoparticles for paracetamol sensing. Colloids Surf. A Physicochem. Eng. Asp. 2020, 587, 124342. [Google Scholar] [CrossRef]
- Mostafiz, B.; Bigdeli, S.A.; Banan, K.; Afsharara, H.; Hatamabadi, D.; Mousavi, P.; Ghorbani-Bidkorbeh, F. Molecularly imprinted polymer-carbon paste electrode (MIP-CPE)-based sensors for the sensitive detection of organic and inorganic environmental pollutants: A review. Trends Environ. Anal. Chem. 2021, 32, e00144. [Google Scholar] [CrossRef]
- Ganash, A.; Alshammari, S.; Ganash, E. Development of a Novel Electrochemical Sensor Based on Gold Nanoparticle-Modified Carbon-Paste Electrode for the Detection of Congo Red Dye. Molecules 2023, 28, 19. [Google Scholar] [CrossRef]
- Kurlla, P.; Shivram, A.K.; Kottam, N.; Siddegowda, S.B.; Subramaniam, M.; Bogegowda, U.; Narasimhan, R.L. Green-engineered synthesis of Bi2Zr2O7 NPs: Excellent performance on electrochemical sensor and sunlight-driven photocatalytic studies. Environ. Sci. Pollut. Res. 2023, 1–21. [Google Scholar] [CrossRef]
- Ullah, T.; Gul, K.; Khan, H.; Ara, B.; Zia, T.U.H. Efficient removal of selected fluoroquinolones from the aqueous environment using reduced magnetic graphene oxide/polyaniline composite. Chemosphere 2022, 293, 133452. [Google Scholar] [CrossRef]
- Karimi, F.; Tiri, R.N.E.; Aygun, A.; Gulbagca, F.; Özdemir, S.; Gonca, S.; Sen, F. One-step synthesized biogenic nanoparticles using Linum usitatissimum: Application of sun-light photocatalytic, biological activity and electrochemical H2O2 sensor. Environ. Res. 2023, 218, 114757. [Google Scholar] [CrossRef]
- Gui, R.; Guo, H.; Jin, H. Preparation and applications of electrochemical chemosensors based on carbon-nanomaterial-modified molecularly imprinted polymers. Nanoscale Adv. 2019, 1, 3325–3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alizadeh, T.; Hamidi, N.; Ganjali, M.R.; Nourozi, P. Development of a highly selective and sensitive electrochemical sensor for Bi3+ determination based on nano-structured bismuth-imprinted polymer modified carbon/carbon nanotube paste electrode. Sens. Actuators B Chem. 2017, 245, 605–614. [Google Scholar] [CrossRef]
- Dinu, A.; Apetrei, C. A Review of Sensors and Biosensors Modified with Conducting Polymers and Molecularly Imprinted Polymers Used in Electrochemical Detection of Amino Acids: Phenylalanine, Tyrosine, and Tryptophan. Int. J. Mol. Sci. 2022, 23, 1218. [Google Scholar] [CrossRef]
- Tarannum, N.; Kumar, D.; Agrawal, R.; Verma, Y. Selectively Imprinted β-cyclodextrin Polymer for Colorimetric Assay of Lysophosphatidic Acid for Point of Care Detection of Ovarian Cancer. ChemistrySelect 2022, 7, e202202027. [Google Scholar] [CrossRef]
- Kadhem, A.J.; Gentile, G.J.; Fidalgo de Cortalezzi, M.M. Molecularly imprinted polymers (MIPs) in sensors for environmental and biomedical applications: A review. Molecules 2021, 26, 6233. [Google Scholar] [CrossRef]
- Karimi, M.; Asefnejad, A.; Aflaki, D.; Surendar, A.; Baharifar, H.; Saber-Samandari, S.; Toghraie, D. Fabrication of shapeless scaffolds reinforced with baghdadite-magnetite nanoparticles using a 3D printer and freeze-drying technique. J. Mater. Res. Technol. 2021, 14, 3070–3079. [Google Scholar] [CrossRef]
- Zhang, S.; Malik, S.; Ali, N.; Khan, A.; Bilal, M.; Rasool, K. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top. Curr. Chem. 2022, 380, 44. [Google Scholar] [CrossRef]
- Mohammadi, H.; Nekobahr, E.; Akhtari, J.; Saeedi, M.; Akbari, J.; Fathi, F. Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicol. Rep. 2021, 8, 331–336. [Google Scholar] [CrossRef]
- Dhar, P.K.; Saha, P.; Hasan, M.K.; Amin, M.K.; Haque, M.R. Green synthesis of magnetite nanoparticles using Lathyrussativus peel extract and evaluation of their catalytic activity. Clean. Eng. Technol. 2021, 3, 100117. [Google Scholar] [CrossRef]
- Sadia, M.; Ahmed, I.; Ali, F.; Zahoor, M.; Ullah, R.; Khan, F.A.; Sohail, A. Selective Removal of the Emerging Dye Basic Blue 3 via Molecularly Imprinting Technique. Molecules 2022, 27, 3276. [Google Scholar] [CrossRef]
- Awokoya, K.N.; Oninla, V.O.; Adeyinka, G.C.; Ajadi, M.O.; Chidimma, O.T.; Fakola, E.G.; Akinyele, O.F. Experimental and computational studies of microwave-assisted watermelon rind–styrene based molecular imprinted polymer for the removal of malachite green from aqueous solution. Sci. Afr. 2022, 16, e01194. [Google Scholar] [CrossRef]
- Quinto, M.L.; Khan, S.; Picasso, G.; Sotomayor, M.D.P.T. Synthesis, characterization, and evaluation of a selective molecularly imprinted polymer for quantification of the textile dye acid violet 19 in real water samples. J. Hazard. Mater. 2020, 384, 121374. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, N.; Mohammadi, R.; Ghassemzadeh, H.R.; Heris, S.S.S. Design and synthesis of a new magnetic molecularly imprinted polymer nanocomposite for specific adsorption and separation of diazinon insecticides from aqueous media. Microchem. J. 2022, 175, 107087. [Google Scholar] [CrossRef]
- Hatamluyi, B.; Sadeghian, R.; Malek, F.; Boroushaki, M.T. Improved solid phase extraction for selective and efficient quantification of sunset yellow in different food samples using a novel molecularly imprinted polymer reinforced by Fe3O4@UiO-66-NH2. Food Chem. 2021, 357, 129782. [Google Scholar] [CrossRef] [PubMed]
- Arabkhani, S.; Pourmoslemi, S.; Harchegani, A.L. Rapid determination of metanil yellow in turmeric using a molecularly imprinted polymer dispersive solid-phase extraction and visible light spectrophotometry. Food Chem. 2022, 380, 132120. [Google Scholar] [CrossRef]
- Bonyadi, S.; Ghanbari, K. Development of highly sensitive and selective sensor based on molecular imprinted polydopamine-coated silica nanoparticles for electrochemical determination of sunset yellow. Microchem. J. 2021, 167, 106322. [Google Scholar] [CrossRef]
- Tuncer, C.; Sahin, M. Removal of sunset yellow FCF from aqueous solutions using a highly cross-linked PDMA star polymer. Iran. Polym. J. 2021, 30, 257–268. [Google Scholar] [CrossRef]
- Li, X.; Yu, P.; Feng, Y.; Yang, Q.; Li, Y.; Ye, B.C. Specific adsorption and highly sensitive detection of methyl red in wastewater using an iron paste electrode modified with a molecularly imprinted polymer. Electrochem. Commun. 2021, 132, 107144. [Google Scholar] [CrossRef]
- Marfà, J.; Pupin, R.R.; Sotomayor, M.P.T.; Pividori, M.I. Magnetic-molecularly imprinted polymers in electrochemical sensors and biosensors. Anal. Bioanal. Chem. 2021, 413, 6141–6157. [Google Scholar] [CrossRef]
- Herrera-Chacón, A.; Cetó, X.; Del Valle, M. Molecularly imprinted polymers-towards electrochemical sensors and electronic tongues. Anal. Bioanal. Chem. 2021, 413, 6117–6140. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Amine, A. Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials. Electroanalysis 2019, 31, 188–201. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Boroznjak, R.; Reut, J.; Öpik, A.; Syritski, V. Molecularly imprinted polymer based electrochemical sensor for quantitative detection of SARS-CoV-2 spike protein. Sens. Actuators B Chem. 2022, 353, 131160. [Google Scholar] [CrossRef]
- Liang, A.; Tang, B.; Hou, H.; Sun, L.; Luo, A. A novel CuFe2O4 nanospheres molecularly imprinted polymers modified electrochemical sensor for lysozyme determination. J. Electroanal. Chem. 2019, 853, 113465. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, M.; Liu, W.; Yu, S.; Niu, L.; Li, G.; Liu, W. Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine. J. Electroanal. Chem. 2018, 813, 75–82. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Mahmoud, A.M.; Alhazzani, K.; Alanazi, A.Z.; Algahtani, M.M.; Alaseem, A.M.; El-Wekil, M.M. Enhanced molecular imprinted electrochemical sensing of histamine based on signal reporting nanohybrid. Microchem. J. 2021, 168, 106439. [Google Scholar] [CrossRef]
- Yücebaş, B.B.; Yaman, Y.T.; Bolat, G.; Özgür, E.; Uzun, L.; Abaci, S. Molecular imprinted polymer based electrochemical sensor for selective detection of paraben. Sens. Actuators B Chem. 2020, 305, 127368. [Google Scholar] [CrossRef]
- Aminikhah, M.; Babaei, A.; Taheri, A. A novel electrochemical sensor based on molecularly imprinted polymer nanocomposite platform for sensitive and ultra-selective determination of citalopram. J. Electroanal. Chem. 2022, 918, 116493. [Google Scholar] [CrossRef]
- Phonklam, K.; Wannapob, R.; Sriwimol, W.; Thavarungkul, P.; Phairatana, T. A novel molecularly imprinted polymer PMB/MWCNTs sensor for highly-sensitive cardiac troponin T detection. Sens. Actuators B Chem. 2020, 308, 127630. [Google Scholar] [CrossRef]
- Lach, P.; Cieplak, M.; Majewska, M.; Noworyta, K.R.; Sharma, P.S.; Kutner, W. “Gate effect” in p-synephrine electrochemical sensing with a molecularly imprinted polymer and redox probes. Anal. Chem. 2019, 91, 7546–7553. [Google Scholar] [CrossRef]
- Afzali, Z.; Mohadesi, A.; Karimi, M.A.; Fathirad, F. A highly selective and sensitive electrochemical sensor based on graphene oxide and molecularly imprinted polymer magnetic nanocomposite for patulin determination. Microchem. J. 2022, 177, 107215. [Google Scholar] [CrossRef]
- BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2018, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Hatamluyi, B.; Rezayi, M.; Beheshti, H.R.; Boroushaki, M.T. Ultra-sensitive molecularly imprinted electrochemical sensor for patulin detection based on a novel assembling strategy using Au@Cu-MOF/N-GQDs. Sens. Actuators B Chem. 2020, 318, 128219. [Google Scholar] [CrossRef]
- Aghoutane, Y.; Diouf, A.; Österlund, L.; Bouchikhi, B.; El Bari, N. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry 2020, 132, 107404. [Google Scholar] [CrossRef]
- Lah, N.F.C.; Ahmad, A.L.; Low, S.C.; Shoparwe, N.F. The role of porogen-polymer complexation in atrazine imprinted polymer to work as an electrochemical sensor in water. J. Environ. Chem. Eng. 2019, 7, 103500. [Google Scholar]
- Balayan, S.; Chauhan, N.; Chandra, R.; Jain, U. Electrochemical Based C-Reactive Protein (CRP) Sensing through Molecularly Imprinted Polymer (MIP) Pore Structure Coupled with Bi-Metallic Tuned Screen-Printed Electrode. Biointerface Res. Appl. Chem. 2022, 6, 38. [Google Scholar]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef]
- Han, Y.; Tao, J.; Ali, N.; Khan, A.; Malik, S.; Khan, H.; Mohamed, A.A. Molecularly Imprinted Polymers as the Epitome of Excellence in Multiple Fields. Eur. Polym. J. 2022, 179, 111582. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev. 2022, 453, 214305. [Google Scholar] [CrossRef]
- Khan, S.; Wong, A.; Rychlik, M.; Sotomayor, M.D.P.T. A Novel Synthesis of a Magnetic Porous Imprinted Polymer by Polyol Method Coupled with Electrochemical Biomimetic Sensor for the Detection of Folate in Food Samples. Chemosensors 2022, 10, 473. [Google Scholar] [CrossRef]
- Santos, A.C.F.; de Araújo, O.R.; Moura, F.A.; Khan, S.; Tanaka, A.A.; Santana, A.E.G.; Goulart, M.O. Development of magnetic nanoparticles modified with new molecularly imprinted polymer (MIPs) for selective analysis of glutathione. Sens. Actuators B Chem. 2021, 344, 130171. [Google Scholar] [CrossRef]
- Foguel, M.V.; Pedro, N.T.B.; Wong, A.; Khan, S.; Zanoni, M.V.B.; Sotomayor, M.D.P.T. Synthesis and evaluation of a molecularly imprinted polymer for selective adsorption and quantification of Acid Green 16 textile dye in water samples. Talanta 2017, 170, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Jara-Cornejo, E.; Khan, S.; Vega-Chacón, J.; Wong, A.; da Silva Neres, L.C.; Picasso, G.; Sotomayor, M.D. Biomimetic Material for Quantification of Methotrexate Using Sensor Based on Molecularly Imprinted Polypyrrole Film and MWCNT/GCE. Biomimetics 2023, 8, 77. [Google Scholar] [CrossRef]
- Ruiz-Córdova, G.A.; Villa, J.E.; Khan, S.; Picasso, G.; Sotomayor, M.D.P.T. Surface molecularly imprinted core-shell nanoparticles and reflectance spectroscopy for direct determination of tartrazine in soft drinks. Anal. Chim. Acta 2021, 1159, 338443. [Google Scholar] [CrossRef]
- Vilian, A.E.; Kang, S.M.; Oh, S.Y.; Oh, C.W.; Umapathi, R.; Huh, Y.S.; Han, Y.K. A simple strategy for the synthesis of flower-like textures of Au-ZnO anchored carbon nanocomposite towards the high-performance electrochemical sensing of sunset yellow. Food Chem. 2020, 323, 126848. [Google Scholar] [CrossRef]
Pseudo−1st−Order Kinetics | |
---|---|
Parameters | Values |
K | 0.0146 |
Qe | 0.5973 |
R2 | 0.02 |
Pseudo−2nd−Order Kinetics | |
Qe | 23.95 |
K2 | 12,6371.68 |
R2 | 0.999 |
Freundlich Isotherm | |
---|---|
Parameters | Values Obtained |
N | 1.1201 L/g |
KF | 2182.72 mg/g |
R2 | 0.981 |
Langmuir Isotherm | |
Parameters | Values Obtained |
KL | 0.9032 L/g |
aL | 0.0019 L/mg |
qo | 475.3 mg/g |
R2 | 0.996 |
Temkin Isotherm | |
Parameters | Values Obtained |
BT | −47.21 mg/g |
AT | 0.8063 L/g |
R2 | 0.983 |
Samples | Added/M | Found/M | Recovery (%) |
---|---|---|---|
Industrial sample 1 | 6.07 × 10−6 | (5.94 ± 0.03) × 10−6 | 98 |
Industrial sample 2 | 2.43 × 10−5 | (2.5 ± 0.06) × 10−5 | 103 |
Industrial sample 3 | 3.91 × 10−4 | (3.98 ± 0.04) × 10−4 | 102 |
Material | Analyte | LOD | Reference |
---|---|---|---|
Magnetic molecularly imprinted polymers | Folate | 1.0 × 10−7 mol L−1 | [60] |
Magnetic molecularly imprinted polymers | Sunset Yellow | 0.00413 mol L−1 | [13] |
Magnetic molecularly imprinted polymers | Glutathione | 0.07 μmol L−1 | [61] |
Magnetic molecularly imprinted polymers | Methyl Green dye | 1.0 × 10−8 mol L−1 | [14] |
Magnetic molecularly imprinted polymers | Ametryn | 25 nmol L−1 | [62] |
Polypyrrole-based molecularly imprinted polymer (MIP) | Methotrexate | 2.7 × 10−9 mol L−1 | [63] |
Magnetic molecularly imprinted polymers | Tartrazine | 0.303 μmol/L | [64] |
rGO-g-CN/ZnO-AuNPs | Sunset Yellow Dye | 1.34 nmol L−1 | [65] |
Magnetic molecularly imprinted polymers | Sunset Yellow Dye | 8.6242 × 10−5 mol L−1 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.; Khan, A.; Khan, H.; Rahman, G.; Ali, N.; Khan, S.; Sotomayor, M.D.P.T. Biomimetic Electrochemical Sensors Based on Core-Shell Imprinted Polymers for Targeted Sunset Yellow Estimation in Environmental Samples. Biosensors 2023, 13, 429. https://doi.org/10.3390/bios13040429
Malik S, Khan A, Khan H, Rahman G, Ali N, Khan S, Sotomayor MDPT. Biomimetic Electrochemical Sensors Based on Core-Shell Imprinted Polymers for Targeted Sunset Yellow Estimation in Environmental Samples. Biosensors. 2023; 13(4):429. https://doi.org/10.3390/bios13040429
Chicago/Turabian StyleMalik, Sumeet, Adnan Khan, Hamayun Khan, Gul Rahman, Nauman Ali, Sabir Khan, and Maria Del Pilar Taboada Sotomayor. 2023. "Biomimetic Electrochemical Sensors Based on Core-Shell Imprinted Polymers for Targeted Sunset Yellow Estimation in Environmental Samples" Biosensors 13, no. 4: 429. https://doi.org/10.3390/bios13040429
APA StyleMalik, S., Khan, A., Khan, H., Rahman, G., Ali, N., Khan, S., & Sotomayor, M. D. P. T. (2023). Biomimetic Electrochemical Sensors Based on Core-Shell Imprinted Polymers for Targeted Sunset Yellow Estimation in Environmental Samples. Biosensors, 13(4), 429. https://doi.org/10.3390/bios13040429