Bioimpedance-Measurement-Based Non-Invasive Method for In Ovo Chicken Egg Sexing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eggs and Chemical Preparation
2.2. Chicken Egg Electrodes’ Positions
2.3. Carbon-Epoxy-Based Electrode
2.4. Pinout Circuit
2.5. Experimental Setup
2.5.1. Incubator Preparation
2.5.2. Impedance Measurement Experiment
- a.
- A dry, clean towel was used to clean the egg’s surface before it was numbered. The temperature of the egg storage area was maintained at around 20 °C.
- b.
- Conductive fabric cloth was cut into pieces that were 10 mm × 10 mm in size.
- c.
- Coaxial cables that were about 1 m long were cut, striped, and had the shield layer insulated with heat-shrunk tubing.
- d.
- Forty cubic millimeters of carbon epoxy was dropped onto the conductive fabric cloth.
- e.
- The coaxial cable’s stripped end was inserted into the carbon-epoxy-dropped conductive fabric cloth.
- f.
- The entire arrangement was taped to the desired positions of each egg.
- g.
- They were allowed to cure for 24 h in a 20 °C climate-controlled room.
- h.
- The eggs were placed inside the incubator, the wires tunneled out and connected to SMA heads and pinout circuit.
- i.
- Every other 24 h, an impedance spectrum measurement was made for 13 more days.
2.5.3. Genomic DNA Extraction and Gender Identification Using PCR
2.6. Statistical Analysis
2.7. Experimental and Analyzing Flow
3. Results and Discussion
3.1. Electrode Evaluation Test
3.2. Chicken Egg Gender Evaluation Test
3.2.1. PCR Chicken Egg Sex Result
3.2.2. Impedance Spectrum Result Data
Incubation Day | Male | Female | p-Value of Independent Two Tail t-Test | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
1 | 1.125607 | 0.167139 | 0.95094 | 0.086574 | 0.023633 |
2 | 1.023389 | 0.16627 | 0.95714 | 0.072835 | 0.326269 |
3 | 1.06362 | 0.123114 | 0.974016 | 0.177845 | 0.264056 |
4 | 1.087815 | 0.12767 | 0.943842 | 0.070731 | 0.017585 |
5 | 1.061307 | 0.119568 | 1.006839 | 0.154494 | 0.444491 |
6 | 1.117094 | 0.172387 | 0.959187 | 0.101615 | 0.047364 |
7 | 1.058761 | 0.148037 | 0.963327 | 0.115739 | 0.174494 |
8 | 1.066774 | 0.125547 | 0.990487 | 0.119059 | 0.232832 |
9 | 1.122262 | 0.112674 | 0.953107 | 0.124892 | 0.006125 * |
10 | 1.083995 | 0.128271 | 0.928134 | 0.07559 | 0.012954 * |
11 | 1.077437 | 0.120659 | 0.94658 | 0.076244 | 0.023521 * |
12 | 1.131611 | 0.167438 | 0.961139 | 0.102673 | 0.030321 * |
13 | 1.08715 | 0.095502 | 0.959394 | 0.091049 | 0.016 * |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krautwald-Junghanns, M.-E.; Cramer, K.; Fischer, B.; Förster, A.; Galli, R.; Kremer, F.; Mapesa, E.U.; Meissner, S.; Preisinger, R.; Preusse, G.; et al. Current approaches to avoid the culling of day-old male chicks in the layer industry, with special reference to spectroscopic methods. Poult. Sci. 2018, 97, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Reid, D. Germany Hopes New Technology Will Stop the Slaughter of Male Chicks. CNBC Food & Beverage. 2019. Available online: https://www.cnbc.com/2019/05/30/chick-culling-germany-makes-tech-to-stop-slaughter-of-male-chicks.html (accessed on 13 February 2023).
- Beth, R.B. Sexing Day-Old Chicks: How to Identify Pullets and Cockerels. Available online: Motherearthnews.com (accessed on 30 August 2015).
- Masui, K.; Hashimoto, J. Sexing Baby Chicks. 1933. Available online: https://www.worldcat.org/title/sexing-baby-chicks/oclc/3261486 (accessed on 30 August 2015).
- Göhler, D.; Fischer, B.; Meissner, S. In-ovo sexing of 14-day-old chicken embryos by pattern analysis in hyperspectral images (VIS/NIR spectra): A non-destructive method for layer lines with gender-specific down feather color. Poult. Sci. 2017, 96, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, J.T.; Schrader, L. Labelling as a Tool for Improving Animal Welfare—The Pig Case. Agriculture 2019, 9, 123. [Google Scholar] [CrossRef]
- Galli, R.; Preusse, G.; Schnabel, C.; Bartels, T.; Cramer, K.; Krautwald-Junghanns, M.-E.; Koch, E.; Steiner, G. Sexing of chicken eggs by fluorescence and Raman spectroscopy through the shell membrane. PLoS ONE 2018, 13, e0192554. [Google Scholar] [CrossRef] [PubMed]
- Melanie, E. Hypereye: A game changer. Available online: https://www.canadianpoultrymag.com/hypereye-a-game-changer-30033/ (accessed on 4 November 2021).
- Melanie, E. German egg sexing technology a game changer. Available online: https://www.canadianpoultrymag.com/a-welfare-game-changer-30944/ (accessed on 4 November 2021).
- Phelps, P.; Bhutada, A.; Bryan, S.; Chalker, A.; Ferrell, B.; Neuman, S.; Ricks, C.; Tran, H.; Butt, T. Automated identification of male layer chicks prior to hatch. Worlds Poult. Sci. J. 2003, 59, 33–38. [Google Scholar]
- Tran, H.T.; Ferrell, W.; Butt, T.R. An estrogen sensor for poultry sex sorting. J Anim. Sci. 2010, 88, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Weissmann, A.; Reitemeier, S.; Hahn, A.; Gottschalk, J.; Einspanier, A. Sexing domestic chicken before hatch: A new method for in ovo gender identification. Theriogenology. 2013, 80, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Burke, W.H.; Sharp, P.J. Sex differences in body weight of chicken embryos. Poult. Sci. 1989, 68, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.-P.; Ching, C.T.-S.; Cheng, C.-S.; Huang, S.-H.; Chen, Y.-J.; Hsiao, C.-S.; Chang, C.-H.; Huang, S.-Y.; Shieh, H.-L.; Liu, W.-H.; et al. The use of bioimpedance in the detection/screening of tongue cancer. Cancer Epidemiol. 2010, 34, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.L.; Hieu, N.V.; Li, T.S.; Tsao, K.C.; Ching, C.T.S. Noninvasive and real-time in vivo characterization of Inflammation skin. A feasibility of animal study. Skin Res. Technol. 2021, 27, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-C.; Liao, S.-Y.; Phan, T.L.; Van Hieu, N.; Chu, P.-Y.; Yi, C.-C.; Wu, H.-J.; Chang, K.-M.; Ching, C.T.-S. An Immunosensor for the Detection of ULBP2 Biomarker. Micromachines 2020, 11, 568. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, R.; Li, Y. Rapid detection of Escherichia coli O157:H7 and Salmonella Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation. Talanta 2016, 148, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-Y.; Chou, C.-M.; Chen, T.-H.; Chiou, P.-C.; Hsiao, V.K.S.; Ching, C.T.-S.; Sun, T.-P. Enhanced Sensitivity Using Microfluidic, Interdigitated Microelectrode Based Capacitance Glucose Sensor Measured at 4 MHz. J. Electrochem. Soc. 2014, 161, B102–B105. [Google Scholar] [CrossRef]
- Ching, C.T.-S.; van Hieu, N.; Cheng, T.-Y.; Fu, L.-S.; Sun, T.-P.; Liu, M.-Y.; Huang, S.-H.; Yao, Y.-D. Liver Cancer Detection by a Simple, Inexpensive and Effective Immunosensor with Zinc Oxide Nanoparticles. Sensors 2015, 15, 29408–29418. [Google Scholar] [CrossRef] [PubMed]
- Romanoff, A.L. Effects of different temperatures in the incubator on the prenatal and postnatal development of the chick. Poult. Sci. 1936, 15, 311–315. [Google Scholar] [CrossRef]
- Romanoff, A.L. The Avian Embryo; The Macmillian, Co.: New York, NY, USA, 1960. [Google Scholar]
- Romanoff, A.L.; Smith, L.L.; Sullivan, R.A. Number 216—Biochemistry and Biophysics of the Developing Hen’s Egg. III. Influence of Temperature: Memoir; Cornell University, Agricultural Experiment Station: Ithaca, NY, USA, 1938. [Google Scholar]
- Romanov, M.N.; Betuel, A.M.; Chemnick, L.G.; Ryder, O.A.; Kulibaba, R.O.; Tereshchenko, O.V.; Payne, W.S.; Delekta, P.C.; Dodgson, J.B.; Tuttle, E.M.; et al. Widely Applicable PCR Markers for Sex Identification in Birds. Russ. J. Genet. 2019, 55, 220–231. [Google Scholar] [CrossRef]
Temperature | Time | ||
---|---|---|---|
Initial | 95 °C | 30 s | |
Denaturation | 95 °C | 30 s | 30 cycle |
Annealing | 58 °C | 1 min | |
Extension | 72 °C | 1 min | |
Finish | 72 °C | 5 min |
No. | Survival Status | Gender | |
---|---|---|---|
1 | + | Good | M |
2 | + | Good | M |
3 | + | Good | M |
4 | + | Good | F |
5 | + | Good | M |
6 | + | Good | F |
7 | + | Good | F |
8 | + | Good | F |
9 | + | Good | M |
10 | + | Good | F |
11 | + | Good | F |
12 | + | Good | M |
13 | + | Good | M |
14 | + | Good | F |
15 | N/A | N/A | N/A |
16 | + | Good | M |
17 | + | Good | F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ching, C.T.S.; Wang, C.-K.; Tang, P.-C.; Ha, M.-K.; Li, C.; Chiu, H.-N.; Yao, F.Y.-D.; Nhan, N.C.; Hieu, N.V.; Phan, T.-L. Bioimpedance-Measurement-Based Non-Invasive Method for In Ovo Chicken Egg Sexing. Biosensors 2023, 13, 440. https://doi.org/10.3390/bios13040440
Ching CTS, Wang C-K, Tang P-C, Ha M-K, Li C, Chiu H-N, Yao FY-D, Nhan NC, Hieu NV, Phan T-L. Bioimpedance-Measurement-Based Non-Invasive Method for In Ovo Chicken Egg Sexing. Biosensors. 2023; 13(4):440. https://doi.org/10.3390/bios13040440
Chicago/Turabian StyleChing, Congo Tak Shing, Chien-Kai Wang, Pin-Chi Tang, Minh-Khue Ha, Chin Li, Hsuan-Ni Chiu, Fiona Yan-Dong Yao, Nguyen Chi Nhan, Nguyen Van Hieu, and Thien-Luan Phan. 2023. "Bioimpedance-Measurement-Based Non-Invasive Method for In Ovo Chicken Egg Sexing" Biosensors 13, no. 4: 440. https://doi.org/10.3390/bios13040440
APA StyleChing, C. T. S., Wang, C.-K., Tang, P.-C., Ha, M.-K., Li, C., Chiu, H.-N., Yao, F. Y.-D., Nhan, N. C., Hieu, N. V., & Phan, T.-L. (2023). Bioimpedance-Measurement-Based Non-Invasive Method for In Ovo Chicken Egg Sexing. Biosensors, 13(4), 440. https://doi.org/10.3390/bios13040440